
Structuring Proactive Secret Sharing in Mobile
Ad-hoc Networks

Hitoshi Asaeda∗, Musfiq Rahman†, Yoshihiro Toyama∗
∗Keio University, Graduate School of Media and Governance, 5322, Endo, Fujisawa-shi, Kanagawa, Japan

†Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani, Thailand

Abstract— Threshold cryptography is a novel cryptographic
technique sharing secret among members. It divides a secret
key into multiple shares by a cryptographic operation. This
technique is useful to provide a shared secret key to legitimate
nodes in a infrastructure-less mobile ad-hoc network (MANET).
As an additional component, Proactive Secret Sharing (PSS)
allows a set of nodes holding shares to refresh all shares by
generating a new set of shares for the same secret key from the
old shares without reconstructing the secret key. It is necessary to
reasonably escape from threats of exposing the secret key when
threshold cryptography is used.

In this paper, we design the PSS protocol implementation
specification in a MANET environment. In our scheme all share
holder nodes synchronize the PSS procedure in a well-managed
fashion to keep the protocol consistency. We then introduce
our actual implementation and evaluate the behavior and its
performance criteria.

I. INTRODUCTION

A mobile ad-hoc network (MANET) architecture enables
mobile nodes to instantaneous group communication imme-
diately and easily. In this network, each mobile node creates
communication path with neighbor mobile nodes in the same
radio range and sends data to a destination node directly or
through these neighbor nodes. In this manner a data forwarding
path is established with arbitrary nodes in a MANET for
forwarding or receiving data. According to its property, it is
desirable for legitimate nodes to establish secure channels for
their communication in order to avoid threats that malicious
nodes eavesdrop or tamper the data. However, lack of fixed
infrastructure or centralized administration may lead its dif-
ficulties; what is more critical and complex is that a secret
group key that is used to encrypt data cannot be easily and
securely distributed to these legitimate nodes.

A node distinction could be made at the application layer
where access to a service or participation to its collaborative
support is allowed only to the group members. In order to
establish secure communication with them, use of a shared
group key for message encryption and decryption fulfills the
requirement. Yet another concern relates to the group key
sharing mechanism; once a mobile node is authenticated as
a legitimate group member, at next the corresponding secret
group key must be given securely to the new member.

It is plausible to assume that the key can be distributed by
establishing a transient secure channel. Unfortunately, it is a
difficult task and not necessarily suitable for group communi-
cation in a MANET environment that is comprised of many
mobile nodes, especially when we consider the possibility that

an end node of a secure channel may be out of range during
or after successful setup of a secure channel.

As the potential solution, threshold cryptography [2] pro-
vides a beneficial approach. In the (n, t) threshold cryptogra-
phy, a secret group key – a shared key – is divided into n
shares and kept by n legitimate nodes, which we call share
holders. Later, a new node collects t shares from the response
of t nodes (among n nodes) and generates the original secret
key as a legitimate node. Since this scheme does not require
transmitting a secret key itself to mobile nodes, it increases the
secure level. Furthermore it works even with a busy MANET
where network topology and mobile nodes are dynamically
changed, if we can assume that t or more share holders reside
in the network.

In this scheme, the fundamental requirement is that each
share must not be disclosed within the share transmission
procedure; if t or more shares are stolen by malicious nodes
within a long span of time, the secret key is finally generated
by them. Here Proactive Secret Sharing (PSS) [3][4] reason-
ably provides the way to escape from threats of exposing the
secret key. PSS allows to refresh all shares by generating a
new set of shares for the same secret key from the old shares
without reconstructing the secret key, and then the old share
is useless after the refresh of each share.

PSS is therefore a necessary component of a key man-
agement protocol using threshold cryptography. To keep a
protocol consistency, all share holders must cooperate with
the PSS procedure in a well-managed fashion. In fact, while
there are several references that have applied the key sharing
technique using threshold cryptography [5][6][7], important
properties resided in the PSS procedure have not been detailed
therein.

