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修士論文要旨　2001年度　（平成13年度）

2D Packet Classification for Internet Protocol

インターネットの発達により、ルータ内におけるパケット処理が複雑化してきた。ルータ
は、本来の機能であるパケット転送機能の他に、ファイアウォールやQoSといった様々な機
能を持つようになった。パケットのクラス分けは、これらの機能において重要な役割を果た
している。ルータが効率良くクラス分けを行うためには、良いクラス分け手法が必要である。
本論文では、ヘッダ中の始点アドレスと終点アドレスを利用した、インターネットにおけ

るパケットの２次元クラス分け手法を提案する。本手法では、あらかじめ、複数の検索面を
生成し、その上にフィルタを配置する。目的のフィルタを検索する際は、まず、目的のフィル
タが含まれている検索面を探し出す。そして、その検索面内で、目的のフィルタを探し出す。
本手法の計算量を解析した結果、最適なフィルタを O(log W )回の検索で発見できること

が判明した。また、データ構造の構築は、O(NW )回の手順で行える。メモリ消費量は最大
時に O(N2W )となるが、本手法は最大時になる確率が減少するよう設計した。本手法の評価
には、模擬フィルタデータベースを用いた。その結果、メモリ消費量は O(NW )であり、最
大時を大きく下回った。
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Abstract of Master’s Thesis
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2D Packet Classification for Internet Protocol

The Internet’s development has pushed to the more complex processing of Internet
packets in routers. Routers now not only have to forward packets – their main function,
but also have to perform other functions such as firewall and Quality of Service functions.
The core of these functions is packet classification. Since an Internet router may perform
several classifications for a packet, thus it requires a good packet classification scheme.
Packet classification is to classify packets into a flow. Packets are said to match a flow if
they meet some criterions defined by a rule, thus processed in a similar manner.

This thesis presents a scheme for classifying Internet packets based on two header fields
of packets, thus called two-dimensional (2D) packet classification. The relevant header fields
for this thesis are source and destination addresses. Our scheme solves packet classification
problem by creating search planes based on filters in a filter database and store the filters
in search planes. Our scheme finds the best matching filter for a packet using a two-step
process: find the search plane containing the best matching filter, then find the best matching
filter in that search plane.

Complexity analysis of our scheme shows that it can search for the best matching filter
in O(log W ) time. To build its data structure for a filter database, this scheme requires only
O(NW ) time. Even though the worst-case memory requirement is O(N2W ), it is designed to
reduce the probability of reaching that worst-case. We evaluate our 2D packet classification
scheme by running it using simulated filter databases and the simulation result shows that
the memory usage tends to be O(NW ), rather than close to the worst-case.
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5. Quality of Service
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Chapter 1

Introduction

1.1 Background

The Internet is a collection of interconnected hosts. These hosts are interconnected using
links. Some hosts can only act as the termination point of data (end-hosts), while the others
can serve as the intermediaries for end-hosts (routers). Hosts on the Internet communicate
using Internet Protocol (IP) where data are exchanged in the form of IP datagram. IP
datagrams packets travel from the source host to their destination through routers, and
routers are responsible to forward these datagrams to reach their final destination.

The capability to forward packets is a requirement of every IP router [2]. An IP router
may also do additional processing on incoming packets. The most common process added
to an IP router was packet filtering for security purposes. Now, however, some IP routers
perform many new additional processing to the packets, such as delivery guarantees in
terms of bandwidth, delay, and jitter, and statistics for billing purposes. All these processes
require IP router to classify packets into a flow. Packets are said to match a flow if they
meet some criterions defined by a rule, thus processed in a similar manner.

The Internet’s development has pushed to the more complex packet-processing in IP
routers. The complexity is measured by line speed, the number of packet processing, and
the difficulty level of each packet processing that must be supported by an IP router.
Generally, the complexity of packet processing in a router corresponds to router’s location
in the Internet. If a router is located on the backbone of the Internet, packet processing in
that router tends to be more complex than another router located on the leaf of Internet.

Figure. 1.1 shows the typical processing of packets inside the router. An incoming packet
is first processed by firewall module to know whether the router can accept the packet or
has to drop it. If the router accepts the packet, QoS (Quality of Service) module processes
the packet to know whether the corresponding flow of the packet still conforms to its QoS
specification. Assuming the packet is not dropped, it is then processed by packet forwarding
module to forward the packet to the correct gateway to destination.

Now that the router knows the next-hop gateway – and the outgoing interface – of the
packet, once again firewall and QoS modules process the packet. Firewall module decides
whether the packet can be forwarded through the outgoing interface. If it can be forwarded,
QoS module performs prioritization, packet shaping, etc., so packets’ flow conforms to its
specification. This is an illustration of how packets get processed by many modules in an

1
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Figure 1.1: Typical packet-processing flow in an IP router.
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Figure 1.2: Conceptual model of packet classification.

IP router.

1.2 Packet Classification

The above mentioned packet processings have something in common, they have a set of
rules and they match incoming packets to the rules to find which rule(s) match(es) the
packet. This common function is usually called packet classification. Figure 1.2 illustrates
the conceptual model of a packet classification.

Packet classification function has three components: a packet, a filter database, and an
algorithm to classify packets. A Packet is the IP datagram to be matched with filters in the
filter database. The packet has several properties that are relevant to classification: source
and destination addresses, type-of-service, length, etc.

Filter database is a collection of filters (also called rules), and each filter consists of
several fields and an action. Each field of a filter is associated to a certain property of
IP packet, usually to a packet header field. Each field can be in the form of single value
(e.g. 23), range (e.g. 0–1023), prefix (e.g. 203.178.143/24), or wildcard (matches all values).

A packet property matches to its corresponding filter field if the value of that property
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is contained within the value range of the filter field. A packet matches to a filter if all
properties of the packet match to the corresponding fields of the filter. When this happens,
packet is classified into the flow defined by the filter, and will be treated according to the
action of the filter.

As an example, filter database in Fig. 1.3 has three filters. This filter database de-
fines three flows. Assuming we have a TCP packet whose source address is 202.249.47.142,
destination address: 203.178.143.121, source port: 40123, and destination port: 22. This
packet matches to the upper filter, thus it is permit-ted to enter the router. However, if the
packet is an ICMP packet whose source and destination addresses are 202.249.47.142 and
203.178.148.24, then it matches to the middle filter. Therefore, it is deny-ed from entering
the router.

tcp src 202.249.47/24 port * dst 203.178.142/23 port 20–23 permit
ip src 202.249/17 dst 203.178.148/25 deny
ip src * dst * permit

Figure 1.3: A filter database.

Packet classification algorithm performs the matching between IP packet and the filters
to find which filter matches the packet. A näive algorithm would be to compare the packet
with each filter in filter database, from top to bottom, until the algorithm finds a matched
filter. However, this algorithms’ speed depends linearly to the number of filters in database.
From the illustration of Figure 1.1, it is clear that a router may invoke packet classification
function – thus, the algorithm – several times, each from different modules. Therefore,
packet classification algorithm should be fast enough to allow the algorithm being executed
several times and still can forward packets at line speed.

The complexity of packet classification problem depends on the number of filter fields
and the number of filters that must be supported. If the number of filter fields (usually
called dimensionality) becomes larger, then the problem becomes more complex. This also
applies to the number of filters in filter database.

Packet classification can be categorized as layer 3 or layer 4 classification, depending
on the fields of filters. Filters of layer 3 classification uses IP address fields or other packet
header fields that are relevant for processing at the Internet Layer of TCP/IP protocol
stack. If classification includes other fields that are only relevant to UDP and TCP, then it
is called layer 4 classification.

Packet forwarding is an example of layer 3 classification. Filters for packet forwarding,
the routing/forwarding table, have only one field that corresponds to destination address of
an IP packet. The action of these filters is the next hop gateway for the matching packet.
Fig. 1.4 shows a portion of BGP (Border Gateway Protocol) routing table of a router in
Telstra Network, which contains the routing table of the whole Internet. Data from Telstra
Network Australia [1] at December 5, 2001 16:03 (GMT+10) showed that the current BGP
routing table holds about 100 thousand active entries (Figure 1.5) and updated at the rate
of 550 times per hour on average (Figure 1.6). These data show that while packet forwarding
only has one dimension, it is required to support large database and fast update.

Firewall and QoS functions – in general – are layer 4 classification since they tend to use
port fields for their filter databases. Firewalls are used not only to prevent or allow traffic
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Figure 1.4: Routing table of a router in Telstra Network.

Figure 1.5: Active BGP entries in Telstra Network.

Figure 1.6: BGP update in Telstra Network.
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from and to certain hosts, but also from and to certain hosts using certain applications,
indicated from the protocol type and port fields. QoS function may the same port fields as
firewall with the purpose of prioritization, traffic shaping, etc.

As of now, it is not clear how many filters defined in the largest firewall database on the
Internet, since network administrators do not want to expose their filters due to security
reasons. Firewall database obtained by others in packet classification field are less than
2000 filters [3][6][7]. No papers stated that they are using filter databases for QoS function.
Despite the difficulties of obtaining real-life filter databases, it is safe to assume that filter
databases for firewall and QoS are like that of BGP routing table for the IP address fields,
while the port fields depend on the popular applications on the Internet.

BGP routing table is an indicator to estimate the complexity for IP address based
packet classification. Each entry in BGP routing table has information about its originating
AS (Autonomous System). An Autonomous System is defined as a group of IP networks
operated by one or more network operators that has a single and clearly defined external
routing policy and expressed as AS Number. However, owing to dropping price of telecom-
munication lines, many enterprises start to have connectivity to several network operators
(multi-homing network) and they apply for their own AS number [5]. This fact practically
means that an AS is likely to also have a policy for its firewall and QoS functions because an
enterprise tend to have a policy for such functions. Therefore if BGP routing table becomes
larger, then we would likely to find larger filter database.

Figure 1.7: BGP table growth - projections.

In the future, BGP routing table will expand further due to increasing number of multi-
homing networks [5]. Figure 1.7 shows the projection of BGP routing growth [5]. The upper
and lower the projection based on the past six months and two years trends, respectively.
This growth means that more IP prefixes are being advertised to the Internet. This would
likely be followed by the increase of filter database size for firewall and QoS functions,
mainly because their filter databases have to reflect the increase of IP prefixes on their
IP address fields: source and destination addresses. Due to this projection, it is important
to have two-dimensional packet classification that is capable of handling many source and
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destination address filters.

1.3 Research Objective

The previous sections showed that IP routers might execute packet classification several
times to process an IP packet. Because of this, then it is important to have good packet
classification function on IP routers. Given the importance of packet classification and the
outlook of BGP routing expansion, the objective of this research is to find a good scheme
for classifying two-dimensional –source and destination– filters.

