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Abstract of Master’s Thesis
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A Strategy for Virtual Machine Migration

Based on Resource Utilization

People use computers for different purposes, which require varying computing re-

sources, such as CPU power, memory space, disk I/O, or network throughput. Some-

times users demand computing resources greater than what is available, requiring either

the physical or virtual addition of resources. Even when users demand the addition

of computing resources, there are physical constraints on the computer architecture.

To dynamically change resources, there must be a way for computers to adapt to the

available resources without physical interaction.

In this thesis, virtualization technology is used to allow computers to dynamically

adapt to the pressure for more resources. When the applications running on the virtual

machine demand certain computing resources, the virtual machine is migrated to a

hypervisor that provides a better match. The system chooses to migrate a virtual

machine when a higher-performance system or an idle system is available, and the

workload exceeds a threshold for a certain period of time.

Live migration of a virtual machine has some overhead cost, as the contents of

allocated memory space and the virtual machine state must be copied from the source

hypervisor to the destination hypervisor. Because of the synchronization of memory

spaces, live migration of a virtual machine will not occur instantly. Sometimes the

performance may not improve when migration does not complete before it reaches a

point where the performance improvement will become apparent.

Experiments were conducted to observe the effects of available computing resources

on virtual machine performance. The relationships between processes running inside

of the virtual machine and their impact on the live migration were measured. Broadly,

the tests have shown that the live migration of a virtual machine in a CPU-bound state

may be beneficial but a virtual machine in an I/O-bound state should not be migrated.
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修士論文要旨

2010年度（平成 22年度）

資源の利用状況に基づいた
仮想マシンのマイグレーション指標の検討

今日，計算機は様々な用途に利用されている．計算機の処理は，CPU処理能力・メ
モリ空間・ディスク I/O・ネットワークスループット等，多様な計算資源を利用するこ
とで実現されている．そのため，単一の計算機で利用可能な計算資源には限りがあり，
より多くの計算資源を必要とする際には物理的・論理的に計算資源を追加する必要が
ある．しかし，そのような計算資源の追加や削除では，物理的に計算資源に触れるこ
とが必要となる他，一度処理を停止しなくてはならないなど，いくつかの制約が発生
する．計算資源の人々の要求に合わせた動的な変更の実現には，利用可能な計算資源
に対して計算機が適応する手法が必要となる．
本研究では，アプリケーションの計算資源の追加・削除要求に対して計算機が動的に
利用するため，仮想化技術を用いる．その中で，仮想マシン内部における処理が特定
の計算資源を要求した際に，仮想マシンを目的に適したハイパーバイザへとライブマ
イグレーションさせる．本論文においては，閾値以上の資源への負荷が一定時間継続
した際に，より適切な処理性能を持つ計算機へのライブマイグレーションを実行する．
仮想計算機のライブマイグレーション時には，ハイパーバイザ間において一時記憶
の内容を同期させ，仮想マシンの実行状態を旧ハイパーバイザから新ハイパーバイザ
へ移転する動作が発生する．この同期処理のため，ライブマイグレーションは要求時
に即座に実行されない．処理の内容や環境により，ライブマイグレーションが実行中
の処理全体の内で性能を向上させる時点までに完了しなかった場合などに，処理性能
が向上しない場合がある．
それらの条件を踏まえ，仮想マシンに対する計算資源の変化の効果を測定するため
の実験を実施した．実験においては，仮想計算機内で実行された処理の内容とライブ
マイグレーション完了までに要した時間・ネットワーク資源との関係を測定した．実験
より，CPU処理能力が必要な状態においては仮想計算機のライブマイグレーションに
より性能の向上が見込め，一方で入出力が多発する状況下ではライブマイグレーショ
ンを実行すべきではないとの結果が得られた．

キーワード
1．仮想化，2．計算資源，3．ライブマイグレーション，4． 境界

慶應義塾大学大学院 政策・メディア研究科
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1. Introduction

This chapter gives introduction of the thesis, and also some background information.

1.1 Introduction

Nowadays, computers are used everywhere around humans, regardless of whether

they are recognized or not. When people hear the word “computer”, a great portion

of them imagine the computers in the form of desktop or laptop computers. However,

there are many other “computers” around us, for example cell phones or digital televi-

sion recorders. Computers reside everywhere around humans, and the computers are

used for fulfilling users’ demands.

When users use the computers, they have different purposes in mind and make

different demands on the computers. Some users use computers for “light” purposes,

such as web browsing, e-mail, and on-line chat. On the other hand, some users use

computers for “heavy” purposes, such as video or graphics encoding, running video

games with numerous three-dimensional objects, scientific calculation, or other similar

purposes. Often, users purchase a computer that satisfies their average usage; users

who use computers primarily for light purposes will buy cheap, small computers such

as netbooks or laptops with less capability, and users who use computers primarily for

heavy purposes will buy computers with great computational power and better central

and graphic processing units. Each user makes different demands on the computers,

and each user obtains a computer that fulfills his or her demands.

However, there are certain situations where users would demand different computa-

tional capabilities, regardless of whether they are using computers for light purposes

or heavy purposes. For example, users with light computers may suddenly wish for

more computing power to carry out some heavy numerical computation or to try video

editing for their families. Even if there is another computer with better capabilities,

the user needs to terminate the running job, bring files and application environments

to the other computer, and start running the job again on the better computer. Even

though computing capability of a single computer is limited, there are times where

users demand more than what is available on their computers.

There are several ways to add computing capabilities to existing computers. A simple

method would be to add or exchange the computer parts that compose the computer.

1



1. Introduction

For example, users may exchange the CPU on the computer for a faster one or one

with more processor cores, or add more RAM to the computer. However, users face

several problems when exchanging computer parts. A prominent problem is the fact

that parts need to be attached physically to computers. If the CPU socket or bus

interface is different, or if no expansion slots for adding modules are available, it is

difficult to extend the capabilities of the computer with additional hardware. Also,

since changing the hardware configuration involves actual physical operations such as

opening the case, it is bothersome for experts and intimidating for non-technical users,

and cannot be done repeatedly on a short time scale. Another solution would be to

change software or the operating system (OS) running on the computer. Even for the

same purpose, a different implementation may perform better. This might add some

capability to the computer, but the ultimate hardware bound remains the same.

Therefore, it has become common for users to export their tasks to other computers

in some manner. One example is to own a shared computing server in the network

system, and remotely control the server using secure shell (SSH), or remote desktop

applications such as Microsoft Remote Desktop Protocol (RDP) or Virtual Network

Computing (VNC)[1]. The recent trend is “cloud computing”, where both user data

and applications are saved on Internet servers, and users access the “services” over

web browsers. In the remote control applications and cloud computing services, the

user’s own computer doesn’t have to be an expensive, high-powered machine; since

computations are done on the computers at remote sites, local computers only need

to have input and output devices. Such terminals, called thin clients, have come and

gone over the years; a “netbook” might be the current equivalent. This is one way to

efficiently add computing resources to users’ computers, which can be done frequently

and easily compared to adding computational resources to computers physically.

Computing resources are elements that include both computer hardware components

and user data that are computed on the computer. Computer hardware components

are hardware such as: computational power on CPU, memory space, storage, user

interfaces, and peripheral devices that add capabilities to the computer. User data are

files which users save on the computers, such as documents, spreadsheets, applications

and their settings, e-mails, browser bookmarks, and others. All elements that compose

a computer can be considered as computer resources, and developing an interconnect

that allows elements to be connected and managed to each other is necessary in this

architecture.

However, even though the ideas of using the computational resources of other com-

puters over an Internet connection have become popular, there are still several prob-

lems. One of the problems is synchronization of data. When users have their data

on their local computers, and when they wish to use the data on the remote services,

users have to synchronize the data between the local and the remote computers. The

solution may be to save all of a user’s data online, and access the data from both local

2



1. Introduction

and remote computers. However, this solution requires users’ consoles to be always

connected on the Internet to access the data. Even using mobile wireless connections,

there are many places where users cannot access the Internet while they are moving,

such as underground or rural areas, and the assumption of “always connected to the

Internet” cannot be made on the existing computational environment. Moreover, since

the computer running the processes will change when using remote control or accessing

remote services, the continuity of their tasks is likely to be terminated when exporting

the tasks to remote services. Therefore, when users are working on the tasks, and they

wish to have more computational resources, the in-progress work needs to be saved or

checkpointed, and processes have to be terminated in order to export the tasks. This

sometimes may be a bottleneck as a user service, as sometimes certain applications

need to be restarted from the beginning instead of resuming from where they were

terminated.

In this thesis, a system architecture based on virtualization technology with dy-

namic migration will be introduced. In this architecture, the entire user environment,

including OS, applications, and user data, is always running on a hypervisor as a vir-

tual machine. When a user wishes to obtain additional computational resources, the

virtual machine migrates from the user’s local computer to a computer with more ca-

pabilities. The migration decision is made based on the status of the user’s computer,

such as CPU usage, available memory space, and device inputs and outputs (I/O). The

migration takes place either with or without user interaction, and the user consoles and

disk drives remain unchanged even after migration; the virtual machine is the only el-

ement in the system that migrates from a hypervisor to another. A virtual machine is

a virtual “environment” of a single computing system, allowing the application status

and user data to remain unchanged even at migration. In addition, as long as a virtual

machine is running on the local hypervisor, it can be running even when the hypervisor

is not connected to the Internet.

1.2 Purpose

Nowadays, the extension of computational powers using external resources has be-

come common. In order to improve performance of applications running inside a com-

puter, an architecture that allows computers to utilize computational resources to the

maximum extent and minimizes the resource consumption is necessary.

Thus, an architecture based on virtual machine migration is expected to improve

performance of virtual machines by adapting the virtual machine onto a computing

resource that is the most comfortable for the computational work running on the vir-

tual machine. In order to adapt virtual machines onto available computing resources,

a methodology for selecting a proper hypervisor with necessary computing resources

3
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becomes necessary. As was mentioned previously, several resources that affect comput-

ing performance are CPU, memory, and device I/O. There are various I/O devices in a

computer, but the two prominent examples are disk I/O and network I/O. By observ-

ing the utilization of these resources and migrating virtual machines to a hypervisor

that satisfies resource requirements, the performance of virtual machines is expected

to improve.

The architecture utilizes live migration of virtual machines for dynamically changing

the hosting hypervisor to an appropriate one. Hypervisors are computers that host

virtual machines, and since they are also computers running hypervisor OSes, each hy-

pervisor would have different computing resources. Moreover, since a single hypervisor

can host multiple virtual machines, a hypervisor with the greatest computing resources

may not always be the most effective hypervisor to run the virtual machine on. Thus,

in order to introduce the architecture proposed in the thesis, a method for evaluating

available computing resources is necessary.

In addition to evaluating computing resources, the cost of performing live migrations

must also be considered. Performing live migration of virtual machines will transfer

memory contents of the virtual machine to a remote hypervisor, consuming resources

and network bandwidth. The migration procedure typically takes a few seconds up to a

few minutes on modern PC-class hardware, depending on available network bandwidth.

Even if other hypervisors have better computing resources, if the cost of migration is

too high, sometimes it may be better not to migrate the virtual machine. Therefore, a

strategy is necessary for maximizing the use of computing resources available to virtual

machines.

1.3 Contributions of the Work

The contributions of this thesis are as follows:

• Propose an architecture in which virtual machines can adapt to resource demands

and utilize network-available resources by performing a migration.

• Propose a multi-variable method for selecting the best environment for a given

virtual machine, taking migration cost into account.

• Evaluation of the above by triggering migration based on workloads on a com-

puter, demonstrating the crossover point at which migration pays off.

1.4 Thesis Outline

This thesis consists of 8 chapters. Chapter 2 describes problems that the exist-

ing computer architecture has, and introduce a computer architecture that utilize IP
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networks as its common bus. Chapter 3 describes advantages of using virtualization

technology, which is a key technology used in this thesis. Chapter 4 describes virtual

machine migration, as well as comparing it with process migration. Chapter 5 gives

an architectural view of the system, and Chapter 6 describes prototype implementa-

tion. The migration threshold is evaluated in Chapter 7, and Chapter 8 concludes the

thesis.
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A computer is a set of parts that are connected to each other inside of a hardware

case. This chapter gives an overview of physical constraints that exist in the computer

architecture, and how boundaries between computers have changed.

2.1 Boundaries of Computer Hardware

The philosophy of computer architecture has remained the same in the past decades

of computing history. Since hardware resources primarily communicate with each other

using local buses, the resources are expected to communicate with each other using

specialized protocols in hardware and software, which often come with limits such as

maximum response time. Therefore, it can be considered that the existing computer

architecture is stable in terms of communications among resources, but this architecture

has limits on its scalability.

2.1.1 Computer as a “Box”

The computer today is primarily handled in units of “boxes”. One computer, or

one box, is composed of parts, such as central processing unit (CPU), random access

memory (RAM), motherboard, disk storage, input and output peripherals, and other

components. Users may select to add peripherals to the box by either inserting expan-

sion card to motherboard or by connecting peripherals externally, but the computer is

still boxed as a set of computer parts, with a full set of computing resources (Figure

2.1).

The boxed architecture has been common since the first appearance of computers.