In this paper, we propose a PSS synchronization procedure
and its actual implementation. To evaluate its behavior, we
measure the performance on top of our wireless testbed. Our
main contribution in this paper is to define the structure of
PSS implementation that relates to threshold cryptography;
yet considering the implementation specification of threshold
cryptography, including methods how the secret group key
itself is bootstrapped (i.e. initially generated) and how n and
t for (n, t) threshold cryptography are defined, is out of scope
of this paper.

The remainder of this paper is organized as follows: In
Section II we investigate and analyze threshold cryptography
and Proactive Secret Sharing (PSS) techniques. In Section III

0-7803-9410-0/06/$20.00 ©2006 IEEE.

we detail the structure of the PSS synchronization procedure
and its actual implementation. The protocol evaluation and
performance measurement are discussed in Section IV, and
then Section V concludes this paper with outlining future
work.

II. OVERVIEW

A. Threshold Cryptography

Threshold cryptography is a novel cryptographic technique
sharing secret among nodes. The idea comes from Shamir’s
discussion about the company’s secret key [1]. An (n, t)
threshold cryptography scheme (where n ≥ t) allows n nodes
to share the ability to perform a cryptographic operation, so
that any t nodes can perform this operation jointly, whereas it
is infeasible for at most t−1 nodes to do so, even by collusion.

Formally, a t − 1-degree polynomial is constructed such
that the constant coefficient (i.e., S) is the secret and all other
coefficients are random elements:

y = f(x) = at−1x
t−1 + at−2x

t−2 + · · · + a1x + S (1)

In this case, each of the n shares is a pair of (xi, yi) of numbers
such that f(xi) = yi where i ∈ {1 . . . n}, xi �= 0. Now given
any t shares, the polynomial is uniquely determined and hence
the secret S can be computed by using Lagrange interpolation.

In summary, threshold cryptography is a useful technique
for sharing and distributing a secret group key with multiple
mobile nodes in a MANET, because (1) it does not require any
key infrastructure, (2) it avoids the single point of failure for
the key distribution, and (3) it works even with a busy network
when we assume at least t nodes having corresponding shares
reside in the same network.

As a concrete key management system in a MANET envi-
ronment, one secret group key and its t−1-degree polynomial
can be defined with an (n, t) threshold cryptography scheme.
Distribution of trust in the system is accomplished with
allowing n share holders to share the ability to perform a
cryptographic operation. When a new mobile node wants to
join a secure group communication, the new node asks t or
more share holders nodes to the group to give their shares.
Each share is then distributed to the new node through a secure
link established by their own public/private key pairs [8] whose
services could be guaranteed by distributing the Certified
Authority (CA) functionality to each share holder as defined
in [9] or other mechanism. The new node then constructs the
secret group key without knowing the pre-used polynomial or
any other information.

Such key management service actually works under several
assumptions, which require additional components to be more
appropriate for MANETs. For instance, a secret key and its
polynomial must be securely initialized by some manner, and
each share must be initially distributed to n share holders
securely. After these preparation, a new node must be authenti-
cated by some mechanism before each share holder distributes
own share to the node. We leave such details and imprinting
behavior to a separate paper currently in preparation.

+

+

+

+

+

+

+

+ ++ +

+

s′2 = s2 + s12 + ... + sn2

s11

s12

s1

sn1

sn

sn2

s2

s21

s22

S

(n, t) sharing of 0 (n, t) sharing of 0 (n, t) sharing of 0 (n, t) sharing of S

snns1n s2n s′n = sn + s1n + ... + snn

s′1 = s1 + s11 + ... + sn1

Fig. 1. Mechanism to refresh sub-shares in an (n, t) sharing of S.

B. Proactive Secret Sharing

Threshold cryptography provides the way to convey a shared
key to a node without the aid of key infrastructure and is
suitable for a secret key sharing in a MANET. However, given
t or more shares in an (n, t) threshold cryptography scheme,
the secret S can be found. Without the share refresh and
with infinite time span it is not hard for malicious nodes to
compromise at least t share holder nodes and finally obtain
the secret key.