1.4 Organization of Thesis

This thesis consists of six chapters. The next chapter states the problem formally and de-
scribes related work on this field. Chapter 3 explains a two dimensional packet classification
scheme, which is the idea of this thesis. Chapter 4 presents implementation and simulation
result. In Chapter 5 we analyze and evaluate our scheme based on the design and simulation
results, and we give summary and conclusion in the final chapter.



Chapter 2

Problem Statement and Related
Work

2.1 Problem Statement

Packet classification is looking at K fields in the headers of each packet that are relevant to
classification. Suppose we have a packet P and a filter F . A filter F is a K tuple (F [1], F [2],
. . . , F [K]) where each F [i], 1 ≤ i ≤ K, is a filter for the corresponding field in a packet,
which can be a single value, a variable length prefix bit string, or a range. Variable length
prefix bit string is mostly used for address fields while range is usually used for port fields.
Each filter F has an action that is associated with that filter. For example, a filter might
be used to block or accept a packet, or even divert it as we see in some filter applications
such as ipfw of FreeBSD.

Each field in filter F is compared to the corresponding field of packet P . Let P [i] is the
corresponding field of F [i]. A field F [i] matches P [i] if the value of P [i] is within the range
of F [i]. A filter F is said to match a packet P if all fields of F matches the corresponding
field of P , i.e. F [i] matches P [i], 1 ≤ i ≤ K. As an example, let (167.205/16, 202.249.47/24)
be a filter of source and destination IP addresses. This filter matches an IP packet with
source 167.205.22.108 and destination 202.249.47.142, but not an IP packet whose source
and destination are 202.249.47.133 and 203.178.143.1.

A filter database consists of N rules F1, F2, ..., FN where each filter has K distinct
fields. In a filter database, there is a possibility that two or more filters match a given packet
so we have to have a tie breaking mechanism to define the best matching filter. To simplify
the problem, let each filter in a filter database has an associated cost, if there is more than
one rule match a given packet then we define the best matching filter as the least-cost filter.
In practice, a filter database is usually indexed linearly and we can use the index number as
the cost of the filter. A filter denoted as Fn has n as its’ index number. As an example, if in
a filter database, F2 and F6 match a packet P , then we say that F2 is the best matching
filter for packet P .

This research is on the two-dimensional case of packet classification (K = 2). Packet
headers that are relevant for this research are source address and destination address. Since
IP addresses are often expressed in the form of prefix, this research assumes that every filter
in the filter database can only have that form.

7
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2.2 Related Work

There are many publications that are related to packet classification problem. This section
summarizes four works by others. This section is closed with a table showing the comparison
of several packet classification schemes.

2.2.1 Scalable High Speed IP Routing Lookup

Waldvogel et.al. [8] describes a new algorithm for best matching prefix using binary search
on hash tables organized by prefix lengths. This algorithm requires a worst-case of
log2(addressbits) hash lookups, thus it scales very well.

There are three significant ideas of this algorithm: using hashing to check whether an
address D matches any prefix of a particular length; binary search to reduce the number of
searches from linear to logarithmic; and precomputation to prevent backtracking in case of
failures in the binary search of range.

Hashing idea is to look for all prefixes of a certain length L using hashing and use
multiple hashes to find the best matching prefix, starting with the largest value of L and
working backward.

As an example, consider a routing table of four prefix entries, each with prefix length of
4, 8, 8, and 10. Each of the entries would be stored in a hash table that corresponds to its’
prefix length (Figure 2.1). The hash tables are stored as a sorted array, so for this example,
the array has three entries.

Searching for address D, we walk through each hash table in that array starting from
the largest value l, i.e. 10 on the example, extracting the first l bits of D to get its prefix
of D. We then search the hash table using that prefix as the key. If we found a prefix, then
we have found the best matching prefix (BMP) and the search terminates; otherwise if we
found nothing, we move to the next entry of the array. As we see here, the worst-case search
time of this algorithm is O(Wdist) hash lookups, Wdist is the distinct prefix lengths in the
database, which is less than W (bit width of the address).

A better strategy for this search is to use binary search on that array. To do this, we
need to put markers in the tables corresponding to shorter lengths to point to prefixes of
greater lengths. These markers direct binary search to look for matching prefixes of greater
length. This way, the number of hashes is cut down to O(log2Wdist). Searching for an IPv4
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address would require 5 hash accesses in the worst case.
To illustrate the binary search strategy, suppose we have three prefixes P1 = 0, P2 = 00,

P3 = 111. Storing the prefixes in hash tables and sorting the array, we have Figure 2.2 (b).
If we search for 111, binary search (a) would start at the middle of the hash table and search
for 11 in the hash table containing P2. This search would fail and have no pointer that it
should search in the longer prefix tables to find the BMP. To correct the search, we need to
put the marker for prefix P3 in this table, thus the lookup for 11 would succeed and binary
search would know that it should search for a match in the longer prefix table.

The hash tables containing prefixes and markers can be thought as a trie where each
hash table is a level of a trie that corresponds to nodes of a certain prefix length (Figure 2.3.
Binary search in this trie starts on the median level of the trie and depending on the result
of hash lookup on that level, the search will continue to the level of shorter or longer prefix
length.

Another effect of using binary search on trie levels is the number of markers is reduced
to at most log2W markers per real prefix. This reduction is achieved because it suffices to
place markers at all levels in L that could be visited by binary search when looking for an
entry whose BMP is P.
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A näive implementation of this algorithm will take linear time. Markers, while can point
to the BMP, they can also cause the search to follow false lead, which may fail. When this
happens, we would have to modify the binary search to backtrack and search the upper half
of the level of failure, and that would lead to linear time.

To avoid the backtracking problem, we need use precomputation when inserting markers.
Suppose we insert a marker M to the hash table, M would have to record the best matching
prefix of the marker (M.bmp). With this variable, now the binary search remembers the
value of M.bmp whenever a lookup produces a match. If the search in the lower half produces
a failure, search procedure doesn’t need to backtrack, since it remembers the best matching
prefix from M.bmp.

Waldvogel et.al. also shows some refinements to the scheme explained above to reduce
the average number of hash computations. These are asymmetric binary search and mutating
binary search. Both optimizations exploit the structure of the data set. Interested readers
can read [8] for the details.

2.2.2 Hierarchical Intelligent Cuttings

Gupta and McKeown [3] uses heuristics to solve k-dimensional packet classification prob-
lem. Their approach focuses on the practical implementation of classification with real-life
filter database. The approach, called HiCuts (hierarchical intelligent cuttings), attempts to
partition the search space in each dimension, guided by simple heuristics that exploit the
structure of filter database.

The HiCuts algorithm builds a decision-tree data structure by carefully preprocessing
the filter database. Each time a packet arrives, the classification algorithm traverses the
decision tree to find a leaf node, which stores a small number of rules. A linear search of
these rules produces the matching filter.

During the preprocessing, HiCuts creates internal nodes of the decision tree. For each
internal nodes v, HiCuts associates some properties

• A box B(v), which is a k-tuple of ranges or intervals.

• A cut C(v), the dimension d where B(v) is cut, and np(C), the number of equal
intervals B(v) is cut into in dimension d. This cut forms the children of v.

• A set of filters R(v), which is a subset of filters in the filter database that collides with
v.

HiCuts starts with a root node v and store all filters R(v) in that node. It then cuts the
node in dimension d into np(C) equal intervals using heuristics that selects both parameters.
Node v now has np(C) children nodes and HiCuts stores subsets of R(v) in each children
nodes. The algorithm partitions every nodes of the tree until the number of filters that
collides with the node doesn’t exceed a threshold, which is called binth. Nodes having no
more than binth rules form the leaf nodes of the decision tree.

Figure 2.4 illustrates the geometrical representation of a two-dimensional filter database.
Figure 2.5 shows a possible tree for the database. Each ellipse denotes an internal node v
with a triplet (B(V ), dim(C(v)), np(C(v))). Each rectangle is a leaf node that contains the
rules. This example uses 2 as its binth.

The preprocessing algorithm of HiCuts uses four heuristics to partition nodes:
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• A heuristic that chooses a suitable np(C). A large value of np(C) will decrease the
tree’s depth at the expense of increased storage.

• A heuristic that chooses the dimension to cut along at each internal node.

• A heuristic that maximizes the reuse of child nodes.

• A heuristic that eliminates redundancies in the tree.

All these heuristics are combined to create the “best” decision tree for the filter database
and tuning parameters for these heuristics would possibly create different trees.

Tests on this algorithm use two-dimensional filter database created from publicly avail-
able routing tables. For higher dimensions classification, tests are performed using filter
database obtained from ISP (Internet Service Provider) and enterprise networks. The num-
bers of filters in those databases are between 100 and 1,733.

The results of the tests showed that HiCuts algorithm performed well on the available
filter database. Worst case search was only 20 memory accesses (200 ns for 10ns SDRAM
memory). The memory requirement was small compared to its theoretical worst case. It is
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important to consider the preprocessing time for this algorithm. The worst preprocessing
time was 50 seconds on Pentium-II 333-MHz for a database containing less than 1,000 filters.

2.2.3 Tuple Space Search

Another packet classification scheme that uses hashing is Tuple Space Search [6]. This re-
search is motivated by the observation that while filter databases contain many different
prefixes or ranges the number of distinct prefix lengths tends to be small. This observation
is backed by empirical study of some industrial firewall database. Knowing this, Srini-
vasan et.al [6] defined a tuple for each combination of field length and called the resulting
set tuple space. Each tuple has a known set of bits in each field, therefore we can create a
hash key by concatenating these bits in order , which can then be used to map filters of
that tuple into a hash table.

Tuple Space Search (TSS) is a general packet classification, however the research focused
on 5-dimensional filters for the experiments: IP source, IP destination, protocol type, source
port number, and destination port number.

TSS defines a tuple T as a vector of K lengths, K is the number of fields for filtering. For
example, [8, 16, 8, 0, 16] is a 5-dimensional tuple, whose IP source field is an 8-bit prefix, IP
destination field is a 16-bit prefix, and so on. A filter F belongs or maps to tuple T if the ith
field of F is specified to exactly T [i] bits. For example, 2-dimensional filters F1 = (01∗, 111∗)
and F2 = (11∗, 010∗) both map to the tuple [2, 3].

Tuples require every fields of a filter to be specified as a length. While IP addresses are
always specified using prefixes, port numbers are not. Port numbers are usually specified
using ranges, e.g. [0, 1024]. TSS gets around this requirement by using nesting level and
RangeId each to simulate prefix length and prefix of IP addresses. For example, we have
three ranges: F1 = [0, 65535], F2 = [0, 1023], and F3 = [1024, 65535]. F1 has nesting level of
0 and RangeId of 0. F2 and F3 are nested from F1, thus their nesting level is 1, and they
receive RangeId of 0 and 1, respectively.