Even though the materials used for computers have changed from tubes to transistors,

and even though computers are now able to communicate with other computers through

the Internet, computers are still sets of components that reside in a single location,

in one or a few boxes. This is advantageous for certain reasons. First, since all the

components are stored in a single box, it can be used standalone. For example, even if

the computer cannot access the Internet, it still can operate independently with the user

environment and data that are installed on the computer. Next, since the computer

is enclosed in a single box, the communications between computer components can
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HDV

Computer

CPU

Figure 2.1: Traditional computers are defined by the hardware boxes

be done at a high rate, without the interference of external phenomena. This allows

computer parts to function at a defined bandwidth and expected response time.

Each computer component has different requirements, even if the components use

the same device bus. For example, a keyboard and a storage device can be connected

to the same USB bus. However, when users type keys with keyboards, they may

wish to see a better response to the actions rather than seeing keys they have typed

a couple of seconds ago. On the other hand, when users use storage devices, even

though performance is important, writing to and reading from storage without losing

data is more important. Even if the device bus is the same, the aspects that devices

require on the bus are different. Since the devices are enclosed in a box, the device

bus that transports data are expected to respond within the time period defined in its

specification, and to cover the errors that occur on the transport bus.

2.1.2 Networks of Computers

In the existing computer architecture, computers can be described as boxes that

contain computational resources. When computers are connected to each other on IP

networks, the box itself can be considered to be the boundary of resources between

those computers. In other words, the resources that reside outside of the boundary

are not for the particular computer to use without transferring the resource within the

computer’s boundary.

Even though boundaries exist, some applications today override the boundaries. One

example of running a single set of computational work on multiple computers at very

large scale is volunteer computing, epitomized by programs such as SETI@home[2] and
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Folding@home[3], which asks users to install client applications on their computers and

run the applications while the computers are idle.

Not only the home-scale computers, but there are large-scale computers that are op-

erated as a set of multiple computers. An example of such a supercomputer is IBM’s

BlueGene Supercomputer[4] family, which consists of multiple chips on a single compute

card, multiple compute cards on a single node board, multiple node boards in a single

cabinet, and a system constructed of multiple cabinets. In a supercomputer architec-

ture, the boundary of computational power is quite different from ordinal computers;

there are multiple computers inside of a single box physically, and there are multiple

boxes in a single set of system, turning the system into a set of computers by hundreds

and thousands of computational nodes. Thus, the boundaries of computational power

is blur on the supercomputing systems compared to those of the traditional computer

architecture.

As the examples of volunteer computing and supercomputers show, although com-

puters have physical hardware boundaries between them, there are methods for con-

necting the computing resources useful for accomplishing certain computations that

can be divided among the multiple nodes that construct a computing system. How-

ever, there are still problems on the system: even though computational work can be

divided into multiple computers, the computers are still “boxed” into a single unit and

have limitations on scalability; the issues described in Section 2.2.4 are not resolved

in the supercomputing systems. Therefore, it can be said that supercomputing sys-

tems may blur the boundaries of computational “power”, but they don’t remove the

boundaries of computational “resources” including peripherals or user environments.

2.2 Adding and Removing Resources

Since each computer has limited space with a limited number of device buses, the

ways of adding and removing computing resources from the “box” is somewhat limited.

This section gives brief description of methods used by computers to expand their

resources.

2.2.1 Physical Interaction

One of the direct ways of adding computing resources is to add, exchange, or re-

move computer devices physically from computers. For example, when users need to

have more computational power or memory space to expand a large set of data, users

may wish to add or exchange CPU or RAM to the computers. Or, for another ex-

ample, when users need to have more storage space, users may add disk drives to the

computers. This method of adding computing resources produces a direct resource on
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computers, but generally the number of slots available for users to add these devices

is limited. For instance, when the motherboard of a computer has only a single CPU

slot, users can only exchange the CPU rather than adding another CPU. Moreover,

since there are different types of CPU sockets available for different generations or

different vendors of CPUs, not all CPU can be added to the CPU slot available on

that specific computer. In addition, physical addition of processing units to computers

requires physical interventions with computers. The added resource cannot be shared

over multiple computers, and it becomes difficult to alter the resources frequently since

they are connected to computers internally.

Adding computing resources can be done at outside of computers for several re-

source types. For example, buses such as PS/2, IEEE1284, RS-232C, SCSI, USB, and

IEEE1394 are frequently used to add computing resources (generally, peripherals) out-

side of the computer box. Adding computer resources over these buses doesn’t require

users to open the computer case, which makes it easier for users to add computing

resources. An example of simplifying the resource additions through external buses

would be adding disk drives, which can be added both internally and externally to the

computers. To users, adding computing resources externally will make the addition

of resources easier as it doesn’t require users to physically interact with the inside of

computer cases, which is generally considered an obstacle to users without knowledge

of computers. In addition, many external buses support using hubs or making cascaded

connections of devices up to several levels, expanding scalability on device buses. The

drawbacks of external addition of computing resources is that the components that

constitute the central portion of computation, such as CPU or RAM, cannot be added

externally in computer architectures that are generally used in today’s environment.

Also, even though the resources can be added externally, there are limitations on phys-

ical distance between the computer hardware and additional resources. The resources

need to be connected to computers themselves, and the cables used for adding the

resources have limits on distances that are determined in specifications.

2.2.2 Sharing Resources at the Application Layer

Physical addition of resources is a direct way of adding hardware resources to com-

puters, but the limitation placed on this method is also the fact that the resources need

to be added physically. Because of the physical connection, users must interact with

resources when adding or removing resources to computers. In addition, the resources

can be used on a single host at a time; resources connected to a computer cannot be

used on other computers while they are occupied on a single computer.

To resolve the issues on physical distance between resources and computers, and

the issues on sharing resources among multiple computers, various ways of using com-

puter resources over IP networks have been developed. One of the usages that is used
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frequently is software-based sharing of storage resources. The examples of sharing stor-

age resources with software includes NFS and Samba (CIFS)[5]. On these protocols,

resources are handled as “files” rather than raw “blocks” used for storage devices.

Another example of software-based sharing of resources is sharing of printers, which

is frequently done with protocols such as LPD, IPP, or Samba. These are supported

either on additional software installed on print servers, or implemented within the

printer firmware to accept the print requests.

There are various software used for sharing resources on multiple computers over

IP networks. These software allow easy sharing of devices among multiple computers.

However, since these resources are shared on application-basis, there are also drawbacks

on using the applications. For example, users cannot format the storage space shared on

application-based methods as they would do on the real hardware, not allowing to split

partitions or change file system types. The benefits of using application-based sharing

of computing resources is the fact that these resources can be shared easily, without

requiring physical interaction. However, because they are abstracted in different ways,

not all functions provided by the corresponding resources may be used on application-

based approaches.

2.2.3 Sharing Resources as Real Resources over IP Networks

A method that is used frequently to share computing resources is, as explained in the

previous section, to share them at application layer. This method is generally easier for

users to configure services, and this method abstracts real hardware against computers

that access the resource over IP networks. However, this method doesn’t allow the use

of computing resources as if they are locally-connected, real hardware.

Another method of sharing computing resources over IP networks is to share the

resources in a unit of “device” rather than “service”. In other words, when a USB

peripheral device is shared over IP networks, the remote computer that uses the device

will recognize it as a device that is attached to the computer, which is similar to the

other devices that are connected to the computer itself. The examples of this method

includes use of dedicated hardware such as “device servers” or running software such as

USB/IP[6][7] on individual hosts. The other example, which is standardized as Request

For Comment (RFC), is iSCSI[8]. Hardware resources that are added to a computer

with this method are recognized as real hardware on the computer. In fact, in USB/IP,

USB protocols are encapsulated in IP packets, and adds virtual host controller in the

architecture to construct the system.

Encapsulating the device protocol into IP packets allows the entire protocol to be

transported over IP networks. However, there are several obstacles. For example, bus

protocols assume that the requests and responses made in between devices will take

on the order of nanoseconds, with limits specified in the protocol standards. The bus
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protocols generally assume that all requests and responses will be handled correctly,

and not being lost during bus communications. And, bus protocols take up a much

broader bandwidth compared to IP networks; the most recent USB protocol, USB

3.0 SuperSpeed, can take up to 5Gbps[9], which is not the bandwidth that can be

consumed by average IP networks. Encapsulating device protocols into IP packets will

allow users to handle computer resources as these are connected to computers directly.

However, there are obstacles on IP networks that need to be overcome on encapsulating

the device protocols.

2.2.4 Scalability Issues of Computer Architecture

Even though the boxed architecture of computers is beneficial in terms of stability

of communications among resources, there are several drawbacks to the architecture,

especially on physical scalability.

First of all, because computers need buses that allow communications between their

components, the physical distance between computer hardware and devices must be

kept short. If the device is an expansion card, the device needs to be inserted to the

appropriate slot on the motherboard; if the device is an external device, the device and

the computer needs to be connected with cables that are limited to a certain length,

depending on device bus specifications.

Next, since computers have a limited number of motherboard expansion bus slots,

the number of devices that can be attached is limited. Some device buses, such as

SCSI, USB and IEEE1394, can be chained to certain levels, connecting a device to

another device that is connected to the computer motherboard. However, this still

limits the number of devices that can be attached to a computer, as the maximum

level of chains is specified on each device. Even more, there are computers that don’t

have certain device buses on their motherboards. Some computers don’t have what

is called “legacy” device buses, and some portable computers only have a minimum

set of device buses. Naturally, this limits the physical connectability of devices. For

example, AGP video boards cannot be used on a motherboard without AGP buses,

and PCI peripheral cards cannot be added when all PCI bus slots are occupied on the

motherboard.

The existing computing architecture has issues on scalability, and these issues need

to be resolved in order to allow users to user their computers freely without considering

the physical limits placed on a boxed computer.

2.3 All-IP Computer Architecture

Physical scalability is a problem in the existing computer architecture. To resolve the

scalability issues, the idea of the “All-IP Computer” is used in this thesis. The All-IP
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Computer architecture uses the Internet Protocol (IP) as a single bus that transports

both computer device communications and user data (Figure 2.2).

Computer
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CPU CPU
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Figure 2.2: All-IP Computer Architecture

2.3.1 Using IP as a Common Bus

In the All-IP architecture, an IP network is the bus the computer components use

to communicate with other components. An IP network is a shared bus that trans-

ports various kinds of data on the same network. The data that is transported over

IP networks includes, but is not limited to: HTTP web requests, mails, remote control

applications, multimedia, and so on, as well as control packets such as ARP, ICMP,

TCP acknowledgments, and others. These communications are made between multiple

computers, and thus it can be said that the IP network is the bus that carries commu-

nications with computers outside of the “box”. All-IP Computer architecture uses IP

network as a heterogeneous bus for transporting all communications that both users

and computers use for any types of data, both in terms of software and hardware com-

munications. The hardware communications are done at device level by encapsulating

the instructions into IP packets.

To use an IP network as a common bus for computing resources, there are several

properties of IP networks that affect the communications in some ways. First, IP net-

works have greater latencies than computer buses. Device buses sometimes require

device requests to be processed in order of nanoseconds, while IP packets are trans-

ported over IP networks in milliseconds to sometimes as much as a few seconds. Next,
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IP networks sustain chances of losing IP packets on the communication. When TCP is

used, the reliability of packet transfer is improved by re-transmission of packets. How-

ever, this will increase the delay that occurs on the communications. If UDP is used as

a transport protocol, the packet may arrive faster compared to TCP, but the packets

may be lost or arrive out of order; because devices are communicating with specified

protocols, the messages should not be lost or reordered while being transported over

IP networks. In addition, the bandwidth that can be used on IP network is lower than

the bandwidth of device buses. Certain device buses, such as Serial ATA 6.0Gbps may

use bandwidth up to 6Gbps, while the bandwidth of many IP networks is less than

100Mbps. Since the bandwidths are limited, using IP networks as device buses requires

actions such as compression or caching.

The benefit of using IP networks as a common transport of resource communications

is the heterogeneous use of a single bus, without considering differences of bus protocols

that are specific to each bus type. While most device buses are independent from other

device bus types, IP networks can transport any information that can be encapsulated

into IP packets. In addition, not only the data that is transported over IP networks,

but the types of networks connected to the Internet are also different among different

networks; homogeneity is not guaranteed on IP networks, and tweaks on device com-

munications may become necessary on transporting resource communications over IP

networks that have narrower bandwidth and greater latency compared to peripheral

buses. Thus, methods such as compression of data, utilization of cache, or reducing

device protocols become necessary.

There also must be security infrastructure in the system. In other words, if device

communications are wiretapped while being passed over IP networks, the device func-

tions may be duplicated by unauthorized third parties. Thus, in addition to user and

resource authorizations and authentications, encryption of the device communication

should be considered in the system.

2.4 All-IP Computer-Related Work

Connecting computer resources over networks has been done in research projects

prior to All-IP Computing. This section describes work done prior to the All-IP Com-

puter architecture.

2.4.1 Desk Area Network

Desk Area Network (DAN)[10] connects computer devices over Asynchronous Trans-

fer Mode (ATM) networks. The idea of connecting devices that reside the outside of
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computer hardware is similar to All-IP Computer architecture. An example imple-

mentation of DAN is ViewStation[11], which was implemented at the Massachusetts

Institute of Technology.

