

SAINT 2004, January 30, 2004

Multicast Routers Cooperating with Channel Announcement System

Hitoshi Asaeda and Walid Dabbous INRIA, Project PLANETE


Outline

- Introduction
 - Source-Specific Multicast (SSM)
- Problem statement and motivation
- Multicast channel validation mechanism
 - Proposed communication model consists of multicast routers and Channel Reflector
- Experiences
- Conclusion and future works

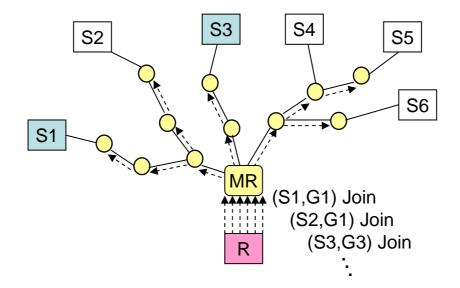
Source-Specific Multicast

- Traditional multicast communication (ASM)
 - Support many-to-many communication (e.g. meeting style applications) by PIM-SM/MSDP/MBGP for IPv4
 - Scalability problems
 - Third-party dependency
 - Traffic concentration
 - Flooding control messages (e.g. MSDP SA message)
 - Protocol complexities
 - Manage both Shared tree (RPT) and SPT
- Source-Specific Multicast (SSM)
 - One-to-many or few-to-many communication is feasible for inter-domain multicast services
 - Multicast data sender address can be specified

Source-Specific Multicast - cont.

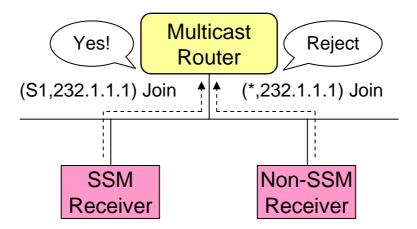
Any-Source Multicast (ASM) with PIM-SM

Source-Specific Multicast (SSM)


Source-Specific Multicast - cont.

- Benefit
 - Source address discovery procedure is eliminated from multicast routing protocols
 - Core router (RP) and MSDP can be eliminated from multicast routing protocols
 - As the result, routing scalability problems and protocol complexities are fairly eliminated

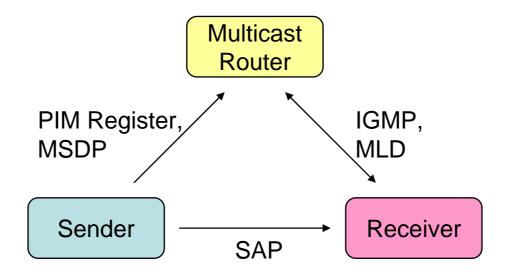
There is no multicast deployment barrier anymore?


Useless Routing Path

- There is no source address discovery function in a multicast routing protocol for SSM
 - Multicast router does not recognize invalid or unavailable (S,G) joins

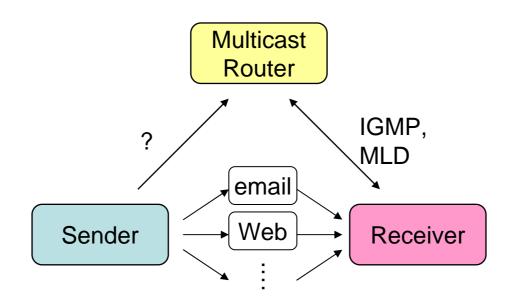
SSM Inconsistency

- SSM requirement: IGMPv3/MLDv2 host-side implementations
- Non-SSM capable node cannot trigger any join whose multicast address range is in an SSM range
 - But the node can receive the multicast data...