To make each share refresh without disclosure of any share
or a secret key itself, Proactive Secret Sharing (PSS) [3][4]
can be employed with threshold cryptography as an additional
component. It allows to refresh all shares by generating a
new set of shares for the same secret key from the old shares
without reconstructing the secret key.

In the PSS implementation, each share holder randomly
generates own sub-shares (e.g., (si1, si2, . . . , sin) on node i),
and each sub-share is mutually exchanged to refresh own
share. More precisely, the PSS procedure shown in Fig.1 can
be performed in the following steps:

1) Let (s1, s2, . . . , sn) be an (n, t) sharing of the secret key
S of the service, with node i having si.

2) Node i (i ∈ {1 . . . n}) randomly generates si’s sub-
shares (si1, si2, . . . , sin) for an (n, t) sharing of 0.

3) Every sub-share sij (j ∈ {1 . . . n}) is distributed to node
j through secure link.

4) When node j gets the sub-shares (s1j , s2j , . . . , snj), it
computes a new share from these sub-shares and its old
share with an equation:

s′j = sj +
n∑

i=1

sij (2)

5) Now each share (s′1, s
′
2, . . . , s

′
n) is an (n, t) sharing of

the secret key S, because
∑n

j=1 sij = 0, ∀i ∈ {1 . . . n}.

After each PSS, all the shares will be changed, so that old
shares become useless. In such case, since it is impossible to
obtain new share from old share, a malicious node must collect
at least t shares during the time between two executions of the
PSS, which obviously makes his job more difficult.

X

PSS PSS PSS
Time

A B C

[B]

[A]

s13

s12

s11 s21
s22
s23

s31
s32
s33

s31

s21

s11
s22

s12

s13
s23
s33

s1 s2

s3

Fig. 2. PSS and timing issue.

III. PSS IMPLEMENTATION STRUCTURE

A. Objective

While existing PSS proposals prove its literature and mech-
anism, lack of its concrete implementation does not promote
its functionality to the real communication environment. This
may cause the situation that PSS is not widely used in a
MANET in spite of its advantages.

PSS is a periodic or on-demand protocol; any active share
holder in the network can trigger the PSS protocol at any time.
Here, objective exists in this condition. If an arbitrary share
holder starts a PSS procedure without any timing coordination
with other share holders, or if each share holder tries to
refresh its own share using some concurrent scheme, where all
share holders just perform communication and computation in
parallel, protocol inconsistency may happen, and a new node
may receive inconsistent shares and then cannot generate the
secret key.

Let us see Fig.2 [A] showing periodic PSS procedures. In
an (n, t) sharing of S, if a new node requests shares and can
get t shares between the last and the next PSS procedures
(such as A in this figure), the node will generate S without
any trouble. However, if a new node requests to get shares
during PSS (e.g. B), share holders should make the node wait
for their PSS and give their new shares afterward or suspend
their PSS and give their current shares. Or, if a new node tries
to get shares just before PSS is started (e.g. C), each share
holder should put the PSS on hold until the node successfully
get current t shares. These matters imply that a share holder
needs to know when a new share can be used as own share
and when the new share can be given to a new node.

As well as such timing issue, there is another concern
related to untraceable sub-share transmission. The consider-
able story is, while a share holder can understand whether
it has gotten sub-shares generated by other share holders
successfully, it does not know other share holders also have
gotten necessary sub-shares successfully. Or, if a share holder
does not get sub-shares from corresponding share holders

due to loss of connectivity with them, it should not keep
waiting for the reply from the share holders for a long span of
time. This situation will be especially happened in a MANET
environment in which mobile nodes may leave from the
network or turn off itself without any notification.

Let us see Fig.2 [B]. Three share holders (s1, s2, and
s3) start their PSS procedure and exchange each sub-share.
For instance, because of the link failure, s3 cannot give its
sub-share to s2. The worst phenomenon here is s1 does not
know that s2 and s3 had the share transmission problem and
hence may start giving its new share to a new node, which is
an inconsistent share to other old shares. In this case, share
holders should keep own old shares until all share holders
complete their PSS (for a short period) or change the (n, t)
sharing to an (n − 1, t − 1) sharing (with eliminating the left
share holder) along their pre-determined policy.