An important difference between DAN and All-IP Computer architecture is that

boundaries are defined in DAN while the goal of All-IP Computer architecture is to

remove the boundaries between computer hardware. In DAN, devices that exist within

the same ATM network can be used by the main computer, but not the devices on

other networks. This approach is effective for resource management, such as managing

resource existence and address management, and security as the system only needs

to consider communications within the network. Since all resources exist within the

administrative network, the entire set of resources can be managed by the system

administrator.

The drawback of DAN is the limitations on distances between computers and devices.

The goal of All-IP Computer architecture is to use computer resources on IP networks

without considering the physical and logical locations of computing resources. On the

other hand, since DAN uses devices within the same ATM network, both physical and

logical locations are limited in the network.

2.4.2 Netstation

Netstation[12][13] introduced the idea of Network-Attached Peripherals (NAPs)[14],

which are connected over network protocols. The goal of the project was to hetero-

geneously unify all the devices on IP regardless of dedicated physical buses for the

NAPs. Unlike DAN, which was limited to use on ATM networks, NAPs introduced in

Netstation were designed to be used with IP networks.

2.4.3 Plan 9

Plan 9[15] was a project at Bell Labs, and many UNIX kernel developers participated

in the project. A goal of Plan 9 project was to re-design the computer resource man-

agement for a multi-user computing environment. Plan 9 implemented management of

resources that allows mapping between namespace within a specific scope and global

IP networks, and also stores all files and user information on a central server. Thus,

the system can use resources, which includes all of data, files and users, in integrated

manner with IP networks.

The idea of Plan 9 project is similar to All-IP Computer architecture as all computing

resources reside on the Plan 9 system are connected to each other over IP networks.

One of the descriptive characteristics of the project is that management of entities in

the system is centralized in a single management server, which could become a single

point of failure in the system. Although resource discovery and administration are
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not fully defined in All-IP Computer architecture yet, it is designed to have resource

manager and rendezvous manager on the Internet, and the they are responsible for the

resources within the same network; managers communicate with each other to share

resource information.
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The computer environment proposed in this work involves virtualization of com-

puters. This chapter briefly describes the virtualization technologies used in common

computing environments.

3.1 Virtualizations Used in Application Software

The first examples of virtualization technology involve virtualization used on user

applications. These are different from virtualization architectures used in this work, but

the requirements for server virtualization have relevance in explaining the architecture

proposed in the work.

There are several cases where users may wish to run multiple servers on a single server

hardware. If the server hardware has sufficient resources to run virtual machines on

the computer, the server administrator may choose to run multiple instances of virtual

machines on the hardware. For example, an Apache web server can host multiple

websites with the VirtualHost directive in its configuration file. This is done by

running a user application on top of a single instance of an OS.

This virtualization by application software allows to run multiple instances of servers

on a single instance of an OS, without requiring any additional hardware to support

the hosting of multiple sites on a single server hardware. The VirtualHost allows server

administrators to host multiple sites on a single hardware without any additional hard-

ware support, reducing the number of server machines necessary for hosting multiple

sites. On the other hand, VirtualHosts are isolated at the level of web sites only, and all

other entities are shared on a single machine. For example, sites defined as VirtualHost

share the same application libraries, OS, network links, and hardware.

3.2 Emulation of Computer Hardware

Virtualization of server daemons allows server administrators to host virtual sites on

a single hardware, but there are several problems with using virtual sites to construct

the virtual servers. Virtual sites differ from real hardware in that they reside on a single

OS environment, and the fact that these virtualizations rely on applications. Since

these server applications reside on the single OS environment, an incident that occurs on
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a single site may affect other sites on the same server. Since these site virtualizations are

done on application-basis, whether they can be virtualized or not and how virtualization

is done depends on each application. Therefore, even though sites virtualization can be

done if the server application supports it, this is not a full virtualization of the whole

computing environment. The full virtualization of a computing environment means to

virtualize the whole environment, including hardware, OS, and application software.

Computer hardware virtualization has been used since the 1960s. The method used

for virtualizing, or “emulating” a computing environment is the translation of instruc-

tions issued by CPU, translating physical memory space into the virtual machines’

memory areas, using a file as a virtual disk drive, and translating or bridging their net-

work connection into the network which host computer is connected to. This method

of computer hardware virtualization has been around as both open source software

and proprietary products. Examples of open source computer virtualization include

Bochs[16] and QEMU[17][18], and examples of proprietary products include Virtual

PC[19] and VMware[20] Workstation, which both later support hardware-assisted vir-

tualization that is described later in this chapter.

Computer hardware emulation in software doesn’t require specialized hardware; any

computer architecture can run the emulation software regardless of the CPU or chipsets

placed on the computer. Emulation of computer environments can emulate other CPUs,

such as running ARM-based system on Intel x86 system, even though there is a dis-

advantage on speed of execution. Since computer emulation requires translation of

CPU instructions and memory spaces, the execution speed of the emulated computer

environment may be an order of magnitude or more slower.

3.3 Hardware-Assisted Virtualization

The attention shown toward virtualization has grown stronger as use of Informa-

tion and Communication Technologies (ICT) became popular in real world. As the

situations where using computers and servers have increased, the issues of space for

server machines, power consumption, and emission of heat have become major inter-

ests. Since the numbers of server and client computers have increased, they have taken

up more space in the datacenters, and the weights of server racks have become heavier

and started to consume more power, which results in producing heat. One method for

reducing the numbers of computers is to run multiple computers on a single hardware.

3.3.1 Hypervisors

Recent virtualization technologies add an additional layer called the “hypervisor” to

the existing OS architecture. The hypervisor monitors the resources of the host OS,
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Figure 3.1: A bare-metal hypervisor

which is an OS that manages virtual machines, as well as the guest OS, which is an

OS running inside of a virtual machine.

The hardware-assisted virtualization can be classified into two types: bare-metal

hypervisor and hosted hypervisor. A bare-metal hypervisor runs directly on top of

the real hardware, and the guest OS and applications are always executed on top

of the hypervisor (Figure 3.1). On the other hand, hosted hypervisor runs virtual

machine monitor as one of the applications or daemons on the host OS (Figure 3.2).

Since hosted hypervisors turn existing OS into hypervisors using kernel modules or

application programs, virtual machine subsystem and other applications can reside on

the same computer system simultaneously.

Examples of bare-metal hypervisors include Xen[21][22], VMware ESX (Figure 3.3),

Linux Kernel-Based Virtual Machine (KVM)[23][24] (Figure 3.4) and Microsoft Hyper-

V[25], and examples of hosted hypervisors include Parallels Desktop[26], Oracle VM

VirtualBox[27], and VMware Workstation. These are the major virtualization prod-

ucts used in the markets today, for both desktop-use and server-use. In desktop-style

virtualization, users execute instances of virtual machines on their desktops; in server-

style virtualization, virtual machine servers are running within the network, and users

use client software to access the server.

3.3.2 Para-Virtualization and Full-Virtualization

The techniques used for virtualizing computers can be divided into three categories:

emulation using binary translation, para-virtualization, and full-virtualization[28]. Full-

virtualization of a computer is to virtualize or emulate real hardware on virtual ma-
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Figure 3.3: VMware ESX vSphere Client

chines, whereas para-virtualization “abstract” some of the hardware in the ways suit-

able for virtualization system to handle. For example, Xen and VMware support both

para-virtualization and full-virtualization of virtual machines. And, binary transla-

tion of virtualized machines are to emulate hardware on virtualization software, that

translates instructions between virtual machines and real hardware.

In Xen, para-virtualization of a virtual machine is done by modifying Linux kernel

to use with Xen. When the guest OS on virtual machine calls system calls, the in-

structions are translated into “hypervisor calls”, which are instructions designed for

para-virtualization hypervisor architecture. Then, the hypervisor calls are issued to

CPU to handle the instructions; when interrupts were made from real hardware, the
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Figure 3.4: Screenshot of QEMU-KVM

hypervisor translates the interrupts into software interrupts that are notified to the

guest OS.

Para-virtualization of virtual machine reduces overhead on virtual machines as func-

tions of the OS are translated for virtualization-specific instructions. The drawbacks

of para-virtualization is the fact that the OS kernels must be modified to support hy-

pervisor calls. On the other hand, full-virtualization is useful as no OS modifications

are necessary, while virtual machine performances are affected for making translations

of instructions between virtual machine and real hardware. Thus, recent CPU and

chipsets have added supporting mechanisms for full-virtualization.

3.3.3 Principles of Hardware-Supported Virtualization

As virtualization technology has evolved, hardware-based assistance of virtualization

has become common (Figure 3.5). The hardware-assistance of virtualization is done

on CPU and chipsets, allowing translation of CPU instructions and memory addresses

between the real hardware and virtual machines. Support of instructions on CPU are

so called Intel VT-x[29] and AMD-V, that allow CPUs to have an additional privilege

level to run the virtual machines (Figure 3.5).

Hardware-assisted support of virtualization became necessary due to the ring protec-

tion architecture of Intel x86 CPU, which is one of the most commonly used CPUs in

the market today. In Intel x86 CPUs, CPU have four different levels called “rings” for

executing codes, where ring 0 is the highest privilege and ring 3 is the lowest. Kernels
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Figure 3.5: Screenshot of BIOS setup for motherboard supporting Intel Virtualization

Technology
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3

Kernel

Unused

Unused

User-land

Figure 3.6: Rings in Intel x86 CPU

are executed in ring 0, and applications are executed in ring 3 (Figure 3.6).

Since rings 1 and 2 had not been used, AMD x86 64 architecture has removed rings

1 and 2 in its specifications. When adding hypervisors to run kernels in virtualized

environments, the hypervisor layer should be executed at a layer with higher privilege

compared to the kernel, which is already occupying the highest privileged layer in the

ring protection system. Thus, in CPU virtualization support, new privilege modes were

added to CPUs. This support is called “VMX” in Intel CPU products, and “Guest

Mode” in AMD CPU products[30]. VMX works independently from ring protection,

and has two modes: “VMX root” where virtual machine monitors are executed, and
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Figure 3.7: VMX modes in Intel x86 CPU

“VMX non-root” where virtual machines are executed (Figure 3.7).

Another necessary hardware feature is the translation of memory space between vir-

tual device addresses and real memory addresses, handled by the Input/Output Mem-

ory Management Unit (IOMMU). AMD has IOMMU supports in its chipset products

and Intel calls it VT-d, and their functions are primarily to remap DMA memory space

to allow use of real devices connected to computers from virtual machines.

In addition to the virtualization applications supporting virtualization features, Linux

kernel has features to assist virtual machines, such as virtio[31]. Virtio provides I/O

support for storage and network accesses, virtual machine memory space allocation,

and use of PCI emulation. The purpose of virtio is to develop a device driver that is

specifically designed for virtual device I/O, and to provide a common driver interface

for multiple virtualization implementations at the kernel level.

3.4 Cloud Computing

Cloud computing is a buzzword that has become common in recent years. The idea of

cloud computing is to export subscribers’ work to systems that reside somewhere on the

Internet, and subscribers access the service with client software such as web browsers.

Since the hardware and basic software installations are done by service providers as a

service, cloud computing allows subscribers to install the services relatively easier than

installing the entire system at the subscribers’ sites[32].

Some examples of cloud services are Amazon Elastic Compute Cloud (Amazon

EC2)[33], Google App Engine[34], and Force.com service by Salesforce.com[35].
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Table 3.1: Types of cloud computing services

Entity

Service types and who install the services

Infrastructure as Platform as Software as

a Service (IaaS) a Service (PaaS) a Service (SaaS)

Applications Users Service Providers

Middleware Users Service Providers

Server Hardware Service Providers

Infrastructures Service Providers

3.4.1 Types of Cloud Computing Services

When describing cloud computing services, the services can be categorized into sev-

eral types depending on the services that are provided and the services which sub-

scribers install themselves. The types of cloud computing services are shown in table

3.1.

Under the cloud computing service types, subscribers use provided applications on

the Software as a Service (SaaS) subscription model. This approach has been used for

several years, especially for web-based e-mail services such as Hotmail[36] or Gmail[37],

and it has been common to access the cloud services using web browsers as client

software.

3.4.2 Role of Virtualization in Cloud Computing

In contrast to the SaaS subscription model, Platform as a Service (PaaS) and In-

frastructure as a Service (IaaS) subscription models allow users to install their own

applications on the provided spaces. In the IaaS subscription model, each subscriber

can even obtain his or her own OS environment. When allowing subscribers to provide

their own OS environment, virtualization technology becomes a key technology in the

service.

Providing a real hardware system for each subscriber is difficult, as it requires phys-

ical space in server racks for placing hardware, providing sufficient power supply for

running the hardware, providing air circulation system to cool the hardware, and the

cost of installing and operating the real hardware. Thus, in cloud services, use of virtu-

alization have gotten attention; instead of installing real hardware for each subscriber,

creating virtual machines for each subscriber resolves the requirements described above.

That kind of server is sometimes called Virtual Private Server (VPS), and it is a service

that has become popular in recent years.