With the get around explained above, each filter can now be mapped to a particular
tuple T in a hash table Hashtable(T ) with the concatenated prefix-es and RangeId-es as
its hash key. Probing a tuple T involves concatenating the required number of bits from the
packet P as specified by T and then doing a hash in Hashtable(T ).

Searching for a matched filter for a given packet P is performed by linearly probes all
the tuple in the tuple set. If more than one matching filters were found, TSS picks the least
cost filter. The search cost is proportional to m, the number of distinct tuples, which can be
up to N , the number of filters in database. However, the previous observation showed that
N tends to be much larger than m. Update cost (inserting and deleting a filter) for tuple
space search is also small, only one hash access. Thus, we can say that tuple space search
performs much better than linear search.

Srinivasan et.al. [6] shows several improvements for the basic tuple space search. Two
of them are summarized next: Tuple Pruning and Rectangle Search.

Tuple Pruning is motivated by the observation that in real filter databases there seem to
be very few prefixes of a given address. For example, in Mae-East prefix database there is no
address D has more than 6 matching prefixes. If a 2-dimensional filter is formed from that
database, then if we first find the longest destination match and the longest source match,
there are only at most 6 x 6 = 36 possible tuples that are compatible with the individual
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Figure 2.6: Illustration of markers and precomputation.

destination and source matches. This is very small compared to the maximum number of
possible tuples for IP source-destination pair, which is 36 x 36 = 1024.

For instance, consider a 2-dimensional filter database for source S and destination D
addresses. Suppose D = 1010∗, and all the filters whose destination is a prefix of D belong
to tuples [1, 4], [1, 1], and [2, 3]. Then, the tuple list of D contains these 3 tuples. Similarly,
suppose S = 0010∗, and all filters whose source is a prefix of S belong to tuples [2, 4], [1, 1],
and [2, 5].

Searching for the matching filter for a packet P computes the longest matching prefix
PD and PS for destination and source addresses of P . The next step is to take the tuple lists
stored with PD and PS, find their common intersection, and probe into that intersection.
If PD = D and PS = S as above, the intersection list only includes [1, 1], thus we only
probe into one tuple.

Rectangle Search is an improvement from the basic tuple space search for 2-D filter
database. Rectangle Search works to cut the search time by using precomputation and
markers. Search time is now down from W 2 hash accesses of basic tuple space search into
2W accesses, W is the bit width of address. [6] also shows that this algorithm is optimal
for 2-D filter database.

When a filter is added to the database, it leaves a marker at all the tuples to its left
in its row. So a filter in the tuple [i, j] leaves a marker in tuples [i, j − 1], [i, j − 3], . . . ,
[i, 1]. Each filter (or marker) also precomputes the least cost filter matching it from among
the tuples above it in its column. That is, a filter (or marker) in tuple [i, j] precomputes
the least cost filter matching it from the tuples [i− 1, j], [i− 2, j], . . . , [1, j]. This is the
marking and precomputation strategy for rectangle search.

Figure 2.6 shows an example of precomputation and markers, using two filters F and
Z. The marker F2 precomputes the best matching filter among the entries in the column
above it, which in this example is Z.

The search strategy for this algorithm starts by probing the lower-left tuple, namely,
[W, 1]. At each tuple, if the probe returns a match, the search moves to the next tuple in the
right. If there is no match, the search moves up one row in the same column (Figure 2.7).
When a match is found, it is an indication that there is a filter on the right of the current
tuple, thus it is not necessary to probe into the tuples above the current one. However,
in case of no match, then there is no filter in the tuples on the right, therefore the search



CHAPTER 2. PROBLEM STATEMENT AND RELATED WORK 14

Match

No Match
r

c

T

r-1

c

T

T'

r�

c+1

T T'

Figure 2.7: Illustration of search strategy.

can eliminate the tuples on that row. The search terminates when we reach the rightmost
column or the first row.

This strategy requires at most 2W − 1 probes since there are W rows and W columns
and requires O(NW ) memory. However, if we want to trade speed with memory, we can
get O(N

√
W ) memory for for 3W number of hash accesses in the worst case.

2.2.4 Fast 2D Classification for Conflict-Free Filters

Warkhede, et.al. [9] shows that for two-dimensional filter database, the search speed can be
improved to O(log2W ) in the worst case if there is no conflicting filter in the filter database.

Warkhede et.al. define the best matching filter for a packet P as the matching filter that
is not less specific than any other matching filter. This definition differs than the one in
section 2.1 that uses filter index number as the tie-breaking mechanism.

Let filters F1 and F2 are two matching filters for packet P . The two filters conflict if
some fields of F1 are more specifics, i.e. have longer prefix, than F2. Figure 2.8 shows an
example two conflicting filters. In this case, the classification faces ambiguity because none
of the two filters meets the definition of the best matching filter. To eliminate ambiguity,
the classification uses conflict resolution filters proposed by Hari et.al. [4] that introduces
a new filter that covers the conflicting area of the filters (F3 in Figure 2.8).

F1

F2 F3 Filter
F1
F2

F3

Source Prefix
10*
1011*

1011*

Destination
0101*
01*

0101*

source address

destination
address

Figure 2.8: Two conflicting filters.
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After resolving filter conflicts, this algorithm maps each filter to its tuple space and
stored in a hash table. Each filter can create markers in the same row to its left, which is
similar to [6]. In order to perform binary search on column, one half of the tuple space has to
be eliminated at a time. If the hash probe returns no match, we can eliminate the entire right
half of tuple space. On the other hand, if there is a match, then the entire left half of tuple
space can be eliminated. This elimination is possible because there is no conflicting filter
in database. Thus, we can do binary search on columns. If we do linear search on the rows,
then hash probe would take O(W log W ) in the worst case and it requires O(NW log W )
memory.

All filters in the same column have the same prefix length on one dimension. If we
concatenate this prefix with the prefix of the other dimension, then we can determine
whether there is a matching filter in the column by using best matching prefix lookup. If
using [8], then only O(log W ) hash probes are required for each column search. Thus, search
is now O(log2W ) and requires O(N log2W ) memory.

Table 2.1 compares the complexities of several two-dimensional packet classification
schemes.

Table 2.1: Comparison of worst-case lookup time and space complexities for 2-D packet
classification.

Scheme Lookup time Memory usage
Tuple space search O(W 2) O(N)
Rectangle search O(W ) O(NW )
Pruned tuple space O(W 2) O(N)
Grid of tries O(W ) O(NW )
Cross-producting O(log W ) O(N2)
Fast-2D O(log2W ) O(N log2W )



Chapter 3

2D Packet Classification Scheme

As stated in the Chapter 1, two-dimensional packet classification for source and destination
IP addresses is important because of the expected expansion of the Internet and the IP
address usage. This expansion would lead to large filter databases to be installed in many
routers. At the same time, routers need to process incoming packets faster than the line
speed of their interfaces. This is the objective of any packet classification schemes, including
the algorithm that will be described in this chapter: to do faster packet classification for
larger filter database.

This chapter explains a scheme to perform two-dimensional packet classification. The
basic idea of our scheme is to create many search planes and store filters in search planes.
Using this idea, we can have a fast packet classification while reducing the probability of
memory explosion.

3.1 Binary Search of Prefixes on Multiple Fields

The Scalable High Speed IP Routing Lookup [8] results in a logarithmic scale of the address
bit width, O(log W ), for routing lookup, which is a one-dimensional packet classification.
The result is considerably fast, it requires only 5 hash accesses for IPv4 address, compared
to 32 memory accesses when using radix trie. If we use perfect hash algorithm, then one
hash access requires only one memory access, thus [8] is more than 6 times faster than
radix trie.

The result makes it tempting to apply the algorithm to perform packet classification on
more than single fields. It would make the search complexity to be O(d log W ), where d is
the number of fields for classification. However, the algorithm would require O(Nd) memory
in the worst case and would easily reach that worst case.

Consider an example of a 2D packet classification using this algorithm. To find the best
matching filter for a packet P using [8], we have to perform the algorithm twice: search for
the best matching prefix (BMP) on the source address, BMPsrc, then search for the BMP
on the destination address, BMPdst, based on the value of BMPsrc. One way to do this
is by concatenating BMPsrc to the destination prefix to search for BMPdst, similar to the
one performed by [9]. The result of this search is the best matching filter for packet P and
we can get it in O(2 log W ) time.

Suppose we have a 2D filter database. We first store an entry, srcpref, in HashTable(src)

16
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for each filter, based on the source prefix of that filter. One can see that an entry might
represent more than one filter. For example, we have two filters F1 = (S1, D1) and F2 =
(S2, D2). If S1 is a prefix of S2, i.e. S1 = S2 ·A, where “·” is a concatenation operation, then
entry S2 represents F2 only, and entry S1 represents F1 and F1. Then we store the entries
of all filters represented by each srcpref in HashTable(dst) based on filter’s destination
prefix. Therefore, the memory requirement for this 2D packet classification is O(N2). Note
that we also have to put markers for each entry as the original scheme for routing lookup.

Figure 3.1 shows an example of this algorithm for two filters F1 = (101∗, 0101∗) and
F1 = (1011∗, 10∗). From this example, we can see that different search order, src-then-dst
or dst-then-src, can result in different memory requirement. We can do a simple heuristic
to reduce memory requirement, however it is not clear how much reduction we can achieve
by doing it.
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Figure 3.1: Entries for 2D filters using [8] algorithm.

3.2 Searching on Multiple Planes

The above scheme has a high possibility to reach the worst case O(N2) memory even though
it has a considerably fast search time. The problem on this scheme is how to reduce memory
requirement while keeping the O(log W ) search time. This section explains a scheme trying
to solve that problem.

The scheme explained in Section 3.1 can be thought as searching for a filter in a single
2D plane. We see that addition of a filter into a database of N filters might require us to
insert that filter N times into the data structure, because all filters lie in a single plane.
We can reduce this possibility by having multiple planes to store filters. When there are
multiple planes, the search scheme now has to search for a plane that contains the best
matching filter, then perform the scheme of previous section. This is the basic idea of this
thesis.

In a geometrical visualization, a 2D filter takes the form of a rectangle sized l × w. We
can create a search plane for a filter as a square whose sides’ s length is same as the length
l of the rectangle and both shorter sides of the rectangle touches the sides of the square.
Figure 3.2 shows the visualization of a 2D filter and its search plane.
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This thesis assumes that fields of a 2D filter can be in prefix form only. This assumption
leads to these properties of filters:

• projection of filters in any dimension cannot overlap (Figure 3.3).

• a filter, when projected in any dimension, can only covers, be covered, or be disjoint
with another filter.

The latter property is a collorary to the first one. The prefix-form-only assumption makes
it easy to define search planes so there can only be one possible search plane for a filter, as
explained in the next section.