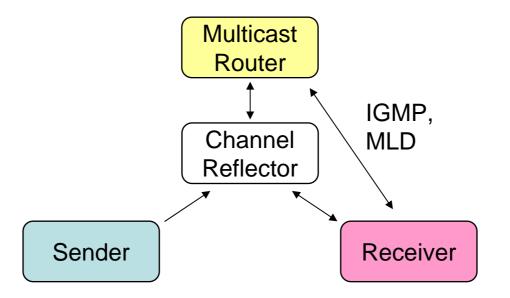


Motivation

- Objectives:
 - Source address validation mechanism in SSM communication
 - Mechanism for ASM node to adapt to an SSM network infrastructure
- Notes:
 - Solutions for both issues should be easily implemented to all senders, receivers and multicast routers

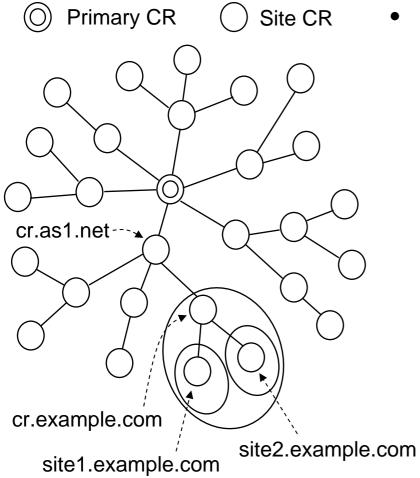

Multicast Communication Model

- ASM communication
 - Communication from a sender to a router
 - Communication from a sender to a receiver

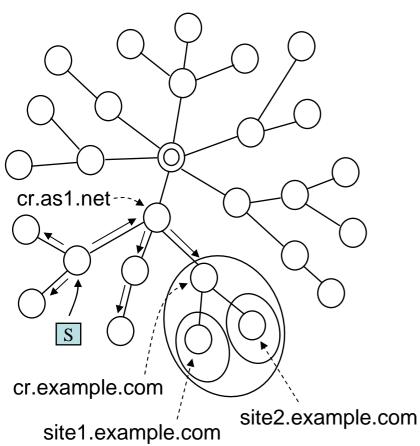

Multicast Communication Model - cont.

- SSM communication
 - There is no communication between a sender and a router

Proposed Communication Model


- New multicast communication
 - New session announcement system, Channel Reflector, binds router, sender and receiver
 - Router and receiver can consult channel information (available (S,G) addresses, scheduled time)

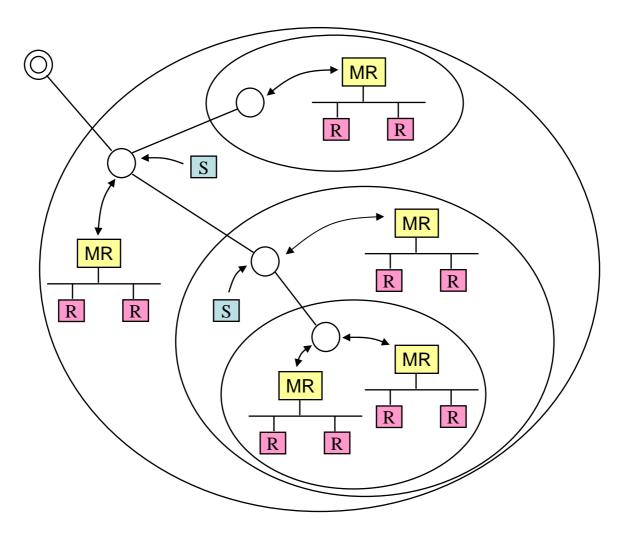
Channel Reflector


- Original work
 - Hitoshi Asaeda and Vincent Roca, "Consideration of Multicast Channel Announcement Architecture", INRIA Research Report, RR-4762, March 2003.
 - Main goal
 - Multicast session announcement without SAP
 - Web-based session directory system
 - Hierarchal policy and scope management system
- Activity in the IETF
 - Yuji Nomura, Rod Walsh, Juha-Pekka Luoma, Hitoshi Asaeda and Henning Schulzrinne, "A Framework for the Usage of Internet Media Guides", draft-ietf-mmusic-imgframework-02.txt, IETF MMUSIC WG, December 2003

Channel Reflector - cont.