One may deduce that simply all share holders may be able to
broadcast own sub-shares to other share holders and count the
number of received sub-shares to know that all share holders
successfully synchronize the PSS process, instead of imple-
menting PSS iteratively. However, sub-share transmission must
be secure; if a mobile node in the same MANET receives
sub-shares via broadcast, it can generate a new share from
the corresponding old share and maintain the new share that
should not be owned by the node. This will contradict our
approach, and therefore it is necessary to securely transmit
sub-shares only to the corresponding share holder.

B. Specification

According to the consideration aforementioned, we need to
have some mechanism that informs the status that all share
holders have finished each share refresh and the new ones
are now ready to use. To that purpose, special notation called
token is introduced for triggering the PSS procedure in our
protocol. Using token is straightforward manner to control the
timing of the procedure; only one share holder in the network
can have token and the PSS protocol is started by the token
holder. Since it is assumed all share holders are the members
of the group and hence have the corresponding secret group
key S, token can be given by H(S), where H is 160 bits of
the SHA-1 [10] hash.

Upon triggering a PSS procedure, token holder exchanges
own sub-shares with other (n − 1) share holders. After token
holder computes its new share from its old share and received
sub-shares, it sends a PSS_REQUEST message to all share
holders in order to notify the PSS procedure is started and
passes the token to the next share holder. (For these procedures,
we assume each share holder has maintained a list of IP
addresses of all share holders with the same order.) Likewise
token passes through the (n − 1)-th share holder and finally
reaches to the n-th share holder (i.e. the last share holder).
After this n-th share holder updates its share, it sends the token
to the original token holder. Since the original token holder can
recognize all share holders have finished refreshing shares at
that time, it sends a PSS_DONE message to all share holders
to indicate the completion of PSS. These share holders can

then discard old shares and start using new shares. The share
holder that sends the PSS_DONE message keeps the mission
to work as token holder again and will later start the next PSS
procedure.

When token holder does not exist in a network due to an
initial phase or its departure from the network, or when a
share holder that does not hold the token needs to refresh the
share (due to some security reason etc.), one of arbitrary share
holders will spontaneously send a PSS_REQUEST message
to all share holders to become new token holder and then
trigger a new PSS procedure. If some share holder disappears
from the network during or before a PSS procedure, that
node must be skipped from the procedure after pre-determined
time out. In this situation, active share holders may keep
using own old shares or may change the (n, t) sharing to an
(n−1, t−1) sharing by eliminating non-existing share holder
and regenerate their new shares, whereas it depends on a pre-
determined policy in the group and this paper does not discuss
such details.

For the timing matter shown in Fig.2, if some share holders
receive a share obtainment request from a new mobile node
during their PSS procedure – in the time period that the share
holders have received a PSS_REQUEST message but have
not received a PSS_DONE message yet – or just before their
PSS procedure, the share holders offer to suspend the PSS
procedure by sending a PSS_SUSPEND message to all share
holders. When token holder receives this message, it stops
forwarding token and the all share holders wait for the new
node to receive shares. After the reasonable time period, the
token holder sends a PSS_REQUEST message to share holders
to notify they resume the previous PSS procedure.

In fact, our current protocol does not assume that a share
holder traces when a new node completes its share obtainment,
yet some intelligent mechanism to do it may be needed in the
future.

C. Message Transmission

As well as share transmission to a new node, sub-share and
token transmission must be in secure. For this matter, since we
assumed that all share holders have certified other share hold-
ers’ public keys [8] prior to share or sub-share transmission
and token distribution, these data can be encrypted with the
corresponding public key of the share holder and transferred
to each share holder.