3.3 Filter Search Plane

A search plane of a filter, we call filter search plane FSP , is a square created by taking the
shortest prefix length of the filters’ fields. We form a square using prefixes of the filter and
that shortest prefix length. This square will be the search plane for any filter that crosses it
and for any filter that covers it. Thus, there can be one search plane for several filters and
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a filter can be stored in several planes. Next we have the formal definition of search plane
for a filter, and filters that can be contained in a search plane.

Before we proceed, first we define some notations. For a filter F = (Psrc/Lsrc, Pdst/Ldst),
where Pdim and Ldim represent the prefix and prefix length of filter F in dimension dim :

1. P ⊗ L is the prefix of P when using L as the prefix length.
For example, 010110* ⊗ 3 = 010*.

2. src(F ) = (Psrc/Lsrc) is the projection of F on source dimension

3. dst(F ) = (Pdst/Ldst) is the projection of F on destination dimension

4. ldim(F ) and wdim(F ) is the dimension of the length and width of rectangle F

5. Lfsp(F ) is the prefix length of ldim(F ), i.e. min (Lsrc, Ldst)

We can define a search plane as follows. Consider a 2D filter F = (Psrc/Lsrc, Pdst/Ldst).
The search plane for filter F is

FSP (F ) .= (Psrc ⊗ Lfsp(F )/Lfsp(F ), Pdst ⊗ Lfsp(F )/Lfsp(F )).

This definition creates a search plane for a filter, and since we can view the search plane as
a filter with prefix form, search planes cannot overlap.

Suppose we have a search plane SP = (PPsrc/LPfsp, PPdst/LPfsp) and a filter F =
(PFsrc/LFsrc, PFdst/LFdst). SP contains F if and only if:

1. SP is the search plane of F , i.e. SP = FSP (F ), or

2. F crosses SP , or

3. F covers SP .

Writing the above conditions formally, SP contains F if and only if:

LFldim(F ) ≤ LPfsp and

PPldim(F ) ⊗ LFldim(F ) = PFldim(F ) and

PPwdim(F ) ⊗ LFwdim(F ) = PFwdim(F ) if LFwdim(F ) ≤ LPfsp or

PFwdim(F ) ⊗ LPfsp = PPwdim(F ) if LFwdim(F ) > LPfsp.

As an example we have three filters, F1 = (101∗, 1101∗), F2 = (0100∗, 11∗), and F3 =
(10∗, 110∗). The search planes are FSP (F1) = (101∗, 110∗), FSP (F2) = (01∗, 11∗), and
FSP (F3) = (10∗, 11∗) (see Figure 3.4). We have three FSPs and a total of four filters
contained in all FSPs, as shown in Table 3.1. From Figure 3.4 and Table 3.1 we note that:

• The square of FSP (F1) is inside of the square of FSP (F3), however both are different
planes.

• F3 covers FSP (F1), thus it is contained in that FSP.
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Figure 3.4: Three filters and search planes.

Table 3.1: FSP and its contained filters of Figure 3.4.

FSP Contained filters
FSP (F1) F1, F3
FSP (F2) F2
FSP (F3) F3

• While F1 is in the square of FSP (F3), F1 is not contained in that FSP because F1
doesn’t cross or cover FSP (F3)

We see in Table 3.1, FSP (F1) stores F1 and F3. This is an example where multiple
search planes can result in O(N2) memory requirement. We are interested to know in what
cases our multiple search plane scheme would lead to that result, i.e. a filter appears in more
than one FSP. Figure 3.5 shows several cases of FSP when there are two filters, namely F1
and F2. Filter Fn is defined as (Pnsrc/Lnsrc, Pndst/Lndst).
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Figure 3.5: Cases of FSP of two filters.

Figure 3.5 (a) is a case where F1 covers F2, and Figure 3.5 (b) is a case where F1
and F2 conflict. These are two obvious cases where FSP (F2) contains both F2 and F1,
thus F1 appears in two FSPs. However, for Figure 3.5 (b), if Lfsp(F1) = Lfsp(F2), then
FSP (F1) = FSP (F2), which means both filters appear only in one FSP. This is a special
case of conflicting filters.
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Figure 3.5 (c) and (d) show two different cases of filter arrangements. These cases are
neither a conflicting filters nor a filter covers the other. The difference between these cases
is in Figure 3.5 (d), filter F1 crosses FSP (F2), which is not the case for Figure 3.5 (c).
Thus, in Figure 3.5 (d), F1 appears twice. We cannot easily infer that case (d) happens
just by looking at the lines of filter definition in filter database.

Here we have a formal definition of this case. Consider two filters F1 and F2 as in
Figure 3.5. If F1 is a prefix of F2 on one dimension, and F1 is neither covering F2 nor in
conflict with F2, FSP (F2) contains F1 if

ldim(F1) = ldim(F2) = ldim and L1ldim < L2ldim

and P2wdim ⊗ L2ldim is a prefix of P1wdim.

With this formal definition, we can notice the case of Figure 3.5 (d) easier.

Table 3.2: Filter database to show the case of Figure 3.5 (d).

Filter Definition
F1 (10∗, 11010∗)
F2 (101∗, 11001∗)
F3 (101∗, 011010∗)

Table 3.2 is an example to illustrate the (d) case. As we see in that table, source dimen-
sion definition of F1 is a prefix of that of F2 and F3. Remembering the formal definition
above, we can infer right away that FSP (F2) contains F1 because 11001* ⊗ 3 is a prefix
of 11010*, and FSP (F3), on the other hand, doesn’t contain F1.

3.4 Algorithm to Search for FSP

The previous section defines and explains the filter search plane. Because of its definition,
an FSP can be considered as a 2D filter, thus we can search for an FSP using any available
packet classification algorithm. The objective of any packet classification is to find the best
matching filter (BMF) for a packet. Our scheme stores filters in search planes, and to find
BMF, we use two-step process:

1. search for the FSP containing BMF, then

2. search for BMF within the FSP.

However, a filter – including the best matching filter – can be stored in more than one
FSPs, thus FSP containing the BMF might not be unique. Before we can search for the
FSP containing BMF, we have to define which FSP is the best FSP containing BMF, which
is the objective of this search procedure.

Suppose that Fm is the BMF for packet P = (S, D), then FSP (Fm) contains Fm,
thus searching for the BMF for P in FSP (Fm) would produce a result. Let’s also suppose
that there are other search planes FSPi containing Fm. However, FSPs that are relevant
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to packet P are only FSPp,l = (S ⊗ l/l,D ⊗ l/l), l ≤ W . Therefore, FSPs containing Fm
relevant to P are FSPp,l ∩ FSPi, and we can define that the best FSP containing BMF
among them is the one that has the longest prefix. This definition enables us to search for
FSP similar to searching for BMF in FSP, as we will see later.

A property of an FSP is FSP has the same prefix length for its source and destination
address definitions. If we use the point of view of Tuple Space Search [6], then FSP is always
located in the (l, l) tuple space, where l is the prefix length of FSP, and we can apply that
scheme to find the FSP that contains the best matching filter. Thus, the worst-case search
time for an FSP is O(W ) hash accesses, where W is the bit-width of address space.

0

0 W
�

W
�

Figure 3.6: FSPs occupy a diagonal of 2D Tuple Space.

Figure 3.6 shows the visualization of FSPs in 2D Tuple Space. FSPs of a filter database
only occupy a diagonal in visualization, so we can search FSPs as if FSPs are one-dimensional
filters. We can speed up the search by using binary search on prefix length with a little mod-
ification, so we have the worst case of O(log W ).

Consider a 2D filter database of N filter search planes FSP i = (Si/Li, Di/Li), 1 ≤ i ≤
N . We map FSP i into tuple space Li and store it in HashTable(Li) that corresponds to
that tuple space with (Si, Di) as the key. After storing all FSPs, now for each FSP i we can
store a marker at each HashTable(T ), T < Li, using (Si ⊗ T, Di ⊗ T ) as the key. Storing
markers for N filter search planes requires O(WN) time and O(WN) memory.

Each marker M points to the best matching FSP of that marker, M.bmsp. We store
markers for FSP i by moving forwards from 0 to Li. At each T , T ≤ Li, we create a hash
key for the marker and probe HashTable(T ) to know whether there is already an FSP
associated with marker’s key. We only store a marker in a hash table if there is no FSP
associated with the marker’s key in that hash table. If we find an FSP, we record the FSP
as the best matching FSP in the subsequent markers. This marking strategy is shown in
Algorithm 1. Given the marking strategy, whenever we probe HashTable(i) and we do not
find a marker, we can be sure that there is no FSP on j > i.

To find the best FSP containing BMF, we start to probe at the median of W , which is
on the center of tuple space of Figure 3.6, and we use binary search on these hash tables.
If a probe on a HashTable(T ) doesn’t return a match, we can eliminate the lower-right
elements of T in the diagonal. If we have a match, we can eliminate the upper-left ones.
Finding a match, we move to probe the median of the lower right half of the diagonal of T ,
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Algorithm 1 Storing markers of FSP

Require: all FSPs stored in hash tables
for all i such that 1 ≤ i ≤ N do

j ⇐ 0
M.bmsp ⇐ NULL
while j < Li do

HashKey ⇐ (Si⊗ j, Di⊗ j)
HashEntry ⇐ probe HashTable(j) using key HashKey
if HashEntry is an FSP then

M.bmsp ⇐ HashEntry
else

insert marker M into HashTable(j) using key HashKey
end if
j ⇐ j + 1

end while
end for

Algorithm 2 Binary search to find the FSP containing the best matching filter.
Require: Packet P (S,D)

FSP ⇐ 0
MinProbe ⇐ 0
MaxProbe ⇐ W
CurProbe ⇐ median of MinProbe and MaxProbe
while MinProbe ≤ MaxProbe do

HashKey ⇐ (S ⊗ CurProbe,D ⊗ CurProbe)
M ⇐ probe HashTable(CurProbe) using key HashKey
if M exists then

FSP ⇐ M.bmsp
MinProbe ⇐ CurProbe

else
MaxProbe ⇐ CurProbe

end if
CurProbe ⇐ median of MinProbe and MaxProbe

end while

otherwise we proceed to probe the median of the upper-left-half one, until we find the best
FSP.

Whenever we have a match M , we record M.bmsp. If we face failures during the binary
search after recording M.bmsp, we use it as the result of our search. The search algorithm for
FSP is shown in Algorithm 2. This search algorithm requires only O(log W ) hash accesses
in the worst case.
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Figure 3.7: Filters that can be stored in an FSP.