It can be said that use of virtual machines have become common in real-world ser-

vices.
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3.5 Benefits of Virtualization

There are several advantages to using virtualization technologies. Because of those

advantages, virtualization is being used in various situations at various locations.

3.5.1 Virtual Disk Images

The first advantage is the use of virtual disk images. A virtual disk image can be

copied as a file, and it can be backed up, restored, or duplicated when users demand; for

example, when a user wishes to create ten computers with same user environments. On

physical hardware, the user needs to take the same steps of installing OS and user ap-

plications, changing OS and application settings, applying necessary software patches,

and other activities before the environment becomes usable. The user could choose to

use a HDD duplicator, but that still involves physical attachment and detachment of

HDD, which is time consuming and requires the user to have physical access to the

HDD.

Virtual disk images are treated as a “file” on the hypervisor computer. Thus, the

virtual disk images can be copied or moved freely, just as transferring a file on a

computer. Thus, the user can duplicate the same virtual disk image for the number

of computers the user wants, change a few settings such as host names and network

configurations, then start running multiple machines simultaneously on the same or

different hypervisors.

This handling of virtual disk image files cannot be done on physical hardware. There-

fore, it can be said that treating virtual disk images is an advantage of using virtual-

ization.

3.5.2 Checkpointing Virtual Machines

The next advantage is the checkpointing of virtual machines. Virtual machines can

be paused and resumed when necessary, and their states can be saved or restored when

necessary. This applies to both contents of memory spaces allocated to the virtual

machines, as well as disk drives.

For memory contents of virtual machines, virtual machines can “save” the state, and

“pause” the machine. The pause does not involve any shutdown of applications nor

the OS itself. If for some reasons the hypervisor needs to be shut down or rebooted,

the virtual machines can be paused, the hypervisor restarted, then the execution of

virtual machines resumed.

Virtual disks can also be checkpointed. The simplest way of checkpointing a virtual

disk is to make a copy, as described in Section 3.5.1. In addition to making a full copy,

in many hypervisors, it is possible to take diffs of the virtual disks. For example, a
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“snapshot” of the virtual disk is taken at a certain point. Since the snapshot is being

taken, changes are written to a separate virtual disk space instead of the original disk

space, keeping the original disk unchanged. When the user wants to roll back the

virtual disk image to the time where the snapshot was taken, the differential part of

the virtual disk will be removed. When the differentials were removed, the virtual disk

is restored to the state where the snapshot was taken.

Checkpointing of virtual machine memory spaces and virtual disk images are an-

other benefits of using the virtualization, which is not available on using the physical

hardware.

3.5.3 Live Migration

Another benefit of virtualization is the live migration of virtual machines. With

live migration, the virtual machines can move from one hypervisor to another without

terminating the execution of the virtual machine. This allows virtual machines to be

temporarily executed on another hypervisor while the hypervisor that normally hosts

the virtual machine is undergoing maintenance. Or, when certain virtual machine is

occupying hardware resources available on the hypervisor, either that specific virtual

machine or other virtual machines at idle state may migrate from the hypervisor to

reduce load on the original hypervisor.

The details of migration will be described in the next chapter, but live migration of

virtual machines is one of the major benefits of using virtualization technology.
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Virtual Machines

The concept of migration has been explored at several levels, which have different

units of entities to be migrated over the networks. The most thoroughly researched

is process migration, but migration of objects at different granularity has also been

studied.

Recently, migration at the virtual machine level has become both viable and attrac-

tive. Migration at the virtual machine level is also supported by hardware, as already

discussed in Section 3.3.3.

4.1 Process Migration

Migration of processes has been expected to increase the computer performance when

the process requires more computing resources; migrating processes to the computers

with more resources may improve computer performance. Various process migration

mechanisms were introduced in Nuttall[38].

4.1.1 A Process and Its Resources

A process is an instance of a program, which could be either a user application or

a system-related program, running on an OS environment. Numerous processes are

running on top of an OS, and they share the resources provided by computer hardware

and managed by the OS.

When a process is executed on an OS, a memory space for storing the process image

is allocated. Then, the process runs on the computer, storing necessary data on the

segments of main memory for handling the necessary instructions to a CPU. Many of

the processes use numerous resources other than just the memory space. Some of the

common resources include, for example, file descriptors for reading from and writing to

files, and sockets for communicating other hosts on IP networks. Running programs de-

pend on shareable libraries and other version-dependent features of the OS. They also

depend on namespaces, including file systems and even process IDs. Some processes

storing a great chunk of data may consume a noticeable number of memory pages.
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Nowadays, a process has grown larger in its image size, and relationships between mul-

tiple processes running on either a single or multiple computers have become common.

Thus, it can be said that the management of resources consumed by a process has

become complex in modern OSes.

In addition to the visible resources, processes consume CPU time, which is one of

the major resources on a computer system. Even though multiple processes seem to be

running on a single computer, each core of a CPU can be utilized by only a single process

at a time. The parallel execution of numerous processes have become possible with

time sharing system (TSS), and the processes that are currently not being executed

on the CPU are put into a “sleep” state. This scheduling is another important role

of an OS, and being scheduled on the OS means the process will consume some CPU

resources while it is running.

4.1.2 Ideas of Process Migration

The concept of process migration has been explored since the earlier years of com-

puting age. Process migration is the movement of a running process from a computer

to another, continuing execution of the process and sustaining resources utilized by it.

Process migration becomes useful when resources on a computer that the process

is running have become short, or at a case where the process must be kept running

while the computer being required to restart. If a process could be migrated from a

computer to another, the running process could claim additional resources if necessary

and if available.

4.1.3 openMosix: an Example of a Process Migration Facility

openMosix[39] is an example of process migration implementation. It had been

developed on Linux kernel 2.4, but the project was discontinued on March 1, 2008.

Mosix[40] is still being developed as a commercial product, and it works on Linux

kernel 2.6.

openMosix and Mosix use a patched Linux kernel to allow migration of processes.

Once a host is added to the cluster of computers, the resources available on those

computers are treated as a single resource pool on the cluster. When a process requires

more resources on the computers, the process is migrated automatically to one of the

members of the cluster. The process may migrate back and forth, depending on the

availability of resources.

Sometimes process migration facilities require the program to be modified to support

the migration, such as management of file descriptors. However, openMosix and Mosix

can run the programs without modifying them.
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4.1.4 Issues of Process Migration

Process migration may be useful for purposes such as load balancing. On the other

hand, there are difficulties for sustaining process states, differences of file descriptors

on each hosts, and management of memory space becomes necessary.

The issues of process migration resides on the following elements. A computer that

had process running will be called “source computer”, and the computer that the

process will resume on after process migration will be called “destination computer”

in the list.

• Both source and destination computers need to have a CPU with the

same architecture. A process is built dependent to the CPU architecture of

which the process was designed for. If the CPU architecture changes, the process

cannot be continued after it is migrated.

• Both source and destination computers need to have the same shared

libraries. If a process migrates, there is no guarantee that the elements external

to the process itself would be similar on the destination computer. If the process

was running on the source computer referring to a shared library, the same version

of the same shared library must exist on the destination computer.

• File descriptors must be managed independent of the source computer.

The file descriptor is locally managed on the computer running the processes. If

a process is migrated, the file descriptors may become different on the destination

computer.

• Other entities in the OS must reside as similar to the source computer.

For example, if a process was writing to and reading from a file, the file used

by the process must reside on the destination computer. If the process was

communicating with other processes running on the same computer, those other

processes must also exist on the destination computer. If any of the entities in

the OS change after the process migrated to the destination computer, it is likely

that the process will face problem on the destination computer.

In addition, each process has its own state, and the state must be synchronized

when the process migrates. Process migration is considered as finished when transfer

of states completes from one node to another[41]. Several approaches were considered

in the process migration, but most of the approaches are unused even after years of

research.

Thus, migration of processes require numerous management of their resource utiliza-

tion, and are considered to be obstacles for achieving the process migration to be used

in the real world environment.
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4.2 Live Migration of Virtual Machines

Process migration handles migrating objects in units of “processes”. This may sound

efficient as the memory size of processes is generally limited to the order of several

megabytes to a couple of hundred megabytes, which is a reasonable size to transfer over

networks from one node to another. However, as was described in Section 4.1, resource

management is considered to be a major obstacle in achieving process migrations.

4.2.1 Ideas of Live Migration

Virtual machine migration is the movement of environment in units of “machines”.

Live migration[42] of virtual machines is used for moving a virtual machine running on

a hypervisor to another hosting hypervisor without terminating the virtual machine

execution. In general, to change the hypervisor executing the virtual machine, steps

such as:

• Terminate or pause (hibernate) the virtual machine

• Copy the virtual machine configuration to a new hypervisor

• Copy virtual disk image (or have a network-shared disk)

• Start or resume the virtual machine on the new hypervisor

becomes necessary. Live migration of virtual machines achieves this procedure without

involving termination of the virtual machines.

Live migration of virtual machines is useful when the hypervisor needs to be termi-

nated for hardware maintenance or other reasons, or the hosting hypervisor is short

on resources. In these cases, virtual machines can be migrated to another hypervisor,

and continue to run on the new hypervisor. In this thesis, the hypervisor that has

the original virtual machine is called the “source hypervisor”, and the hypervisor that

accepts the migrated virtual machine is called the “destination hypervisor”.

To migrate a virtual machine from one hypervisor to another, there are several re-

quirements that should be met. One of the requirements is that both source and

destination hypervisors need to have a shared storage space, for example shared over

NFS or iSCSI, unless synchronization of disks is to be done at the time of migration.

Synchronization of disks consumes enormous amounts of bandwidth and time, so gen-

erally hypervisors are configured to access shared disk space. Several research projects

have investigated duplicating the necessary parts of disks first, then continue the rest

after virtual machine is migrated or when that portion of the disk is requested[43].

Live migration of a virtual machine takes several steps to accomplish. First, when

migration is triggered, a “blank” virtual machine with the same configuration as the
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original virtual machine is made on the destination hypervisor. Second, the contents

of the memory space allocated to the migrating virtual machine are copied to the

destination hypervisor. During the synchronization, the virtual machine continues to

run. Therefore, it is possible that the contents of the memory pages will be altered.

When the first pass of the synchronization is done, the virtual machine is paused,

and the memory pages that were modified after the synchronization are copied again.

Finally, when the contents of memory pages are synchronized, the state of virtual

machine execution is moved to the new virtual machine on the destination hypervisor;

the virtual machine on the destination hypervisor is resumed, and the virtual machine

on the source hypervisor is terminated.

Live migration is useful for improving the availability of the virtual machines. Mi-

grating virtual machines to other hypervisors will allow them to run even when the

hypervisor is terminated, by running them on other hypervisors. If the migration

is done live, without terminating virtual machine execution, it becomes possible for

virtual machines to continuously provide their services even at the time of executing

migrations.

4.2.2 Migration Procedure

When live migration of a virtual machine is executed, several steps are taken before

the migration actually takes place. The virtual machine migration is accomplished in

the following steps:

• Create receiver virtual machine: on the destination hypervisor, create a

virtual machine with the same settings as the source hypervisor to accept the

migrating virtual machine.

• Transfer memory contents: transfer memory contents from the source hy-

pervisor to the destination hypervisor to synchronize the memory space of the

virtual machine. At this time, the virtual machine is still running on the source

hypervisor. Applications can still make changes on the memory space allocated

to the virtual machine.

• Synchronize changes made on memory space: if changes are made on

memory space after they were copied for live migration, the changed portion of

the memory space is synchronized again. The synchronization will iterate until

the diffs of memory space on source and destination hypervisors become small

enough. The allowance of diffs are defined by hypervisors.

• Pause virtual machine, and copy remaining memory contents and ma-

chine state information: when memory contents are transferred, the virtual

machine is paused. Then, the remaining memory space is synchronized, and
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Hypervisors start synchronizing memory spaces

allocated to the virtual machine

Synchronize the areas in the memory where contents

have changed since they were synchronized already

Make the final synchronization of memory spaces

Pause the virtual machine running

on the original hypervisor

Resume the virtual machine on the new hypervisor

Hypervisors

Paused on the

original hypervisor

Resumed on the new hypervisor

Virtual Machine

Continue running on the

original hypervisor

Figure 4.1: Migration sequence

hardware state information, for example contents of CPU registers and states of

device I/Os, is transferred to destination hypervisor.

• Resume virtual machine on destination hypervisor: when the state is

transferred to destination hypervisor, execution of virtual machine is resumed.

Once the virtual machine is resumed on the new environment, resources on source

hypervisor can be freed.

Because of this change, memory contents will be synchronized again when it has

been synchronized once. When the differentials of memory spaces between the original

and destination hypervisors become small enough, virtual machine will be paused on

the original hypervisor, make the final synchronization, and resume it on the new

hypervisor. The sequence is shown in Figure 4.1.

The architecture proposed in this thesis utilizes live migration of virtual machines

to improve computer performance. The next chapter, Chapter 5, describes the archi-

tecture and strategies.

4.3 Comparison of Process and Virtual Machine

Migrations

Even though both process and virtual machine migrations are called “migration”,

there are many differences between these two styles of migration, as comparison is

shown in Table 4.1.