Regarding a PSS_DONE message, a PSS_REQUEST mes-
sage and a PSS_SUSPEND message, they should be also
securely distributed to all share holders. Unlike share or sub-
share transmission, they can be encrypted by the secret group
key S because these messages are distributed to multiple share
holders, and therefore using multicast would be the valuable
solution. Yet there is one concern of this model; several group
members whose group keys are different possibly coexist in a
same MANET and may run independent PSS procedures with
different nodes in the network. In this case, differentiating the
destination multicast address of these messages for each PSS
procedure would filter out unneeded messages on share holder

[B]

Sub

Sub

Share

Share

Sub

Sub

Share

ShareRx

Share

Sub: sub−share generation
Share: share generation
Tx: data transmission
Rx: data reception

: sub−share and token
transmission or reception

: sub−share transmission
 or reception

: PSS_DONE transmission

Sub

Tx Rx Rx

Rx Tx Rx

Rx Rx Tx

Tx

RxSub

Share

Rx Tx

Rx

Rx Tx

Rx

a

Tx

b

Rx

Rx

Tx

Rx

Rx

Time

Time

[A]

s3

s1

s2

s3

s2

s1

Fig. 3. Timing chart to exchange sub-shares and token among three share
holders.

side. Our protocol therefore arranges the multicast address for
each message as with the following rule:
{multicast address prefix} | {leftmost H(S)}

where a multicast address prefix comes from a tentative 16 bits
(for IPv4) or 64 bits (for IPv6) address prefix prepared for our
PSS protocol and leftmost H(S) indicates part of token, which
is the leftmost 16 bits (for IPv4) or 64 bits (for IPv6) of SHA-
1 hash value of the group key (S). Here, “|” is an operation
to concatenate left and right strings. Thanks to this manner,
we can relatively reduce the possibility of multicast address
duplication of PSS procedures; share holders listening on the
same multicast group address are usually the same group
member and expect that given PSS_DONE, PSS_REQUEST
and PSS_SUSPEND messages are sent from the corresponding
share holders. Note that, even if the multicast address of
these messages is duplicated with different PSS procedures,
each share holder can finally choose appropriate messages by
checking the token inside the messages.

IV. PERFORMANCE EVALUATION

Our PSS protocol is implemented in Java, using Java
2 SDK 1.4.2 08. We have adopted Triple DES (24 bytes)
as the cryptographic function with embedded Java class,
javax.crypto.KeyGenerator.

We have made performance measurement tests to evalu-
ate our PSS implementation. All tests have been done on
our testbed in which multiple Linux laptops are connected
through a dedicated wireless network in which all mobile
nodes communicate directly (i.e. without a MANET routing
protocol). In this experiment we have obtained the average
time for completing the PSS procedure on all share holders
in a MANET. The test results indicate the performance of
generating each sub-share and share, but do not include data
communication costs, which may be increased by packet loss
or other issues in a real wireless MANET environment.

Our protocol uses token in terms of synchronizing the PSS
procedure with all share holders. This protocol controls the
timing of share refresh by keeping all share holders informed

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40 45

M
ea

n
tim

e
to

 c
om

pl
et

e
P

S
S

 (
se

c.
)

Number of share holders in a network

iterative sub-share calculation
parallel sub-share calculation

Fig. 4. Average time to complete a PSS procedure.

about each other and avoids inconsistency of share distribution
to a new mobile node. While each sub-share is transferred
by token holder in this manner, it can be calculated by
each share holder prior to the sub-share distribution. Fig.3
shows the situation that three share holders (s1, s2 and s3)
make a PSS procedure with using token. [A] shows the
straightforward manner: token holder starts a PSS procedure
and each share computes own share upon reception of token.
Instead, in [B] sub-shares are preliminarily prepared on each
share holder before PSS is triggered, and PSS is compiled
only with sub-share transmission. Comparing with Fig.3 [A]
and [B], the time difference given by (a + b) may indicate
some effectiveness due to parallel sub-share calculation. We
therefore prepared additional implementation that provides
parallel sub-share calculation and measured the performance
of the implementation in order to know how it reduces the
total time to complete PSS.

Now we show the required items every share holder must
hold prior to the PSS procedure:

• Corresponding share (si), which is not owned by other
share holders

• IP address list of all share holders, which are sorted in
ascending order

• Other share holders’ public keys to encrypt sub-share
transmission

Additionally, one of share holders behaves as token holder,
and it has token, which is given by hash value of S, while
it is not a problem even if token holder does not exist in the
network (see Section III-B).