3.5 Searching for Filters in an FSP

After finding the best FSP for packet P , our scheme needs to find the BMF of P within
the FSP. The definition of FSP says that an FSP contains only filters that cross or contain
the FSP. As a collorary to the definition, if a filter F is stored in a filter search plane FSP ,
then the shortest prefix length of F must be less than or equal to the prefix length of FSP .
Figure 3.7 illustrates the cases that conform to the definition.

Figure 3.7 shows that if a search plane FSP contains a filter F , projection of F on one
dimension must covers or coincides with the projection of FSP on that dimension. This
is a property of filters in an FSP. This property simplifies the search for a 2D filter into
one-dimensional packet classification because we can project all filters in an FSP to one
dimension only and do best matching prefix search on that dimension. If a filter coincides
or covers both dimension of FSP, we can pick any dimension. If it doesn’t, we project the
filter to the dimension where it neither covers nor coincides the FSP. For filters in Figure 3.7,
we project F1 to destination dimension (vertical axis), F2 to source dimension (horizontal
axis), and we can project F3 to any dimension.

Algorithm 3 shows how to project and store filters of an FSP, and compute and store
markers of each filter. The algorithm to store markers of a filter is similar to Algorithm 1,
thus it is not shown in detail. In this algorithm, filters like F3 in Figure 3.7 are projected to
source dimension. Due to the property of filters in FSPs, we only need to store each filter
once, instead of – possibly – many times as in the case of Section 3.1. The cost of storing
N filters and their markers in an FSP in O(WN) time with the memory requirement of
O(WN).

Searching for the best matching filter (BMF) in FSP requires us to perform two one-
dimensional best matching prefix (BMP) searches: one in source dimension, and one in
destination dimension. We compare the BMP of each dimension to find the BMF. We can
also use binary search for this purpose since we have the same marking strategy as marking
to search for FSP (Section 3.4). This algorithm (see Algorithm 4) requires 2 log W hash
accesses in the worst case. bmpsearch(point, hash) is a function that returns the filter of
the best matching prefix of point in hash table hash. Algorithm 4 doesn’t show the details
of bmpsearch algorithm, since it is similar to Algorithm 2.
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Algorithm 3 Storing filters in an FSP.
Require: F i = (PF isrc/LF isrc, PF idst/LF idst)
Require: FSP = (PPsrc/LP, PPdst/LP )

for all F i do
LenSrc ⇐ max (LF isrc, LP )
LenDst ⇐ max (LF idst, LP )
if LenDst > LenSrc then

HashKey ⇐ (PF idst, LF idst)
insert filter F i into HashDst(FSP ) using key HashKey

else
HashKey ⇐ (PF isrc, LF isrc)
insert filter F i into HashSrc(FSP ) using key HashKey

end if
end for
for all filter entries in HashDst(FSP ) do

compute and store markers
end for
for all filter entries in HashSrc(FSP ) do

compute and store markers
end for

Algorithm 4 Searching for the BMF of a packet.
Require: P = (S,D)
Require: FSP = (PPsrc/LP, PPdst/LP )

BMFsrc ⇐ bmpsearch(S, HashSrc(FSP ))
BMFdst ⇐ bmpsearch(D, HashDst(FSP ))
if BMFsrc is better than BMFdst then

BMF ⇐ BMFsrc
else

BMF ⇐ BMFdst
end if

3.6 Storing Filters in a Search Plane

So far we have discussed about creating search planes, searching the best search plane for
a packet, and searching the best matching filter for a packet in a search plane. This section
explains an algorithm to store filters in search planes.

Assuming that we have already created FSP of all filters, the most näive way to store
filters in FSPs is testing each filter to all FSPs to find out whether the filter has to be stored
in the FSP or not. This algorithm requires N comparisons for each FSP to find all filters
that must be stored in the FSP.

We can detect all those filter faster by the observation explained below. Suppose a filter
Fl = (Psrc/Lsrc, Pdst/Ldst) has to be stored in a search plane FSP (Fs) = (PPsrc/LP, PPdst/LP ),
and FSP (Fl) 6= FSP (Fs). It means that FSP (Fl) must coverFSP (Fs). If we search for fil-
ters in all FSPs that cover FSP (Fs), we can find all filters that must be stored in FSP (Fs).
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We need to visit at most W FSPs to do this.
When we visit an FSP to find filters to be stored FSP (Fs), we will have two cases like

F2 and F3 in Figure 3.7. Case of F2 is where the projection of FSP (Fs) to one dimension
covers the filter’s projection. Case of F3 is the opposite, filter’s projection covers or matches
the projection of FSP (Fs). To find F3, we can expand FSP (Fs) until FSP (Fs) = FSP (Fl).
At each expansion of FSP (Fs), we detect whether its projection in any dimension matches
the projection of some filters by probing HashSrc(FSP (Fl)) and HashDst(FSP (Fl)). This
algorithm requires at most 2W hash accesses to detect and include all filters to FSP (Fs)
filter list.

For example, we have two FSPs, FSPm = (10∗, 01∗) and FSPn = (1001∗, 0110∗),
and two filters F1 = (10∗, 011∗) and F2 = (10101∗, 01∗). We expand FSPn until it
matches FSPm: FSP ′

n = (100∗, 011∗), FSP ′′
n = (10∗, 01∗). At FSP ′

n level, we probe
HashSrc(FSPm) using 100∗ as the key. This probing returns nothing. We then probe
HashDst(FSPm) using key 011∗ and it returns the hash entry for filter F1. We do the
same thing at FSP ′′

n level and probings return nothing.
Figure 3.8 illustrates the expansion of FSPn. In figure (b), this process finds F1, thus

store it in the filter list of FSPn. In figure (a) and (c), this expansion doesn’t find any filters.

FSPm�

FSP
�

n�

F
�

1

F2

F
�

1

F2

F
�

1

F2

(a) (b) (c)

FSPm� FSPm�

FSP
�

n� ' FSP
�

n� "

Figure 3.8: Expanding FSPn in FSPm to find filters.

When trying to find filters like the case of F2 in Figure 3.7, remember the marking strat-
egy for filters in search plane as explained in Section 3.5. We can test whether there are filters
that have to be stored in FSP (Fs) by probing HashSrc(FSP (Fl)) and HashDst(FSP (Fl))
using the source and destination definition of FSP (Fs), respectively, to create the hash keys.
If probing resulted nothing, then there is no filter that we have to store in FSP (Fs). If prob-
ing matches a marker, we follow the marker down until we find the filter(s) that create(s)
the marker.

The procedure above has to probe at most 2W times until it finds the hash entry for a
filter. Whenever probing at prefix length l finds a marker Ml, there has to be at least one
marker or filter at prefix length l + 1. For example if a marker Ml = 1010∗ exists, there has
to be either 10101∗ or 10100∗, or both. The algorithm has to probe at both possibilities
because it has no clue which one it has to probe at prefix length l+1 to get a match. Adding
another variable M.lead in marker to lead the algorithm to probe correctly will reduce the
number of probing to W . Algorithm 5 shows this procedure.

Combining the algorithms to visit FSPs and to find filters in FSPs, we need at most
2W 2 + WQ hash accesses, W : bit-width of address space, and Q: the number of filters
found, for each FSP to find all filters that it has to store in its’ database. Algorithm 6
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displays the algorithm to store all filters of an FSP into another. The cost of this algorithm
is independent of the number of filters in the database, thus it is useful for large filter
databases.

3.7 Building the Database Structure

We now have all the necessary algorithms to build the database structure of a two-dimensional
filter database to enable a two-dimensional packet classification with search time of O(log W ).
Before creating a complete algorithm to build the database, we have the following observa-
tion, which reduces the time cost of the algorithm.

Previous section shows an algorithm to find all filters that have to be stored in an FSP,
which costs at most 2W 2+WQ hash accesses. This is due to the assumption that an FSP has
to visit every FSPs that cover it. Suppose that we have a filter F1, which creates FSP (F1),
and two search planes FSPm and FSPn; where FSP (F1) covers FSPm, and FSPm covers
FSPn. If FSPn has to store F1, then FSPm also has to store F1 (see Figure 3.9).
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Figure 3.9: FSPn and FSPm store F1.

This observation means that we can reduce the time to find all filters for an FSP by pro-
cessing each search plane in prefix-length order, starting from the shortest up to the longest
one. For example, if we have FSPm = (10∗, 11∗) and FSPn = (101∗, 110∗), we process
FSPm before process FSPn. This processing order ensures that when we are processing an
FSPi, the smallest search plane covering FSPi already contains all filters that FSPi has to
store, so we only have to search for the filters in one search plane. Furthermore, our marking
strategy includes variable bmsp. If we have an FSPn whose prefix length is l and we want
to find the smallest FSP, FSPm covering it, probing at l− 1 and reading its bmsp will lead
us directly to FSPm. This reduces the time to store all filters in an FSP to 1 + 2W + WQ.
The algorithm to build the database structure is shown in Algorithm 7.

3.8 Dealing with Wildcard Filter Problem

The design of our scheme is susceptible to wildcard filters, e.g. filters with wildcard prefix
in any of their dimension. This is because of the definition of which filters can be stored in
an FSP. Figure 3.10 shows the case of wildcard filters in filter database.

Figure 3.10 shows a filter database with 4 filters, where F1 is a wildcard filter whose
destination dimension is the one with wildcard prefix. Let’s consider the filter database if
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F1 doesn’t exist. If F1 doesn’t exist, then each FSP in this example only stores the filter
creating it. If F1 exists, then FSP (F2), FSP (F3), and FSP (F4) has to store F1. This
situation is like F2 and F3 of Figure 3.7, but in a much larger scale.
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Figure 3.10: A wildcard filter in filter database.

One way to remove the effect of wildcard filters is not to store them in any FSPs except
in its search plane. With this strategy, we have an additional step to find the correct best
matching filter. The additional step is if the best FSP has non-zero prefix length and we
fail to find the BMF in that FSP, we have to do another search for BMF in the zero prefix-
length FSP. Thus, we have to do 5 log W hash accesses in the worst case. This strategy is
a time–space trade-off.