One of the major differences is the entity that is being transferred during the mi-

gration procedure. Process migration transfers only the memory image of the running
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Table 4.1: Comparison of process and virtual machine migrations

Migration Entity Process Virtual Machine

Synchronization of memory contents Smaller Larger

File descriptor management Complicated Easier

Network connections continuity More difficult Easier

Thread management Difficult Easy

User environment Each computer Continue

application, while virtual machine migration transfers the memory image of the entire

virtual machine. On the Mosix website, the authors argue that virtual machine migra-

tion is expensive in time and required memory[44]. It is true that on virtual machine

migration, when larger memory space is allocated to the virtual machine, it will take

longer for the live migration to accomplish. In terms of memory synchronization, pro-

cess migration may seem to work better, depending on the workload that cause the

migration.

However, the unit of transfer also affects the types of processes that can be executed

on computers. On virtual machines, any applications can be executed as long as they

are supported by the guest OS; applications can be executed without being modified,

and types of applications being executed are not limited. Shared libraries and other

files, which may be referred by from the process, will also migrate with the virtual

machine. Thus, there is no need to be concerned about whether or not the required

libraries are available on the destination computer.

In contrast, many limitations are placed on process migrations. The examples of

limitations, from Mosix, are shared memory[45] and threaded applications[46]. Using

shared memory on process migration is an obstacle as it becomes difficult to change

contents of memory on one node while running the process on the other node; the same

memory space used on the application-running node may or may not be available on the

other node. When applications become complicated regarding resource management,

process migration may not be as effective as it is expected to be.

As the couplings between entities become common, process migrations become more

and more difficult. Some of these issues are alleviated by choosing to migrate the

entire virtual machine, rather than the process. There is also a weakness on virtual

machine migration, which is the amount of memory space that needs to be transferred

during the migration procedure. However, as networks have evolved and bandwidth

have become broader, the issue of transferring a large size of data have become easier

than the past. Thus, even with this drawback of memory transfer size, it can be said

that the virtual machine migration is easier to manage than the process migration.
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As was explained in Chapter 2, computers today have physical limitations on de-

vice buses, and have boundaries that separate computers from each other. This thesis

proposes a virtualization-based computer to utilize computer resources that are de-

manded by applications running inside of the virtual machines. This chapter describes

the architecture of the system.

5.1 Virtualization-Based Computer Architecture

This thesis introduces a virtual machine architecture with adaptation to resource

requirements. This architecture is expected to take part in an IP bus-based computer

architecture, which was explained in Chapter 2. Since IP networks have less band-

width, and more latency and effects that affect computer performance compared to

peripheral buses, it becomes necessary to reduce the communications between the OS

and hardware. Each computing resource has different requirements on bandwidth and

latency. If the processes which users are running can migrate to resources that meet

their requirements, the performance may be improved.

In this architecture, “computers” are running hypervisors, and “OS”es that users

use as their computing environments are running in forms of virtual machines. Since

each hardware system is different from the others in terms of CPU clocks, cores, cache,

memory space, chipsets, and other resources, some hypervisors are stronger than others

in terms of computing resources. When there are multiple candidates to host a given

virtual machine, the system should automatically select a hypervisor on which to run

the virtual machine.

5.1.1 Migration Based on Resource Utilization

In this architecture, migration of virtual machines is triggered based on the utilization

of computing resources. Different processes have certain behavior patterns, and their

performance is dependent on different resources. For example, video encoding often

requires computational power on CPUs, while parsing and finding the right file among

a large stack of text files requires disk I/Os to accomplish the requested tasks. When

using computers for daily uses, there are certain cases where users may wish to have
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Figure 5.1: An I/O-bound virtual machine migrates as close as possible to the storage

location

access to better computational resources for a certain period of time; if a user can

“borrow” the resources for a certain period of time, that would be sufficient for meeting

the user’s requests.

Thus, when users request certain computing resources, virtual machines migrate

from one hypervisor to another; the requests are determined by monitoring the running

applications on the virtual machine. To illustrate, assume that there are two hardware

systems running cooperating hypervisors, one with better computational power and the

other holding the disk image which the virtual machine is accessing. The user interface

runs on a terminal, such as a laptop, in front of the user, and remains unchanged.

When the user executes a process that performs a lot of disk I/O, the virtual machine

is migrated to a hypervisor closer to the disk that is used by the virtual machine (Figure

5.1). On the other hand, when the virtual machine is running applications that require

more computational power, the virtual machine is migrated to the hypervisor with

better computational power (Figure 5.2). When the virtual machine requires both disk

I/Os and computational powers, the migration is balanced to one of the hypervisors

by observing the trends of resource usage.

In this design, the user interface (a keyboard, a mouse and a display) remains un-

changed. The virtual machine migrates transparently, allowing the user to continuously

use the environment.
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Figure 5.2: A compute-bound virtual machine migrates to a hardware environment

with good CPU power

5.1.2 Benefits of the Architecture

As mentioned in Figures 5.1 and 5.2, sometimes the relationships between hyper-

visors, virtual machines, and available computing resources may not be balanced to

maximize resource utilization. Thus, a method for reducing unnecessary I/Os becomes

necessary, especially when resources are accessed over IP networks that have narrower

bandwidth and higher latency.

This reduction of I/Os has been studied before, in the field of process migration. In-

telligent Disks (IDISKs)[47] aimed to move data-intensive processing closer to the data

themselves. IDISKs are hard disks with embedded processors, RAM space, and Giga-

bit network links, and the links are connected to a switch, allowing full link bandwidth

between disks. The architecture has several benefits, such as off-loading computation

from expensive desktop processors and reducing data movement through the I/O sub-

system. Since the demand against disk storage has increased, the architecture may be

efficient in certain cases.

The ideas of moving computation closer to the necessary computing resources has

been considered for many years, but management of the resources that the processes

use is an obstacle in process migration architecture. Computer architecture based on

virtual machine architecture resolves issues on resource managements. Since live mi-

gration takes place in units of “machines”, issues of managing memory addresses and

file descriptors become unnecessary; virtual machine monitors translate them into the
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real hardware with hardware assistance or by binary translations. Since the achieve-

ment of process migrations were considered difficult for those management reasons, the

architecture should reduce the cost of management and therefore allows architecture

to be more realistic than that of the process migration.

5.1.3 Difficulties in Achieving the System

The architecture provides benefits as described in Section 5.1.2, but there are ad-

ditional issues that need to be resolved for achieving the system. First of all, since

virtual machine migration takes place by monitoring the resource requirements, an ar-

chitecture for monitoring and gathering the statistics, as well as a system for making

migration decisions out of the statistics become necessary.

Next, even if resource usage statistics were gathered from hypervisors and virtual

machines, making decisions of migration is an obstacle in the architecture. Since it is

difficult to determine how long the resource would continuously be used in the future,

the decisions must be made based on multiple parameters and information. If the

process ends while migration is taking place, the migration procedure even becomes an

overhead in the system. Making a best decision from given parameters is difficult, and

thus a method for making decisions is necessary.

The other issue that is considered an obstacle in this architecture is utilization of

remote resources. For example, extending computer resources over IP networks, in

means of running software on remote sites, connecting to peripherals over IP networks,

and exporting works to computers on the Internet, is one of the required features for

computer architecture that is to be developed in the next generations. When using

remote resources, connections to IP networks are necessary, but IP networks have much

narrower bandwidth with higher latency and jitter compared to the computer buses.

If the entire virtual machine migrates to the hypervisor that has necessary resources,

the issues on IP networks become less critical. In detail, a virtual machine migrates to

use the resource on the other hypervisors, and when it is done with using the resource,

migrating back to the original hypervisor. It does require time and network bandwidth

for migrating virtual machines, but the cost of migration is less critical compared to

the bandwidth and latency required on using IP networks as a bus to communicate

with remote resources.

In addition, even though parameters can be collected from hypervisors and virtual

machines, the values that are gathered from the nodes are much more complicated than

just the numbers. For example, even with just the CPUs, they have several parameters

that relate to each other in effect on performance. Those parameters include:

• Clock speed: speed at which processors can handle instructions.
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• Cache size: cache size, and availability of level three cache, may affect CPU

performance.

• Memory access speed: affects performance of applications and OS itself when

a massive access to memory occurs.

• Number of cores and availability of Hyper-Threading: number of cores

which CPU has, and the number of threads supported by CPU.

• Additional instruction sets: instructions that are supported by CPUs for spe-

cific purposes. An example of instructions include Streaming SIMD Extensions

(SSE).

Even if the clock speeds are the same, if the number of cores is different, the performance

may change depending on the level of parallelism achievable for the given workload.

Or, even if the clock speeds are the same, if the instruction sets supported by CPUs

are different, the performances would differ. Even with just the CPU, several variables

must be evaluated for determining the execution of migration.

In this system, virtual machines migrate from a hypervisor to another. The migra-

tion decision is made dynamically based on the resource requirements which the virtual

machines need. Therefore, in addition to hypervisors and virtual machines, a mech-

anism for collecting and managing virtual machine statistics, as well as a mechanism

for making decisions of migration are necessary.

5.2 Dynamic Migration Decisions

A focus of the architecture is to determine migration based on the resource utilization

of hypervisors and virtual machines. Dynamic migration decisions are made based on

available resources and their utilization, as well as estimated duration for accomplishing

the live migration.

5.2.1 Parameters That Should be Considered

Computer workloads are often either CPU-bound or I/O-bound. In past work on load

balancing, indices such as CPU queue length, CPU utilization, normalized response

time, remaining processing time, the sum of processing time by active processes, and

accumulation of processing time were often brought up[48]. However, in addition to

the CPU workloads, it is obvious that memory accesses, disk accesses, and network

performance should be taken into consideration when measuring loads on a computer

system[49].
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In addition to the computing resource utilization, since live migration of a virtual

machine requires time and network bandwidth, and reduces virtual machine perfor-

mance while the live migration takes place, the cost of executing the migration should

be taken into account in this system. Thus, the parameters that are considered to be

necessary for making migration decisions are information such as:

• CPU consumption: the time and clocks occupied by running applications.

• Memory consumption: the amount of memory space occupied by applications,

as well as the speed and amounts of I/O accessing to memory.

• Disk I/Os: the amount of I/Os issued to disks by the OS.

• Network I/Os, bandwidth, and latency: network accesses that virtual ma-

chines use.

• Migration cost: time and bandwidth necessary for performing live migration

of virtual machines.

As was described in Section 5.1.3, to begin the discussion of the architecture, this

thesis focuses primarily on CPU and disk I/O consumptions. However, when con-

sidering the computer resource utilization, the parameters listed above may also be

targeted; taking all the resources above will be an extended work to this thesis.

5.2.2 Migration Cost

The cost of performing live migration can be calculated from the memory size allo-

cated to the virtual machine and available bandwidth. The cost is determined in units

of seconds, which is the duration to accomplish the migration.

Out of the migration procedure steps, the transfer of memory contents from source

hypervisor to destination hypervisor takes up the bulk of the time. Since the memory

space allocated for the virtual machine can be obtained from virtual machine con-

figurations, the time in seconds necessary for transporting memory contents can be

estimated in the following equation:

TM =
MemorySize(MB) × 8

NetworkBandwidth(Mbps)
+ TimeforStateSynchronization(s) (5.1)

Since there will be network activity from other processes and there may be a bot-

tleneck somewhere other than the network itself, there is no guarantee that the full

network bandwidth can be used to transport memory contents.
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5.3 Pre-Experiment

To figure out the consideration points for designing the architecture, pre-experiments

were done.

5.3.1 Encoding Videos While Migrating

The first pre-experiment involves encoding of a ten-minute Digital Video (DV) file

into MPEG video format, using the ffmpeg application. The facilities used in the

experiment are shown in Table 5.1, and the topology is shown in Figure 5.3.

Table 5.1: Pre-experiment facilities

Hypervisor 1 Hypervisor 2 Virtual Machine

CPU

Intel Core i5 Intel Core 2 Duo

1 core assigned660 3.33GHz E8400 3.0GHz

(2 cores, 2 threads) (2 cores)

Memory 4GB DDR3 4GB DDR2 1024MB allocated

Chipset Intel P55 Express Intel Q45 Express Simulated Intel 440FX

Network Realtek
Realtek 8110s -

(NFS) 8168d/8111d

Network
Realtek 8169 Intel PRO/1000 -

(Migration)

OS
Debian GNU/Linux 6.0 Debian GNU/Linux

squeeze x86 64 5.0 lenny i386

The disk image of the virtual machine is stored on a NFS server. The hypervisors

and NFS servers were connected to a switching hub with Gigabit Ethernet connection.

Networks for NFS accesses and migrating were two separate networks.

Figures 5.4 and 5.5 show the performance of ffmpeg video encoding, with migration

from hypervisor 2 to hypervisor 1. The migration was executed while running ffmpeg

encoding. From the figures, it can be inferred that the CPU clock affects the per-

formance of virtual machines, and the change will take effect even though the virtual

machine migrated while executing the application.

The first pre-experiment was drawn to see the effects of CPU changes while running

an application. The next pre-experiment involves disk I/Os.