- Assumption and condition
 - One "primary CR" exists in the Internet.
 - Each controlled domain has one or more "site CR(s)".
 - Each site CR has a "parent-and-child" relation rooted from the primary CR.
 - The parent-and-child relation is configured statically (like primary and secondary DNS configuration).
 - The controlled domain forms the scoping area labeled with the site CR's FQDN (e.g. cr.example.com).
 - A client accesses an appropriate site CR which has been assigned by his administrator a priori (like DNS) as it is a regular Web server.
 - Each site CR has own "Scope List" which consists of available scope label.

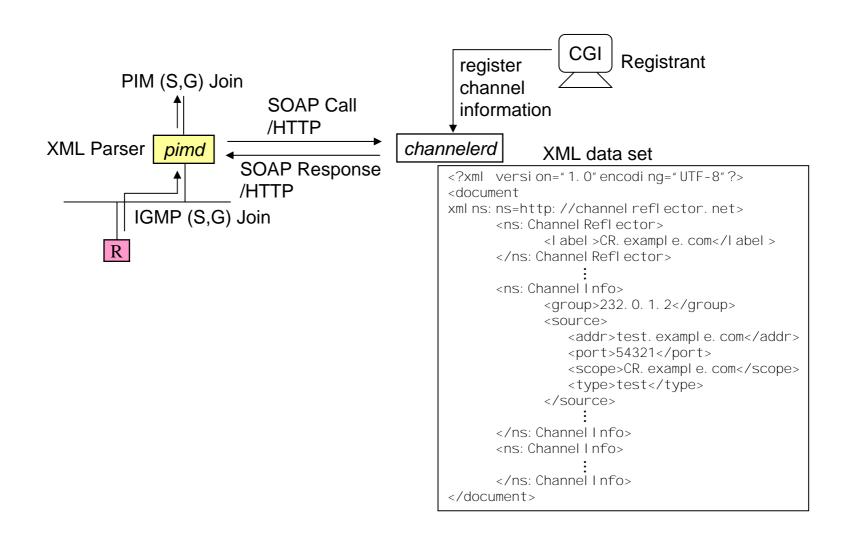
Channel Reflector - cont.



- Specification and behavior
 - (S,G) channel information is registered on each site CR by the site administrator or the authorized date sender (called the "registrant").
 - A registrant specifies one associated scope label when he registers the channel.
 - Each channel information is described with Session Description Protocol (SDP) (RFC2327) or SDPng (I-D).
 - Registered channel information is distributed by hop-by-hop manner toward the scope boundary (= scope label), and it is registered on CRs inside the scope boundary.
 - By additional policy definition, channel information can be filtered.

Channel Validation Mechanism

- Channel Reflector
 - Can announce a well-managed session information consisting of available/valid multicast sender and group addresses to any nodes (including multicast routers)
- Multicast routers
 - Access to defined site CR
 {whenever they receives (*,G)/(S,G) join |
 when defined cache is expired}
 - Validate source and group addresses by stored channel information
 - Can translate (*,G) join to (S,G) join(s) if defined


Channel Validation Mechanism - cont.

Channel Validation Mechanism - cont.

- Summary
 - Multicast routers can verify each multicast join by accessing their Channel Reflector
 - Multicast routers translate (*,G) join to (S,G) join(s) when they access their Channel Reflector
- Additional benefit
 - Policy and scope definitions can be inherited to multicast routers
 (Multicast address would not be used for scope definition)

Experiences

Conclusion and Future Works

- Summary
 - We propose a new communication model with Channel Reflector
 - Result
 - Multicast routers can verify each multicast join
 - Bogus/unavailable (S,G) joins can be completely ignored
 - Multicast routers translate (*,G) join to (S,G) join(s)
 - Non-SSM capable nodes can join SSM channel
- Future works
 - Scalability vs. preciseness
 - Access per join request? Cached channel information?
 - Access per each report? Only for an initial join?
 - ASM-to-SSM translation experience
 - Group-and-Source-Specific Query

Thank you.