This strategy completes the design of a two-dimensional packet classification of this
thesis. Next chapter will discuss the simulations for this scheme.
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Algorithm 5 Follow markers to find filters.
Require: Prefix to follow; HashTable storing markers

HashKey ⇐ Prefix
MarkSrc ⇐ probe HashTable using HashKey
if MarkSrc exists then

i ⇐ 0
PrefChild ⇐ NULL
loop

LABEL Loop0:
Follow[i].marker ⇐ MarkSrc
Follow[i].visit0 ⇐ 0 ; Follow[i].visit1 ⇐ 0
if MarkSrc is a filter then

add MarkSrc to FilList array
end if
if MarkSrc.lead leads to child 0 then

Follow[i].visit0 ⇐ 1
end if
if MarkSrc.lead leads to child 1 then

Follow[i].visit1 ⇐ 1
end if
LABEL Loop1:
if Follow[i].visit0 = 1 then

Follow[i].visit0 ⇐ 0
PrefChild ⇐ PrefChild · 0
HasKey ⇐ Prefix · PrefChild
MarkSrc ⇐ probe HashTable using HashKey
if MarkSrc exists then

i ⇐ i + 1 ; goto Loop0
end if

end if
if Follow[i].visit1 = 1 then

Follow[i].visit1 ⇐ 0
PrefChild ⇐ PrefChild · 1
HashKey ⇐ Prefix · PrefChild
MarkSrc ⇐ probe HashTable using HashKey
if MarkSrc exists then

i ⇐ i + 1 ; goto Loop0
end if

end if
i ⇐ i− 1
if i < 0 then finish
PrefChild ⇐ PrefChild⊗ i ; goto Loop1

end loop
end if
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Algorithm 6 Find all filters in FSPl to be stored in FSPs.
FilList ⇐ NULL {FilList is an array to store found filters}
Llen ⇐ fsplen(FSPl) {fsplen() returns the prefix length of an FSP}
Slen ⇐ fsplen(FSPs)
i ⇐ Slen
while i ≥ Llen do

i ⇐ i− 1
FSPtest ⇐ FSPs ⊗ i
AddFil ⇐ probe HashSrc(FSPl) using key src(FSPtest) {src() is projection of
filter/FSP in source dimension}
if AddFil exists then

add AddFil into FilList array
end if

end while
AddFil ⇐ probe HashDst(FSPl) using key dst(FSPtest) {dst() is projection of fil-
ter/FSP in destination dimension}
if AddFil exists then

add AddFil into FilList array
end if
MarkSrc ⇐ probe HashSrc(FSPl) using key src(FSPs)
if MarkSrc 6= NULL then

follow MarkSrc.lead to find filters {Algorithm 5}
add found filters to FilList array

end if
MarkDst ⇐ probe HashDst(FSPl) using key dst(FSPs)
if MarkSrc 6= NULL then

follow MarkDst.lead to find filters {Algorithm 5}
add found filters to FilList array

end if
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Algorithm 7 Build database structure for a filter database.
Require: N filters, F i, 0 ≤ i < N

for all filter Fi 0 ≤ i < N do
if FSP (F i) not exists then

create search plane FSP (F i)
store FSP (F i) based on prefix length order, short to long

end if
store F i in FSP (F i) {Algorithm 3}

end for
for all FSPk in sorted FSP list, 0 ≤ k < M do

FSPup ⇐ NULL
Len ⇐ fsplen(FSPk) {fsplen() returns the prefix length of an FSP}
Len ⇐ Len− 1
HashKey ⇐ FSPk⊗ Len
FSPup ⇐ probe HashTable(Len) using HashKey
HashKey ⇐ FSPk⊗ FSPup.bmsp
FSPup ⇐ probe HashTable(FSPup.bmsp) using HashKey
if FSPup 6= NULL then

FilList ⇐ get all filters to be stored in FSPk {Algorithm 6}
store filters of FilList in FSPk {Algorithm 3}

end if
end for



Chapter 4

Simulation

This chapter presents the details of data structure in implementing 2D packet classification
scheme of Chapter 3. This chapter doesn’t give any details of the pseudo-codes of the
implementation because they are based on the algorithms explained before. This chapter
then explains filter database design for our simulation and presents the simulation results.

4.1 The Implementation Data Structure

The algorithms of our scheme are implemented in C language for simulation purpose. This
section explains details of the data structure used for our packet classification scheme.

When we read a filter database, we store it as an array of filters. Using an array of filters
eases random access to each filter by only using filter’s index value. Each filter is stored
as two tuples of prefix and prefix length pair and a number to represent its index value.
Figure 4.1 shows the data structure for a filter.

Besides storing it in an array, we also have to store it, probably several times, in a hash
table as a marker for filter. The data structure for a filter marker is shown in Figure 4.2.
This data structure has lead element to be used by Algorithm 5 to store other filters in an
FSP, and bmp to store best matching prefix. This marker also stores pointer to a filter. This
element points to the memory location of a filter if it is really a marker to a filter, otherwise
it contains NULL.

We store an FSP twice: in a linked list and in a hash table. Figure 4.3 shows the data
structure used to represent an FSP. This structure stores FSP definition similar to the data

typedef struct filter_ {
u_int32_t src_prefix;
u_int src_preflen;
u_int32_t dst_prefix;
u_int dst_preflen;
u_int32_t fil_num;

} filter;

Figure 4.1: Data structure for a filter.

32
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typedef struct fil_mark_ {
u_int lead, bmp;
filter *filter;

} fil_mark;

Figure 4.2: Marker for a filter.

typedef struct fsp_data_ {
u_int32_t src_prefix;
u_int src_preflen;
u_int32_t dst_prefix;
u_int dst_preflen;
fsp_mark *marker;

} fsp_data;

Figure 4.3: An FSP.

typedef struct fsp_mark_ {
u_int bmsp, flsize;
filter **flist;

} fsp_mark;

Figure 4.4: Marker for an FSP.

structure of a filter, since as stated in the previous chapter, an FSP is also can be viewed
as a filter. This structure also stores pointer to a marker in a hash table representing this
FSP.

A marker for FSP has the bmsp element, the best matching search plane, which is used
during searching for the best FSP. A marker that represents an FSP, contains at least 1
filter. flsize and flist form the filter list of an FSP. Element flsize indicates how many filters
are contained within the FSP. If flsize is not 0, then this marker represents an FSP and the
contained filters can be found by looking in flist. flist is a pointer to an array of pointers to
filter. We use this strategy to reduce memory usage because a filter can be stored in more
than one FSP, thus it is better for an FSP to store pointers to filter instead of the filters.
This data structure is shown in Figure 4.4.

The basic data structure for this scheme is hash table. The scheme implies that we need
to have (W + 1) + 2N hash tables: W + 1 hash tables for storing FSP entries, and 2 hash
tables to store filter’s projections in an FSP for each of N FSPs of the filter database.
However, for the ease of implementation, we only use three hash tables: one for FSPs
and one for each filter projection in source and destination dimension. This is possible by
including prefix length in the hash key of each entry and including FSP definition in case
of filter entry. With this strategy, hash key for an FSP entry and a filter are a two tuples
and three tuples, respectively, of prefix and prefix length pair. For example, we have a filter
(10/8, 192.168/24). The FSP for this filter is (10/8, 192/8). Hash keys for its FSP and filter
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typedef struct fsp_key_ {
u_int32_t src_prefix;
u_int src_preflen;
u_int32_t dst_prefix;
u_int dst_preflen;

} fsp_key;

Figure 4.5: Data structure of FSP hash key.

typedef struct fil_key_ {
u_int32_t src_prefix;
u_int src_preflen;
u_int32_t dst_prefix;
u_int dst_preflen;
u_int32_t fil_prefix;
u_int fil_preflen;

} fil_key;

Figure 4.6: Data structure of filter hash key.

entries are (10/8, 192/8) and (10/8, 192/8, 192.168/24). Figure 4.5 and Figure 4.6 show the
data structure of each hash key.

4.2 Simulation Filter Database Design

We use simulation to evaluate the performance of our 2D packet classification scheme.
Using simulation, we want to know the time to build data structure for filter databases
and memory usage of our scheme. The worst-case search time of this scheme is O(log W ),
which is considerably fast. Memory usage, however, should receive more attention since our
scheme tries to reduce the probability to reach the worst case of O(N2). In this simulation,
we want to know how our scheme will perform in real-life filter databases.

To simulate this scheme, we create random and non-random two-dimensional filter
databases based on the publicly available Internet routing table. Randomly creating fil-
ter databases approach is also used by [3], [7], and [10]. However, [3] and [7] do not give
any detail on how to create filter databases. Creating random filter databases straight from
Internet routing table would not result in filters that we can use to evaluate our scheme.
Therefore we want artificial filter databases for our simulation can be used as a baseline to
measure the performance of our scheme, especially for the memory requirement.

[10] attempts to model large filter databases and creates random filter databases based
on that model. The basic idea is to classify network elements into distinct types, e.g. work-
station hosts, server hosts, subnet border routers, enterprise core routers, enterprise edge
routers, ISP edge routers, ISP core routers, and ISP peering routers. For each class, the
applications and their filter tables are identified. Based this model, [10] projects that ISP
edge routers class has to support the largest number of filters and enterprise edge routers
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class is next.
For our simulation we choose to use Autonomous System (AS) as the base to create

filters and routers having these filters are AS border routers. We choose to use Autonomous
Systems because even though an AS is defined as a group of IP networks operated by one
or more network operators which has a single and clearly defined external routing policy,
in practice an AS usually belongs to a single ISP or enterprise. Because of this, it is likely
that an Autonomous System also has a single security (firewall) and QoS policy.

AS-A AS-A BR

AS-B

AS-B BR

AS-CAS-C BR

Figure 4.7: AS border routers.

We choose to simulate filter databases running on AS border routers, and we create
filter databases from prefixes of two ASes. An AS border router connects an Autonomous
System to another (Figure 4.7). It is the entrance and exit points for packets originated
from and destined to the corresponding AS. It is usually where filter database is the most
complete compared to the other filter databases in that AS. If we use the model by [10], an
AS border router can be categorized as an ISP edge router or as an enterprise edge router,
depending on whether the particular AS is owned by an ISP or an enterprise.

In selecting ASes for this simulation, we use the Internet routing table made available by
Telstra Network, Australia [1]. This routing table consists of around 100 thousand prefixes
and about 12 thousand ASes advertise those prefixes. First we separate prefixes by their
originating AS number and we view prefixes of an AS as a single routing table. We process
each routing table by counting the number of prefixes, maximum prefix level, duplicated
prefixes and the ratio of duplicated prefixes to the number of prefixes.

Prefix level is a measure that counts the number of prefixes of a given IP address in
a routing table. For example, we have a routing table consists of four entries: 10.1.1/24,
10.1/19, 10.1/16, and 10.1.224/23. For IP address 10.1.1.1 we have three prefixes, and for
IP address 10.1.224.2 we have two prefixes. The maximum prefix level of our routing table
is 3.

Duplicated prefixes shows the number of times prefixes are stored in other prefixes
because the former cover the latter. For example, suppose we have an AS consists of 4
prefixes: A, B, C, and D. A is a prefix of B, B is a prefix of C, and none of A, B, C is
a prefix of D. This AS has maximum prefix level of 2 (A and B are prefixes of C) and
duplicated prefixes of 3 (A is stored in B and C, and B is stored in C).
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Table 4.1: ASes for cross-product filter databases.