In the second experiment, a FreeBSD dummynet bridge was installed to limit the

network bandwidth between hypervisor 1 and NFS server. The performance was mea-

sured, without migrating but staying on hypervisor 1, to observe the effects of disk

I/Os on a NFS server on performance.
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Figure 5.3: Video encoding pre-experiment map
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Figure 5.4: Number of frames processed every second on ffmpeg, migrated from a

hypervisor to another

The number of frames encoded, with bandwidth limitation to the NFS server, is

shown in Figures 5.6 and 5.7. It is obvious that disk I/O waits affect the application

performance.

The pre-experiments show that both CPU performance and disk I/O performance

affect application performance, and thus the balance between those values must be

taken into account.
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Figure 5.6: Number of frames processed every second on ffmpeg, with NFS bandwidth

limited to 10-50Mbps

5.3.2 Bandwidth and Migration Time

The other consideration for improving application performance is the time required

for performing live migrations. The live migration is done to improve the performance,

shortening the time period necessary for accomplishing a task. Thus, there must be

a method of estimating the time period required for migrating to ensure that making

the migration will improve performance.

The experiment was done using the same hardware on Table 5.1, except that CPU
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Figure 5.7: Number of frames processed every second on ffmpeg, with NFS bandwidth

limit (by 50Mbps)

clock on hypervisor 1 was limited to 1.6GHz (133MHz base clock multiplied by 12.0). A

FreeBSD dummynet bridge was placed between the hypervisors, to limit the bandwidth

available for making live migration. The hardware specification of the dummynet bridge

is shown in Table 5.2, and the topology is shown in Figure 5.8.

Table 5.2: Dummynet bridge hardware specification

Dummynet Bridge

CPU AMD Phenom II X4 810 2.6GHz

Memory 2GB DDR2

Chipset AMD 780G

Network
Intel 82574L Gigabit Ethernet (PCI-Express)

Intel 82541PI Gigabit Ethernet (PCI)

OS FreeBSD 8.1 i386

The ffmpeg encoding was executed again to observe the relationships between mi-

gration and improving application performances. The results of the experiment are

shown in Table 5.3.

Experiment (1) is simply running ffmpeg video encoding within the virtual machine

without making any live migrations. Experiments (2), (4), and (5) runs the video
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Table 5.3: ffmpeg migration pre-experiment

Migrate at

Band Hypervisor 1 (1.6GHz) Hypervisor 2 (3GHz)

-width ffmpeg Mig to iperf ffmpeg Mig to iperf

(Mbps) (min) 2 (min) (Mbps) (min) 1 (min) (Mbps)

(1) None - 4:55 - - 3:22 - -

(2) 30 sec
1000

3:46 0:35
751

4:37 0:38
667

(3) 60 sec 3:38 0:30 3:38 0:41

(4) 30 sec 200 4:03 1:33 179 4:33 1:55 173

(5) 30 sec 100 5:04 3:25 93.1 3:45 4:43 87

encoding, and start executing live migration manually after 30 seconds of wall-clock

time. Experiment (3) is the same, except that the live migration was executed after

60 seconds. The duration for completing video encoding is shown in column “ffmpeg”,

the duration between executing migration and actual migration occurred is shown in

column “Mig to”, and the result of iperf, network throughput benchmark, is shown

in column “iperf” to indicate the actual network bandwidth available.

In the table, experiment (1) shows that video encoding performance will be affected

by CPU clock speed available on the hypervisor. Next, experiment (2) shows that the

performance will be affected when migration is made to another hypervisor. When the

virtual machine migrated from hypervisor 1 to 2, the performance improved; when the

virtual machine migrated from hypervisor 2 to 1, whose CPU clock is lower than the

original hypervisor, the performance declined.

In experiment (3), performance on hypervisor 2, which performed a migration from a

hypervisor with the faster CPU to the slower, has improved since the virtual machine
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stayed on the faster hypervisor longer than experiment (2). The performance was

expected to decline compared to start migration after 30 seconds on migration from

hypervisor 1 to hypervisor 2, but the performance turned out to be better on this case.
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Figure 5.9: Bandwidth consumed by migration, monitored using ifstat

When a live migration is performed, network bandwidth is consumed as shown in

Figure 5.9. From the data, it can be informed that no more than 300Mbps of band-

width was consumed for performing migration. Thus, in experiments (4) and (5),

network bandwidth available for performing live migration was limited to 200Mbps

and 100Mbps.

When network bandwidth was limited to 200Mbps (experiment 4), the migration

time took three times longer than without having network bandwidth limitation. The

experiment has shown that the migration is effective even when network bandwidth is

limited to 200Mbps, but the performance improvement compared to without perform-

ing migrations has declined compared to without having limits by approximately 7%.

This is the case where migration was still effective even when the network bandwidth

is limited.

On the other hand, when the network bandwidth was limited to 100Mbps in ex-

periment (5), the performance did not improve. Especially when the test was run on

hypervisor 2 for migrating to hypervisor 1, the video encoding had ended before the

live migration has completed. This is the case where migration has become a waste:

the synchronization of memory contents wasn’t necessary, and the performance may

have been affected while performing the migration. This particular virtual machine

had 1024MB of memory space allocated, and average of approximately 75.50Mbps of

network bandwidth was consumed during migration. If Equation 5.1 is appropriately

stated, simply copying the memory contents would take approximately 108 seconds,

shown in Equation 5.2.

TM =
1024(MB) × 8

75.50(Mbps)
≈ 108(seconds) (5.2)
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However, migration took 283 seconds until it completes. The test was running a

video encoding application, which may have changed memory contents while they were

being synchronized. Even during the migration process, applications can make changes

on memory spaces regardless of whether the space has already been synchronized or

not; the change will be synchronized again when it has been synchronized once.

By default, KVM continues to synchronize memory contents until the duration be-

tween pause and resume of virtual machine for performing actual migration falls less

than 30 milliseconds. We can infer that since synchronization was too slow to complete,

a greater portion of memory contents has been modified since the first synchronization.

Because the final stage of migration will not take place until memory changes are set-

tled, the synchronization has iterated multiple times, not allowing the final migration

to complete. This phenomena did not appear when the same test was conducted with

no limitation on migration network bandwidth. From this experiment, it can be said

that network bandwidth available for migrating virtual machines will affect migration

duration and effectiveness of the migration.

This pre-experiment has shown that live migration will not always improve the per-

formance of the virtual machine. The duration of the migration, which is to be es-

timated from available network bandwidth and allocated memory space, is possible.

However, additional overhead of synchronizing modified memory space must be taken

into account, and this duration may not be easily estimated without knowing the

memory space being modified by applications running inside the virtual machine.

5.4 System Architecture

From the requirements and pre-experiments described in the prior sections, a system

architecture for making dynamic migration decisions is designed.

5.4.1 Components

To collect the information described in Section 5.2, a management system is neces-

sary. The management system could be organized in peer-to-peer architecture, or a

management server may exist to gather all information and make migration decisions.

In this architecture, a virtual machine is “homed” to a specific hypervisor. A virtual

machine is an environment which the users use as a daily-use environment. Since each

user “owns” a virtual machine, the hypervisor that is closest to the user would be a

home hypervisor; virtual machines migrates to other hypervisor when necessary, but

would come back to the home hypervisor at idle status.

Therefore, in this system, a client-server architecture is used to manage hypervi-

sors and virtual machines. The home hypervisor also runs Migration Management
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Server, which collects statistics information from virtual machines. Each hypervi-

sor and virtual machine runs a Statistics Client, which reports resource utilization

statistics to Migration Management Server. When the Statistics Client is started on

a hypervisor, the hypervisor is registered to Migration Management Server; when it is

started on a virtual machine, the virtual machine is registered to Migration Manage-

ment Server with information of which hypervisor the virtual machine is hosted on.

Thus, it can be said that management server becomes a central host that gathers all

information from both hypervisors and virtual machines (Figure 5.10).

Hypervisor 1 (Home Hypervisor) Hypervisor 2

Migration Management Server

Statistics Client

Virtual Machine

Statistics Client

Statistics Client
Report Statistics

Virtual Machine

Statistics Client

Virtual Machine

Statistics Client
Migrate Based
on Resource
Utilization

Figure 5.10: Migration Management Server and Statistics Client

The Migration Management Server is the entity that is responsible for making mi-

gration decisions. Migration Management Server uses collected information, and if

migrating the virtual machine to other available hypervisors is expected to improve

the performance, migration instruction is issued to the hypervisor that currently hosts

the virtual machine.

5.4.2 Features Necessary on the System

To achieve the system designed in the previous sections, the following mechanisms

are necessary:

• Managing list of hypervisors and virtual machines: Migration Manage-

ment Server must keep track of the hypervisors and virtual machines that the

servers can obtain information from.

• Collecting statistics in hypervisors and virtual machines: to report statis-

tics information to a management server, hypervisors and virtual machines must

collect their statistics information in the way which management servers can

interpret.
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• Reporting statistics to management server: then, hypervisors and virtual

machines report their statistics to management servers. Management servers

need to receive those information and store them for a certain period of time.

• Making migration decisions at management server: in accordance with

collected information, the management server determines the migration decisions.

If a migration should take place, the management server tells the source hypervi-

sor, which hosts the virtual machine, to issue migration request to the destination

hypervisor. The management server should also tell the destination hypervisor

that the virtual machine will be migrated from the other hypervisors.

• Negotiation between hypervisors: when running virtual machines, hypervi-

sors need to negotiate the parameters that are used for executing virtual machine

for receiving the migrating virtual machine. Then, migration should be executed

when both hypervisors are ready for migration.

• Updating information on management server: management server holds

information of which hypervisor runs the virtual machine at that time. This

information needs to be updated on the management server.

The implementation must have the features listed above for allowing virtual machines

to migrate in accordance with available computing resources.
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The implementation of the system is described in this chapter. The system obtains

performance statistics from hypervisors and virtual machines to determine whether or

not to migrate the virtual machine.

6.1 Entities

The system described in the thesis is designed around Linux systems. The basic

principles of the system architecture could be applied to other virtual machine monitor

systems, but this implementation is specifically designed to run on QEMU-KVM virtual

machine monitors. This implementation uses QEMU-KVM version 0.12.5 on Linux

Kernel 2.6.32.5 (x86 64 64-bit architecture). QEMU-KVM already has live migration

feature, thus the system for determining and executing the live migration is designed

in the implementation.

As was explained in Section 5.4.1, the system is composed of the following entities:

• Migration Management Server: collects information from hypervisor and

virtual machine clients. The Management Server can be running on any node,

and it is also responsible for making migration decisions.

• Statistics Client: runs on each hypervisor and virtual machine. It collects

information of hypervisors and virtual machines, and reports resource utilization

status to Management Server.

The entities communicate with each other using a client-server model using TCP con-

nections.

6.2 Implementation Design

In this implementation design, the Management Server is responsible for gathering

all statistics, making migration decisions, and managing the migration status of vir-

tual machines. This could be implemented in other ways, such as having each virtual

machine and hypervisor report resource usage statistics individually to the other hyper-

visors, but for simplicity of implementation, this particular implementation is centrally

managed on the Management Server.
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6.2.1 Migration Management Server

Migration Management Server receives information from both hypervisor and vir-

tual machine statistics clients, and organizes information to make migration decisions.

The two primary types of information handled on Migration Management Server are

statistics from each client, and statuses related to migration.

In the system, clients send statistics reports to Migration Management Server, and

statistics from all clients are stored in Migration Management Server. Migration Man-

agement Server checks statistics of clients when statistics were updated, and when

Migration Management Server discovers the necessity of migrating a virtual machine,

the statuses of each virtual machine, destination and source hypervisors are marked as

“should be migrating”.

After each time Hypervisor Statistics Clients send statistics reports to Migration

Management Server, the clients also poll for the statuses stored on Migration Man-

agement Server. When clients are marked to get involved in migrations, clients send

information related to migrations, which will be described in Section 6.2.2. The Mi-

gration Management Server is responsible for managing the progress of live migration

procedures. Then, the statuses of those clients are reset on the server, which continues

to monitor clients for their resource utilization statistics.

Sequence of the Migration Management Server is shown in Figure 6.1.

6.2.2 Hypervisor and Virtual Machine Statistics Client

Statistics Clients are executed on hypervisor and virtual machine hosts. They collect

information from the hosts and report the statistics to the Migration Management

Server. The information collected from the host is as follows:

• CPU: clock speed in MHz, number of cores, model name, model number, cache

size, and utilization rate

• Memory: free and total real memory space, free and total swap space, memory

access speed

• Disk: CPU I/O wait at the moment, and benchmark score

• Network: traffic sent and received, and bandwidth available

• Processes: list of processes running on the host, and their loads against system

CPU I/O wait is the time of which CPU has been idle for waiting the I/O to complete.

This value can be used for determining if I/O has been a bottleneck on the system or

not. The information is taken from the kernel statistics and from making benchmarks.
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Figure 6.1: Function sequence of Migration Management Server program

Access speed to memory and disk, and network bandwidth are not available as

kernel parameters. Thus, when the Statistics Client starts on a hypervisor, benchmark

tests are executed for making comparison of hypervisor capabilities. For measuring

memory access speed, memcpy() is used to measure a rough performance for copying

memory space; for measuring disk access speed, iozone benchmark is executed to

the disk where virtual disk image for the virtual machine resides. And, for measuring

network bandwidth, iperf is executed to another hypervisor within the same migration

network, and to the NFS server. The benchmarks are only rough measurements of

resources, but they are usable for obtaining base scores for making comparisons.