Our measurement results are shown in Fig.4. According to
this performance graph, the time difference between “iterative
sub-share calculation” and “parallel sub-share calculation”
is small. The former result shows the time of sub-share
calculation that are given by step-by-step manner such as Fig.3
[A], and the latter one shows the time that each share holder
preliminarily generates own sub-shares instead of waiting for
the sub-share transmission in a parallel fashion such as Fig.3
[B]. From this observation, the cost of sub-share calculation

is much smaller than the delay of sub-share transmission over
TCP in a wireless network.

The time that it takes for the nodes to synchronize with
our protocol scheme, increases linearly in the number of
share holders. This fact actually does not imply an optimistic
situation; a desirable property of a synchronization algorithm
would be that all share holders become aware of all others in
a constant amount of time, as opposed to in O(n) as here.

As another discussion, although PSS makes the share distri-
bution securely, more than enough iteration of PSS procedures
will simply overload share holders and consume their precious
power. Therefore refining a well-managed timing to trigger a
PSS procedure is important criteria, whereas this consideration
would be in our future work.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a PSS synchronization
structure used with a secret key sharing mechanism on top of
threshold cryptography in a MAMET environment. We have
explained our actual PSS implementation, which uses token to
synchronize the PSS procedure among all share holders.

To know whether performance advantage can be given
by sub-share generation in a parallel fashion, we have also
examined the implementation which makes preliminary sub-
share generation instead of waiting for the sub-share trans-
mission. In terms of performance measurement of our PSS
implementations, we prepared a dedicated wireless network
and ran the PSS protocol over the network.

According to the test results, while the PSS procedure can
be well organized with feasible sense, it may have some
performance impact when the number of share holders is
accordingly increased. To the best of our knowledge, our PSS
protocol is a novel proposition with no other protocols to
compare to, and hence our next step would be observing the
performance impact over a real MANET routing protocol like
AODV [11].

It is necessary to complete a secret key sharing mechanism
with additional procedures and components for PSS. Integrat-
ing various related protocols like threshold cryptography with
our PSS protocol would provide a feasible communication
model. Considering the appropriate specification of threshold
cryptography, including methods how the secret group key
itself is bootstrapped and how n and t for (n, t) threshold
cryptography are defined, is our future work.

REFERENCES

[1] A. Shamir, “How to Share a Secret”, Communications of the ACM,
vol.22, pp.612-613, November 1979.

[2] Y. Desmedt, “Some Recent Research Aspects of Threshold Cryptogra-
phy”, Proc. Information Security, (Lecture Notes in Computer Science
1396), pp.158-173, Springer-Verlag, 1997.

[3] S. Jarecki, “Proactive secret sharing and public key cryptosystems”,
Master’s thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, September 1995.

[4] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung,
“Proactive public-key and signature schemes”, Proc. the Fourth Annual
Conference on Computer Communications Security, pp.100-110, ACM,
1997.

[5] L. Zhou and Z. J. Haas, “Securing Ad Hoc Networks”, IEEE Network
Magazine, vol.13, no.6, Nov/Dec 1999.

[6] J. Hubaux, L. Buttyan and S. Capkun, “The Quest for Security in Mobile
Ad Hoc Networks”, Proc. ACM MobiHOC, October 2001.

[7] M. Narasimha, G. Tsudik and J. Hyun, “On the Utility of Distributed
Cryptography in P2P and MANETs”, Proc. IEEE ICNP, November 2003.

[8] RSA Security, <http://www.rsasecurity.com/rsalabs/node.asp?id=2214>.
[9] J. Kong, P. Zerfos, H. Luo, S. Lu and L. Zhang, “Providing Robust and

Ubiquitous Security Support for Mobile Ad-Hoc Networks”, Proc. IEEE
ICNP, November 2001.

[10] D. Eastlake, 3rd and P. Jones, “US Secure Hash Algorithm 1 (SHA1)”,
RFC3174, September 2001.

[11] C. Perkins, E. Belding-Royer and S. Das, “Ad hoc On-Demand Distance
Vector (AODV) Routing”, RFC3561, July 2003.