AS num Prefixes Level Dup. pref. % Dup. pref.
680 230 1 0 0.00%
786 183 1 0 0.00%
1913 124 1 0 0.00%
4713 117 1 0 0.00%
517 111 1 0 0.00%
4151 366 4 589 160.93%
2907 366 2 2 0.55%
2007 166 2 110 66.27%
719 166 2 32 19.28%

11492 111 4 194 174.77%
7657 111 2 18 16.22%

4.2.1 Cross-producting prefixes

Our scheme could reach O(N2) if there are duplicated prefixes in filter database (Figure 3.5).
Looking at our scheme and the result of processing BGP routing table, our hypothesis is
an AS whose duplicated prefixes percentage is high has high probability to result in high
number of filters in structure compared to the number of filters in filter database.

For this simulation, We use filter databases created by cross-producting prefixes of two
ASes: one that has duplicated prefixes, and one with no duplicated prefixes. We simulate
these filter databases to confirm our hypothesis. For ASes without duplicated prefixes, we
select five ASes whose number of prefixes rank on the top. For ASes with duplicated prefixes,
we select three sets of ASes whose number of prefixes are equal. These ASes are displayed
in Table 4.1.

4.2.2 Random prefixes

For filter databases consisted of random prefixes, we rank the ASes based on the four values
above. Tables 4.2 to 4.5 show the top 5 ASes of each category. From these tables we have
16 distinct ASes, because several ASes appear twice.

Table 4.2: AS ranked by number of prefixes.

AS num Prefixes Level Dup. pref. % Dup. pref.
701 2202 3 426 19.35%
1221 1422 3 176 12.38%
7018 1091 2 156 14.30%
702 1053 3 170 16.14%
1 844 3 175 20.73%
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Table 4.3: AS ranked by maximum prefix level.

AS num Prefixes Level Dup. pref. % Dup. pref.
4787 47 6 146 310.64%
9796 38 6 83 218.42%
4323 584 5 549 94.01%
6172 264 5 250 94.70%
7843 208 5 358 172.12%

Table 4.4: AS ranked by duplicated prefixes.

AS num Prefixes Level Dup. pref. % Dup. pref.
8010 720 2 698 96.94%
4151 366 4 589 160.93%
4323 584 5 549 94.01%
3967 672 4 444 66.07%
701 2202 3 426 19.35%

Table 4.5: AS ranked by percentage of duplicated prefixes.

AS num Prefixes Level Dup. pref. % Dup. pref.
4787 47 6 146 310.64%
9796 38 6 83 218.42%
12150 28 4 56 200.00%
21529 39 3 75 192.31%
7908 78 4 147 188.46%

We create two types of random filter databases for our simulations:

1. database with only non-wildcard filters

2. database with wildcard and non-wildcard filters

To create a non-wildcard filter database for this simulation, we select two ASes out of the
16 distinct ASes, namely AS-A and AS-B, create random prefixes from the prefixes of each
AS, and we join two prefixes, one from AS-A and one from AS-B to form a two-dimensional
filter.

A random prefix of an AS is formed as follows:

1. select Prefix randomly from prefixes of AS

2. select Subplen randomly between 0 and 32−prefix length of Prefix

3. create SubPrefix as a random binary string with length of Subplen
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4. concatenate Prefix and SubPrefix to create the result.

Simulating the non-wildcard filter databases, we make the combinations of all distinct
ASes, thus we have 120 combinations. For each combination we create filter databases
consisting of 2000, 4000, 10000, 20000, 40000, and 80000 filters, where for each size we
create 5 filter databases.

For the case of filter databases with wildcard filters, we want to know the memory
requirement of our scheme without the solution that is explained in Section 3.8. We choose
6 of above filter databases, formed by the pair of AS 701, 4787, 8010, and 9796 that consists
of 20000 filters. We create wildcard filters sized 50, 100, 200, 500, 1000, and 2000 filters,
containing random prefixes based on the prefixes of each AS. We add a wildcard filter
database to the non-wildcard filter database formed from the same AS, thus we have 72
filter databases. For example, we add a wildcard filter created from AS 701 to non-wildcard
filters created from AS 701 and 8010 pair.

We compile and run our implementation for each filter database on a Pentium III 1GHz
machine running FreeBSD 4.3-RELEASE. This implementation is compiled using gcc with-
out any compile time optimizations.

We record the memory requirement of each filter database and the time to build the
data structure for non-wildcard filters. The build time is measured as user time in seconds
obtained from getrusage() system call. Memory requirement is measured as the number
of filters stored in all filter search planes. Results of these simulations are shown in the next
sections. For filters with non-wildcard filters we average the data obtained from 5 filters
whose AS pair and sizes are same before we present the results.

We also run the basic 2D packet classification scheme that is explained in Section 3.1
using several filter databases for comparison with our scheme.

4.3 Cross-product Filter Database Result

We display the result of our scheme for cross-product filter databases. Table 4.6 shows the
number of filters stored in our scheme and Table 4.7 shows the numbers relative to filter
database size.

Table 4.6: Filters in structure of cross-product filters.

AS 680 786 1913 4713 517
4151 93708 72097 45474 48693 46378
2907 84280 67024 45384 42916 40714
2007 41325 31639 20584 21225 20541
719 39809 31295 20599 20721 19615

11492 26944 20888 13764 13869 13321
7657 25792 20417 13764 13139 12501
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Table 4.7: Percentage of filters in structure of cross-product filters.

AS 680 786 1913 4713 517
4151 111.319% 107.643% 100.198% 113.710% 114.158%
2907 100.119% 100.069% 100.000% 100.220% 100.217%
2007 108.237% 104.151% 100.000% 109.283% 111.478%
719 104.267% 103.019% 100.073% 106.688% 106.453%

11492 105.539% 102.831% 100.000% 106.791% 108.116%
7657 101.026% 100.512% 100.000% 101.170% 101.461%

4.4 Random Non-wildcard Filter Database Result

4.4.1 Build time

Figure 4.8 shows the time required to build data structure for the filter database. x and
y axes are the number of filters in database (in thousands) and time to build the data
structure (in seconds).
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Figure 4.8: Time to build the data structure for all filter database.

4.4.2 Memory requirement

This sub section shows the memory requirement results for our simulations. The memory
requirement is shown as the average number of filters stored in all FSPs of 5 random filter
databases with same AS pairs and size. Figure 4.9 shows the combined result for all AS pairs
and sizes. The x axes is the number of filters in filter database and y axes is the number of
filters in the data structure of our scheme. Both x and y axes are shown in thousands scale.

To get more insight on the memory requirement, this sub section shows several figures of
the number of filters in structure, which is shown as the relative percentage of the number
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Figure 4.9: Filters in structure for all combinations.

of filters in the database. We show the result of filter databases created by pairing one of
these ASes with the others: AS 701, 4787, 8010, and 9796. These AS rank number one in
each category. We also display the result of AS 9796 because AS 4787 ranks number one
twice and AS 9796 ranks second in both categories.
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Figure 4.10: Filters of AS 701 pairing with other top 5 of prefix and level ASes.
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Figure 4.11: Filters of AS 701 pairing with other top 5 of duplicated prefix and the percent-
age ASes.
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Figure 4.12: Filters of AS 4787 pairing with other top 5 of prefix and level ASes.
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Figure 4.13: Filters of AS 4787 pairing with other top 5 of duplicated prefix and the per-
centage ASes.
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Figure 4.14: Filters of AS 8010 pairing with other top 5 of prefix and level ASes.
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Figure 4.15: Filters of AS 8010 pairing with other top 5 of duplicated prefix and the per-
centage ASes.
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Figure 4.16: Filters of AS 9796 pairing with other top 5 of prefix and level ASes.
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Figure 4.17: Filters of AS 9796 pairing with other top 5 of duplicated prefix and the per-
centage ASes.

4.5 Random Wildcard Filter Database Result

Figures 4.18 to 4.21 display the effect of adding wildcard filters to non-wildcard filter
database. Each figure shows the result when we add wildcard filters created from an AS to
a filter database sized 20000 filters. x axes is the number of wildcard filters and y axes is
the number of filters in the structure relative to filter database size.
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Figure 4.18: Adding wildcard filters created from AS 701.
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Figure 4.19: Adding wildcard filters created from AS 4787.
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Figure 4.20: Adding wildcard filters created from AS 8010.
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Figure 4.21: Adding wildcard filters created from AS 9796.
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4.6 Memory Requirement of the Scheme in Section 3.1

We show in Figure 4.22 the result of simulations using the scheme in Section 3.1 for three
filter databases, formed by pairing prefixes from AS 701 with the ones from AS 4787, 8010,
and 9796. We do not perform many simulations using this scheme since the purpose is only
as a comparison with our scheme.
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Figure 4.22: Filters of AS701 using the scheme in Section 3.1.



Chapter 5

Analysis and Evaluation

This chapter analyzes and evaluates our 2D packet classification scheme based on schemes’
design and the simulation results. First we analyze the effect of duplicated prefixes to
memory requirement, then we look into memory requirement of randomly generated filter
database. We also analyze the time to build our data structure. We close this chapter by
giving general evaluation of our two-dimensional packet classification scheme.

5.1 Effect of Duplicated Prefixes

Our hypothesis regarding this scheme is higher percentage of duplicated prefixes of filters in
database can cause higher number of filters in the structure. Numbers in Table 4.7 seem to
confirm this hypothesis, in general. We can see that filter databases created by ASes whose
number of prefixes are the same but higher percentage of duplicated prefixes have higher
percentage of filters in structure, except for the ones paired with AS 1913. When our filters
with duplicated prefixes are paired with AS 1913, there is no consistent pattern that shows
the effect of duplicated prefixes. AS 4151 has higher numbers than AS 2907, AS 2007 has
lower numbers than AS 719, and AS 11492 and AS 7657 has the same numbers.

For our cross-product filter database case, a filter could be stored in more than one FSP
only if the next conditions hold. Let’s consider that we have a filter database created from
AS A and B. AS A has no duplicated prefixes, while B has some, and there is a prefix PB1
covering PB2 in B and a prefix PA1 in A. PB1 could be stored in more than one FSP
only if the prefix length of PB1 is shorter than that of PA1 and the prefix length of PB2
is longer than that of PA1. Figure 5.1 pictures this case. F11, formed by PA1 and PB1, is
stored in two FSPs, FSP (F11) and FSP (F12).

A probe into prefixes of AS 1913 shows that all but five prefixes have prefix length of
24, and all those five prefixes have the length of 16. Looking into all ASes paired with AS
1913, we found that:

1. there is no prefix having length larger than 24,

2. only AS 4151 and 719 have prefixes whose length is less than 16 covering other prefixes.

These observations explain why we found low number of filters in structure for the cross
products of AS 1913 with other ASes in our simulation. These also explain why AS 719

46
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Figure 5.1: F11 is stored in FSP (F11) and FSP (F12).

has higher number of filters than AS 2007 even though AS 2007 has higher percentage of
duplicated prefixes.