The collected information can be classified into dynamic statistics, which change

among the hosts running different processes, and static statistics that will not change

while the host is running. Classification of static and dynamic statistics are shown in

Table 6.1. In the table, measured scores are written in italic. These scores may change

over time as they are affected by other processes running on the same machine. How-

ever, to make a baseline for comparing of hypervisors, these scores will be considered

as static in this implementation.

The functions of Statistics Clients are shown in Figure 6.2.
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Table 6.1: Classification of statistics into static and dynamic

CPU Memory Disk Network Processes

Static

Clock Speed, Total Space, Base

Bandwidth -Model Info., Access Benchmark

Cache Size Speed Score

Dynamic

Total Total CPU I/O Traffic Process Name,

Utilization Utilization Wait Sent and CPU/Memory

in Percent in Percent Percentage Received Utilization

per Process

Client Started

Send Ini!alize Request to a Migra!on 

Management Server

Wait for Acknowledgment

Collect Sta!s!cs of the Host

Send Sta!s!cs to Migra!on 

Management Server

Wait for Acknowledgment

Is this a Hypervisor?

Or a VM?

Send Physical Hardware Informa!on

Hypervisor

Send Hypervisor Name and VM Parameters

VM

Check Migra!on Status with 

Migra!on Management Server

Figure 6.2: Function sequence of Statistics Client program

6.3 Determining Virtual Machine State

Dynamic migration of the virtual machines is determined from the parameters col-

lected from hypervisors and virtual machines. Migration decisions are made by the

Migration Management Server as it is the only entity in the design that has informa-

tion about all hypervisors and virtual machines.
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6.3.1 Determining Load on Virtual Machine

Whether or not to migrate, and where, is determined in accordance with the resource

requirements of the virtual machine. As a simple indicator of the virtual machine state,

load average can be used.

Load average indicates the average number of processes that are waiting for a CPU

to become available or are waiting on I/O. When this value is high, the system is

loaded. The load average is calculated by the kernel, and on Linux systems, it can be

obtained from /proc/loadavg file easily. An output of load average will look like: 0.04

0.22 0.23 1/331 13990. The kernel reports five numbers: the number of jobs in the

run queue or waiting for disk I/O, averaged over 1, 5, and 15 minutes, the number of

processes or threads in kernel scheduling entities currently executing and existing on

the system, and the process ID of the process that was most recently executed on the

system.

According to the author[50], on a CPU with single core, system administrators should

be concerned with the resource consumption if the load average has been greater than

two for more than fifteen minutes. The article also suggests that in a multi-core or a

multi-CPU system, dividing the load average by number of CPUs will give an indication

of whether the system is loaded or not.

Hypervisor and Virtual Machine Statistics Clients report the load average and num-

ber of CPU cores on the system. Thus, the load average can be used to determine

whether the system is loaded for some reason or not.

6.3.2 Determining Whether a Virtual Machine is CPU or I/O-

Bound

If the virtual machine is loaded, migrating it to a hypervisor with better resource

capability may improve the application and virtual machine performance. To deter-

mine the most suitable hypervisor for executing the virtual machine, virtual machine

statistics are analyzed to determine which resource is demanded by the virtual machine.

The primary distinction of the virtual machine state is whether the running processes

are CPU-bound or I/O-bound. The resource which the process relies on is determined

by CPU utilization rate and CPU I/O wait time. CPU utilization rate indicates the

amount of CPU processing time occupied by running processes or the OS itself, and

I/O wait time indicates the percentage of CPU being idle due to waiting for I/O to

complete before the next computation can be continued. The CPU utilization and I/O

wait time can be obtained from the sar command (Figure 6.3).

Since the CPU utilization rate and I/O wait time share the same total of 100% CPU

time, comparing these two parameters will give a rough view of whether the virtual

machine is waiting for computation to complete or for I/O to be finished, or is idle. If
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Figure 6.3: Example output of sar command (at I/O wait state)

either the CPU utilization or I/O wait time rate is excessively high, the determination

will be simple: if CPU utilization rate is high, the virtual machine is running CPU-

bound jobs; if I/O wait time rate is high, the virtual machine is running I/O-bound

jobs. Where it becomes difficult is when the CPU utilization rate and I/O wait time

rate are similar. There must be a way to distinguish whether the migration will improve

the total performance or not.

In this thesis, the change in resource capability is calculated among available hyper-

visors. If the change in resource capability is greater than the differences between CPU

utilization rate and I/O wait rate, the migration may improve performance. Other-

wise, the migration may not bring enough improvement on performance, resulting the

migration to become waste; there may even be a risk of performance declining after

the migration.

6.3.3 Additional Considerations for Determining Virtual Ma-

chine State

The CPU utilization rate and I/O wait rate give a rough idea of whether the virtual

machine is CPU-bound or I/O-bound. However, there are other additional considera-

tions that could be taken into account to improve the accuracy of migration execution.

Some such additional parameters are memory utilization rate and network traffic.

One of the additional considerations is the amount of memory space occupied within

the virtual machine. Sometimes virtual machines are not allocated all of the memory

space available at a particular hypervisor. When the free memory space becomes

short, a virtual machine may start paging the memory space to swap space on the

disk, causing a lot of disk I/O to the virtual disk image. Thus, even if the virtual

machine is at the state where it is CPU-bound, if memory consumption seems high,

I/O should be considered, even more than CPU power; when swap events occur, CPU

has to wait for disk I/O, reducing the total computational power.

The other consideration is network traffic. If the virtual machine is consuming
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network bandwidth, the virtual machine may be migrated to a hypervisor with better

network bandwidth.

6.4 Determining Live Migration

From the parameters described in the previous sections, conditions for executing live

migration were defined. In this thesis, when the virtual machine falls into all of the

following conditions, the live migration is triggered:

1. Load average is increasing, and the value of load average is above the

number of CPU cores assigned to the virtual machine. As described in

Section 6.3.1, load average indicates whether or not the computer is loaded, and

the computer is considered to be loaded when the value of load average is above

the number of CPU cores. However, because load average could be above the

number of CPU cores right after a heavy workload ended and before the computer

gets settled, the implementation should check the trend to see whether the load

average is decreasing or increasing.

2. For duration of 20 seconds or longer, either a single process utilizes

70% or more of the CPU, or CPU I/O wait of the entire OS is 10%

or above. These parameters are used for determining if the virtual machine is

in a CPU-bound, I/O-bound, or idle state. The load average gives a rough idea

of whether the virtual machine is loaded or not, but the reason for the load may

not be obtained from the value of load average. These parameters are used for

determining the real condition of the virtual machine.

3. The resource should be utilized longer than the expected migration

completion time. Expected migration completion time is calculated by adding

twice the base migration time for synchronizing the whole memory space and the

time for synchronizing memory space allocated to the active processes. The base

migration time was doubled to consider the case where the whole memory space

had to be iterated; this may not be enough if massive accesses to memory space

were made, but is used for weighing to ignore short-term workloads.

The values were picked informally by observing trends while testing the implemen-

tation. When the resource is utilized at the threshold value or greater for threshold

duration, the resource is considered as utilized.

Since a CPU assigned to a virtual machine is a thread on the hypervisor, sometimes

the values may be reported smaller than the actual utilization. Thus, to avoid errors,

the implementation was designed to ignore three consecutive errors. That is, if the value

is decreasing for four entries in the dataset, the load is considered to be decreasing; if
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the value has been increasing, and the value decreased for past two entries and then

increase again, the load is still considered to be increasing.

6.5 Hypervisor Selection

Once the virtual machine state is determined, the most suitable hypervisor for ac-

complishing the job is selected from the available hypervisors. From the observations

made in Sections 6.3.2 and 6.3.3, the criteria for selecting a hypervisor are determined.

Upon selecting a suitable hypervisor, the hypervisors are scored on their capabilities

and availabilities. Capabilities are “static” information on Table 6.1, and availabilities

are calculated from dynamic statistics. Hypervisor selection is based on the calculated

scores.

6.5.1 Scoring CPU Performance

Our algorithm for scoring the raw hardware performance of a CPU has several pa-

rameters including: clock speed, number of cores, cache size, or additional instructions

available on CPU, such as MMX, Streaming SIMD Extensions (SSE), Extended Page

Table (EPT), and so on. In addition to these static parameters, CPU utilization must

also be taken into account.

Out of the parameters, the number of cores can be evaluated easily as assignment

of virtual CPUs to virtual machines on QEMU-KVM is done in units of threads; if

one virtual CPU is assigned to a virtual machine, it will appear as a single-threaded

process on the hypervisor[51]. Thus, it can be estimated that if any one of the cores on

the hypervisor is close to the idle state, that is enough to execute the virtual machine

on top of the hypervisor. The same estimation can be made even when multiple virtual

CPUs are assigned to a single virtual machine; if the number of CPU cores available

on a candidate hypervisor is greater or equal to the number of virtual CPUs assigned

to the virtual machine, the candidate should be able to execute the virtual machine.

The other CPU-related parameter that can be evaluated easier is the instructions on

the real CPU. Even if the physical CPU has newer instructions, the virtual machines

don’t get to see the additional instructions. This is because when starting QEMU-

KVM, CPU type is specified as one of the following:

• QEMU-KVM Specific: qemu32, qemu64, kvm64

• Intel CPU: pentium, pentium2, pentium3, coreduo, core2duo, (Atom) n270

• AMD CPU: athlon, phenom
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In order to execute QEMU-KVM with hardware-assisted virtualization, Intel VT or

AMD-V is required. Out of the processors listed above, Intel VT is supported on Core

Duo and Core 2 Duo CPUs only, and AMD-V is supported on relatively newer Athlon

and Phenom CPUs. Since these CPUs are the same or newer than the CPUs available

in the selection, it can be assumed that the instructions supported on QEMU-KVM are

also supported on the hypervisor. Thus, even though the system collects CPU flags,

they can be taken out from consideration at this time; this consideration may become

necessary in the future, but this thesis will not take the instruction sets into account.

The remaining CPU parameters are: clock speed, cache size, and utilization rate.

Clock speed obviously affects the computation speed when the process is CPU-bound.

Cache size may also improve performance when it increases, but a web article[52]

indicates that when cache size changed from 1MB to 4MB, the performance increment

was approximately one-level of CPU clock increasement on video encoding and file

compression while the performance did not improve on the CPU-intensive benchmark

applications. From the article, it can be inferred that having more CPU cache will

improve the performance, but is not as important as clock speed.

6.5.2 Selecting a Hypervisor

With the variables collected from hypervisors and the virtual machine, a suitable hy-

pervisor is selected. If either CPU or I/O consumption is dramatically higher than the

other, the hypervisor with the highest score will be selected. The scores are calculated

in the following manner:

• CPU: clock speed multiplied by (1 - CPU utilization rate)

• I/O: result of the disk benchmark executed at the initialization

The scores are measured under a unified method, which is obtained by calculation

for CPU and benchmark for I/O. The other variables, such as the current load on the

hypervisors, memory access speed, and network bandwidth, are used if the scores above

cannot select a single hypervisor that is appropriate for executing the virtual machine.

6.5.3 Estimating Migration Time

If a hypervisor is selected, and if that selection is different from the hypervisor that

currently executes the virtual machine, migration may seem to be effective for improv-

ing the performance. However, one other step is added for determining migration,

which is to estimate the migration duration. As observed in Section 5.3.2, if migration

duration is too long, the migration may not complete before the computation ends in

the virtual machine.
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The base migration time can be estimated by Equation 6.1, which was introduced

in Section 5.2.2.

TM =
MemorySize(MB) × 8

NetworkBandwidth(Mbps)
+ TimeforStateSynchronization(s) (6.1)

Out of the variables, memory size can be obtained from the virtual machine pa-

rameter, and network bandwidth was calculated as a benchmark at the startup. The

fraction portion of the equation can be calculated, but the actual time for synchro-

nizing the modified portion of memory space can only be estimated from the memory

space consumed by the process in the virtual machine. Equation 6.2 will be used to

estimate the time for additional synchronization, assuming that the all memory spaces

used by processes in the virtual machine get modified while making the first round of

synchronization.

TS =
MemorySize(MB) × 8 × MemorySpaceOccupied(%)

NetworkBandwidth(Mbps)
(6.2)

However, even with the Equation 6.2, the time for accomplishing the state synchro-

nization may not be estimated as the memory space will be continuously changed if the

processes are writing to memory while the synchronization is running. As described in

Section 4.2.2, the synchronization is iterated until the diffs of memory space on source

and destination hypervisors become small enough. By default, QEMU-KVM uses 30

milliseconds as the allowance to pause the virtual machine execution while executing

migration, which is the sum of: pausing the virtual machine, synchronizing the last

portion of memory space, transferring CPU and I/O states, and resuming the virtual

machine on the new hypervisor.

This additional synchronization is not always easy to estimate as the number of

iterations are not predictable at the state where the processes are running. Thus, this

additional synchronization will be used with a parameter rather than making a simple

calculation, which will be configured in the system with several different values.