Analysis on this section shows that our hypothesis doesn’t always hold. The reason for
this is if we have two filters F1 and F2 where F1 covers F2 in one dimension, then whether
F1 has to be stored in FSP (F2) depends on the value of the other dimension of both filters
(see Figure 3.5). However, this hypothesis can be used as a baseline to qualitatively predict
the number of filters in structure of a filter database.

5.2 Memory Requirement

5.2.1 Non-wildcard filter database

Our results for non-wildcard filter databases show that, in general:

1. filter databases that we used in our simulations require at most about twice of the
number of filters in the database (see Figure 4.9).

2. filter databases formed by ASes whose number of prefixes is small have higher per-
centage of filters in structure.

3. while the percentage of filters in structure increases as the number of filters in database
increase, the trend shows that the increase in percentage is getting smaller.

Looking at Figures 4.10 to 4.17 and sorting them by the number of prefixes, we have the
descending order of AS 701, 8010, 4787, and 9796. The series in each figure whose values
are displayed are the ones that have the highest filters in structure when filter database
size is 80-thousand filters. These series are shown in Figure 5.2. From this figure we can
see that the order of these series from the lowest percentage to the highest one follows the
descending order of ASes’ number of prefixes.
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The main reason for this is because at the same number of filters in our simulation,
an AS whose number of prefixes is smaller generates more filters per ASes’ prefix than the
one with more prefixes. If we extract the field of filters generated from prefixes of a certain
AS, we can see that more filters per prefix increases the probability of duplicated prefixes.
Table 5.1 shows the distinct and duplicated prefixes generated from these four ASes. From
these tables we can see that duplicated prefixes increase as the filter size increases, and ASes
whose number of prefixes is small has higher probability to get more duplicated prefixes (in
percentage) at the same filter database size.

Higher percentage of duplicated prefixes in our simulation means that the probability
of having filters stored more than once increases. This is what we see in our memory re-
quirement results. In our simulation, we generate prefixes of both dimensions of our filter
databases randomly, thus it is difficult to predict how much filters have to be stored in more
than one FSP.

Another trend that we see from Table 5.1 is the increase rate of distinct prefixes of an AS
diminishes as the size of filter database increases. This trend exists because the more distinct
prefixes created by random generator, the probability that the newly created prefixes will
have the same value as the existing ones increases, therefore reducing the increase rate of
distinct prefixes. This trend is also shown in our simulation result.

The above analysis shows that:

1. the increase of duplicated prefixes in the filter database contributes to the percentage
increase of filters in structure

2. the diminishing increase rate of filters in structure as filter size increases is contributed
by the increase rate of distinct prefixes, which is created randomly, is slowing.

5.2.2 Adding wildcard filters

Looking at the effect of wildcard filters if we run our scheme without the strategy of Sec-
tion 3.1, we can see that adding wildcard filters created from AS 701 adds the percentage of



CHAPTER 5. ANALYSIS AND EVALUATION 49

Table 5.1: Distinct and duplicated prefixes of ASes in filter databases.

AS 701 AS 8010
db size prefixes dupl. pct. dup. prefixes dupl. pct. dup.

2k 993 84 8.46% 988 528 53.44%
4k 1971 339 17.20% 1915 1430 74.67%
10k 4825 1805 37.41% 4515 8994 199.20%
20k 9396 7661 81.53% 8349 26887 322.04%
40k 17950 24356 135.69% 14911 70876 475.33%
80k 33195 74070 223.14% 25343 160992 635.25%

AS 4787 AS 9796
db size prefixes dupl. pct. dup. prefixes dupl. pct. dup.

2k 777 5531 711.84% 791 4792 605.82%
4k 1358 10280 757.00% 1432 9980 696.93%
10k 2786 25969 932.12% 2846 24472 859.87%
20k 4456 45497 1021.03% 4752 44830 943.39%
40k 6965 75504 1084.05% 7406 75010 1012.83%
80k 9854 111754 1134.10% 10809 115216 1065.93%

filters in structure of all filter databases of our simulation at roughly the same rate. On the
other hand, the other three cases of wildcard filters additions don’t show significant increase
in percentage except for filter databases pairing with AS 701. Some filter databases even
show a decrease in number of filters’ percentage.

A pattern that we see here the ASes’ number of distinct prefixes contributes to the
difference percentage increase. This pattern is already discussed in the previous section,
i.e. there are more filters per prefixes of an AS with lower number of distinct prefixes at a
certain filter database size.

Another pattern is when wildcard filters are created from AS 4787, 8010, or 9796, filter
databases created from AS 701 show a very high increase in number of filters’ percentage.
The other filter databases don’t display this result. The main reason for this is AS 701 has
higher number of top-level prefixes both in absolute and relative figures. A top-level prefix
of a routing table is a prefix that is not covered by another prefix. Table 5.2 shows the
number of distinct and top level prefixes of an AS.
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Table 5.2: Distinct and top level prefixes of AS

AS num Prefixes Top level
701 2202 1813
4787 47 1
8010 720 22
9796 38 2

5.3 Build Time

Complexity analysis on the algorithms of our scheme shows that the time to build the
data structure in memory is linear with the number of filters in filter database. Creating
FSPs and their markers takes O(NW ), storing filters in FSPs requires O(NW + WQ), and
marking filters needs O(NW ) time. If no filter is stored more than once, then Q = 0, thus
the build time is simply O(NW ). Because W , the bit-width of address, is a constant, then
the build time is linear with N .

The fastest time to build data structure at each filter database size in Figure 4.8 is the
case where build time is O(NW ) because the lowest figures in Figure 4.9 shows the number
of filters in data structure is almost equal to the number of filters in the database. The
lowest build times show that they are not linear to the number of filters. This is most likely
due to cache memory misses. The more filters in database, the more memory and time
are required. Using more memory means that less portion of the data structure fits in the
processors’ cache memory and it forces the processor to get the data from main memory
more frequently. More time to build the data structure means that the operating system was
probably doing more context-switching during the process. This also affects cache memory
usage. This explains the deviation of build time from linear time, in case of no filter is stored
more than once.

5.4 General Evaluation

In general our scheme is able to reduce memory usage compared to the basic scheme of
Section 3.1. We can see from Figure 4.22 that the basic scheme requires very large memory
because the probability of reaching O(N2) memory is high. Simulations of our scheme on
the same filter databases show that our scheme saves much memory compared to the basic
scheme even though both schemes have same worst-case memory requirement. This memory
reduction comes with additional cost in time to search for the best matching filter, thus we
can view our scheme as a time–space tradeoff of the basic scheme.

We evaluate the performance of this 2D packet classification scheme using simulated
filter databases. While these filter databases are not the real ones, we believe that our
method in generating them is sufficient to simulate real-life filter databases.

We do not simulate the search time of our scheme because complexity analysis of search
time already shows that it is considerably fast and it is independent from the number of
filters in database. Time to build data structure of our scheme is linear to the number of
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filters, however we also need additional time in this process, which is linear to the number
of duplicated filters. This linear build time is reached through several observations of the
relationship between filters and FSPs.

A limitation of our 2D packet classification scheme is we cannot extend the scheme
into more than two dimensions without reducing its memory saving capability. On a two-
dimensional filter database, a filter marker in our scheme stores only one filter, which is the
best one. This is not the case for higher dimensional filters. If we use this scheme for higher
dimension filter database, whenever filters conflict in the source and destination fields, our
scheme has to store all of them in order for the search algorithm to return the correct best
matching filter. Therefore, the benefit of our scheme is reduced.



Chapter 6

Conclusion

6.1 Summary

In this thesis we described packet classification problem. Then we proposed a scheme for
classifying Internet packet based on source and destination address fields to solve this prob-
lem. To evaluate our scheme, we performed simulation using randomly generated filter
databases and we presented the results.

We explained packet processing in Internet routers and showed that an Internet router
could process a packet several times using a function, which is packet classification, for dif-
ferent applications: QoS, firewall, etc. We showed that Internet routers need to have a good
packet classification function so they can forward Internet packets as fast as their interface
line speeds. This thesis then described the packet classification formally and summarized
several related works in this fields.

The objective of a packet classification is to find the best matching filter (BMF) of
a packet. This thesis explained a two-dimensional packet classification scheme, where the
basic idea is to create many search planes and store filters in search planes. To search for
the BMF of a packet, we use a two-step process:

1. search for the search plane containing BMF,

2. and then search for BMF in that search plane.

We create a search plane based on filters’ definition. The assumption that we used in
this research is fields of a filter can only take the form of prefixes. With this assumption
we can create a search plane for a filter by using the shortest prefix length of the filter.
We store a filter in a search plane if the filter crosses or covers the search plane. Using this
strategy, a filter could be stored in more than one search plane, depending on the definition
of both the filter and the search planes.

This scheme has the worst-case search time of O(log W ). Through several observations,
we are able achieve O(NW + QW ) time to build our data structure. N is the number of
filters in filter database; W is the bitwidth of IP address; and Q is the number of duplicated
filters. The worst-case memory requirement of our scheme is O(N2W ), however our scheme
is designed to reduce the probability of reaching that worst-case. We also observed that
we can prevent memory explosion caused by wildcard filters by separating them from non-
wildcard filters. This can be achieved with an extra cost in search time.
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This thesis evaluated the performance of our scheme using randomly generated filter
databases. We modeled filter databases running on Autonomous System boundary routers.
We ran our scheme using various random filter databases with different size. The simulation
results showed that the memory usage tends to be closer to O(NW ) even though the worst-
case is O(N2W ). This is an important result of our scheme, which has never been explored
before by others.

Table 6.1 shows our scheme among the other two-dimensional packet classification
schemes. We can see that the worst-case lookup time and memory usage are comparable to
cross-producting scheme. However, cross-producting tends to come close to the worst-case
memory usage, and to reduce the memory usage, it uses a method to build data structure
on-demand.

Table 6.1: Our scheme and other 2D packet classification schemes.

Scheme Lookup time Memory usage
Tuple space search O(W 2) O(N)
Rectangle search O(W ) O(NW )
Pruned tuple space O(W 2) O(N)
Grid of tries O(W ) O(NW )
Cross-producting O(log W ) O(N2)
Fast-2D O(log2W ) O(N log2W )
Our Scheme O(log W ) O(N2W )

6.2 Future Work

A limitation of our scheme is we can use it for higher dimension packet classification,
but with a reduction in memory saving capability. The main reason for this is for two-
dimensional classification case, our scheme only needs to store the best filter in case of
conflicting filters, but we cannot do this in higher-dimension case. This thesis does not
address this problem. In the future, we will explore the performance of our scheme for
higher-dimension packet classification.
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