From the estimation and the parameter, the migration duration is predicted. If the

migration seems to end in a reasonable duration, which is another threshold parameter,

the migration will be executed.

6.6 Executing Migration

Even though the Statistics Clients are named “Statistics”, they will also be responsi-

ble for making actual live migrations. As mentioned in Section 6.2.1, Statistics Clients

poll the Migration Management Server for the necessity of migration. When migra-

tion is initiated, first the source hypervisor sends parameter information for executing
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Hypervisor 2
(Statistics Client 2)

Hypervisor 1
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Figure 6.4: Migration procedure on the system

an equivalent virtual machine to the Migration Management Server; the parameters

are passed as arguments to QEMU-KVM for specifying memory space allocated for

the virtual machine, disk drive information, network and other peripheral information,

etc. Until the parameter information becomes available on the Migration Management

Server, the destination hypervisor will wait, and continue to update host statistics and

poll for status updates (migration sequence shown in Figure 6.4; status update is shown

in Figure 6.2).

Then, when the parameter information becomes available on the server, the destina-

tion hypervisor receives the parameters, and creates a receiver virtual machine. Once

the receiver virtual machine becomes available, the destination hypervisor reports to

Migration Management Server that it is ready to accept the migration. When the
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source hypervisor polls the server in the following sequence, the source hypervisor will

be notified that migration is ready, and the migration is executed.
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To evaluate the effects of migration determination and appropriateness of hypervisor

selections, several tests were conducted. The tests incorporated several applications

with several different sets of thresholds and conditions, which are used for determining

a suitable condition for executing live migrations.

7.1 Scenario and the Goal

As explained in Section 5.1.1, the purpose of proposing the architecture is to select

a hypervisor that fulfills the resource needs for virtual machines running on the hy-

pervisors. Numerous applications are running on a computer system utilizing various

resources on it, but the computations can be roughly categorized into CPU-bound or

I/O-bound. The goal is to move computations closer to data when I/O activities oc-

cupy a large portion of CPU time, and to move data closer to CPU when computation

occupy a large portion of CPU time. By achieving this movement, the ultimate goal

of executing the migration is to shorten the duration necessary for accomplishing the

running processes.

7.1.1 Evaluation Scenario

This system may become useful in cases where more computational power becomes

necessary. For instance, assume that a user is running a virtual machine on his or her

laptop computer. When the user starts a CPU-bound application on the laptop, the

virtual machine migrates to a hypervisor with higher-performance CPU. And, when

the user is leaving and needs to take the laptop with him or her, the virtual machine

has to be brought back to the source hypervisor in order for the user to carry it around

again.

In this scenario, the laptop executes the source hypervisor. The laptop can be carried

around, and a user may use the laptop outside of his or her home or office. Thus, the

laptop must contain both user data and the OS environment; otherwise, the laptop

won’t be usable if access to either data or OS environment is not available. To be

able to run the virtual machines without an Internet connection, the disk image of

the virtual machine must reside on the laptop’s hard drive. When the user arrives
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at his or her home or office, where a hypervisor with better computational power can

be accessed over a network connection, the virtual machine may migrate to another

hypervisor. The hypervisor will be chosen because it has a faster CPU or more memory,

but because the user’s data remains on the laptop, disk access is done over the network,

probably lowering disk I/O performance.

7.1.2 Reasons Not to Make Immediate Migration

It may seem that when a computer with better computational power is available,

immediately executing migration would improve computation speed. However, there

are several reasons for not immediately migrating:

• Migration may not be necessary depending on the computation dura-

tion: Migration takes from a few seconds up to a couple of minutes until the

whole procedure completes. Even though the virtual machine continues to run

during the migration procedures, there will be a massive access to allocated mem-

ory space, and produces a massive traffic on network for memory synchronization.

Thus, there will be side-effects on, at least, memory and network accesses. If the

computation does not require a fair amount of resources, the migration could

even become a waste, or net loss of time and the virtual machine performance.

• Migration may result in reduction of performance if resource require-

ments weren’t selected appropriately: Some computational loads spend

more time on I/O wait than actual computation. In that case, reducing I/O wait

time would improve performance.

• In this scenario, laptops may be carried around: If the virtual machine is

hosted on the hypervisors in a data center, the hypervisors are always connected

to networks, and the virtual machine can freely migrate around. However, in this

scenario, the laptop, which is the hypervisor that carries a virtual disk image,

may be disconnected from the network, either manually or accidentally. Thus,

when migration to other hypervisors is not necessary, it would be better to keep

the virtual machine on the source laptop to reduce the accidental termination

of virtual machine or the burden of bringing the virtual machine back before

removing the laptop from the hypervisor network.

Migration needs to be determined by examining the resource utilization and avail-

abilities. This scenario is used to evaluate the developed system.

61



7. Evaluation

Table 7.1: Computers used for evaluation

Laptop Hypervisor Desktop Hypervisor 1 Virtual Machine

CPU Intel Core 2 Duo Intel Core i5 QEMU-KVM

Model T7200 2.0GHz 660 3.33GHz Virtual CPU

CPU Cores 2 cores 2 cores, 2 threads 1 core assigned

Chipset
Mobile Intel

Intel P55 Express
Intel 440FX

945GM Express Emulated

Memory 3GB DDR2 4GB DDR3 1GB assigned

HDD
HTS723212L9A360 HDT725032VLA360 RAW Format

7200rpm SATA-II 7200rpm SATA-II QEMU Disk Image

Network
Intel 82573L Marvell 88E8053 Bridged

Onboard Gigabit PCI-Express Gigabit Interface

OS Debian GNU/Linux 6.0 squeeze x86 64

Hypervisor QEMU-KVM 0.12.5 (from APT Package) -

7.2 Evaluation Environment

Having the scenario and with the goal in mind, the evaluation environment and test

sets were selected.

7.2.1 Evaluation Hardware and Software

In the evaluation, a laptop hypervisor and a desktop hypervisor are used to run a

single virtual machine. The hardware used for the evaluation is listed in Table 7.1. As

it can be informed from the table, laptop hypervisor has relatively limited hardware

resources than the desktop hypervisor. The table indicates that this desktop hypervisor

is number “1”; desktop hypervisor 2 will appear later in this chapter.

Both hypervisors run on CPUs having Intel VT-x virtualization support. The desk-

top hypervisor also has Intel VT-d I/O virtualization support, while the laptop hy-

pervisor doesn’t. The desktop CPU has Intel SpeedStep technology, which can change

the CPU clock dynamically according to the load on the host. However, it is disabled

as CPU clocks are reported lower when the machine is at idle state, which leads to an

error when selecting a hypervisor based on CPU clocks.

The relationships between entities are shown in Figure 7.1. Migration Management

Server is executed on the laptop, which will be the “home hypervisor” for the virtual

machine. Both the laptop and desktop hypervisors will be running Statistics Clients,

and so as in the virtual machine.
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Figure 7.1: Relationships between laptop and desktop hypervisors

7.2.2 Test Set and Baseline Performance

To test the effectiveness of the system, several test sets were conducted. Some of the

tests involve CPU-intense computations while the others involve more disk I/Os. For

disk I/Os, there are tests with reading and writing relatively small files continuously,

and reading and writing a single large file. Some of the tests involve both CPU and

I/O-intense operations, which needs to be balanced out upon determining load and

selecting a hypervisor by the system.

The test sets used for measuring performance on the laptop hypervisor and the

desktop hypervisor are as follows:

• Video encoding: This test involves encoding of a video file using ffmpeg ap-

plication. A five-minute DV format video created from the kino video editing

application was converted to MPEG video. Its file size was 1,080,288,000 bytes

(approximately 1.1GB). The encoder reads several frames of video and audio

from the source file, encodes it, and writes out to the disk. Thus, a greater com-

putation with some non-continuous disk I/Os are expected from the test. Later,

a ten-minute video is also added for extending the test duration.

• Copying a single large file: This test involves duplication of a single large

file on the same disk. The file used was a DVD ISO image for Fedora 14 Linux

distribution, Fedora-14-x86 64-DVD.iso with file size of 3,520,802,816 bytes

(approximately 3.3GB). This is a simple copy of a file within the same virtual

disk space. Thus, more of the disk I/O is expected than the CPU computation

power.

• Copying smaller files continuously: This test involves duplication of multiple

files sequentially. The DVD ISO image for Fedora 14 Linux distribution, which

resides on the same virtual disk as the copy destination, is mounted with -o

loop option. Then, the files under the mounted directory were copied to another
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¶ ³
Command being timed: "ffmpeg -i testvideo-5min.dv -v 4 -b 4096k -f

mpegvideo /tmp/testvideo-20110111001558.mpg"

User time (seconds): 49.07

System time (seconds): 2.51

Percent of CPU this job got: 86%

Elapsed (wall clock) time (h:mm:ss or m:ss): 0:59.76

Average shared text size (kbytes): 0

Average unshared data size (kbytes): 0

Average stack size (kbytes): 0

Average total size (kbytes): 0

Maximum resident set size (kbytes): 43456

Average resident set size (kbytes): 0

Major (requiring I/O) page faults: 35

Minor (reclaiming a frame) page faults: 4636

Voluntary context switches: 292

Involuntary context switches: 1343

Swaps: 0

File system inputs: 2113712

File system outputs: 306304

Socket messages sent: 0

Socket messages received: 0

Signals delivered: 0

Page size (bytes): 4096

Exit status: 0µ ´
Figure 7.2: Sample output of time command

directory with -rp options, which recursively copies files under the same directory

tree while preserving file information. This test also involves disk I/Os, and it is

expected to produce more CPU I/O wait time as the numerous files are copied

sequentially from one place to another within the same virtual disk.

The performance was measured by the wall-clock duration for achieving the given

task. The duration was measured using the time command (Figure 7.2).

To have a rough idea of how the test sets were performed on the virtual machine,

the test sets were first tested on the virtual machine without involving live migration.

The same test was conducted three times to avoid errors. The results are shown in

Table 7.2.

Desktop hypervisor performed better on CPU-bound video encoding, even if all ac-
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Table 7.2: Output of time command without migration

Statistics
Desktop (NFS Disk) Laptop (Local Disk)

1 2 3 1 2 3

Encoding a Five-Minute Video

User time 49.07 46.51 45.63 96.95 174.81 122.43

System time 2.51 1.95 1.83 4.95 7.28 5.92

% of CPU used by this job 86 87 94 96 98 97

Time (seconds) 59.76 55.24 50.49 105.67 185 131.85

Copying a 3.3GB ISO File

User time 0.06 0.03 0.06 0.11 0.14 0.11

System time 7.90 7.80 7.82 22.33 19.63 19.05

% of CPU used by this job 3 3 3 10 11 10

Time (seconds) 208.40 209.53 215.92 206.32 237.99 234.78

Copying Contents of a ISO File

User time 0.06 0.04 0.09 0.22 0.18 0.22

System time 7.66 7.56 7.56 21.62 21.68 21.68

% of CPU used by this job 3 3 3 12 12 12

Time (seconds) 222.28 223.69 221.45 181.71 179.55 180.87

cesses to the virtual disk were made through NFS protocol. The desktop hypervisor

had 3.33GHz CPU while the laptop hypervisor had only 2.00GHz. Although the num-

bers are compared among only two hypervisors, and even though the CPU architecture

of two hypervisors are at different CPU generations, the change in CPU clock speed

has increased in the similar ratio to the change duration for encoding videos.

On the other hand, two disk access tests had different results on the desktop hyper-

visor and the laptop hypervisor. The virtual disk image was stored on the laptop’s

local hard disk drive, and desktop hypervisor was accessing the disk image over NFS

connection while the laptop hypervisor was accessing it directly as a file on the local file

system. From the configuration, the laptop hypervisor would seem to perform better

on disk access tests as there is no overhead of transporting disk I/O over IP networks.

However, the test has reported that the sequential access to multiple files performs

better on laptop hypervisor with direct access to the disk file, while the desktop hyper-

visor that accessed the disk image over NFS connection performed better on copying

a large chunk of file.

This data is used as a baseline for making comparison with the initial tests conducted

in the next section, Section 7.3.
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Table 7.3: Initial experiments with laptop and desktop hypervisors

Test Run

Migration Network Duration Performance

Duration Bandwidth of Test Improvement

(sec) (Mbps) (sec) (%)

ffmpeg
1 38.084561 937 109.29 17.11

(5 min)
2 35.312317 938 128.60 2.46

3 38.012777 937 119.31 9.51

Copy ISO 1 84.715026 930 221.90 -5.90

File within 2 83.211531 938 251.77 -20.16

the Disk 3 138.726779 938 256.69 -22.51

Copy 1 107.713945 926 356.38 -60.33

Contents of 2 239.648646 939 281.21 -26.51

ISO File 3 181.278174 939 293.53 -32.05

7.3 Initial Triggered Migration Tests

The test was conducted with the designed system. The migration duration was

also measured during the test using the Wireshark packet capturing utility. It was

executed on the source hypervisor, and when traffic passes through the port specified

for performing migration, the migration is in progress. The conditions for determining

live migration execution were as described in Section 6.4.

Upon running the tests, virtual machines are first started on the laptop hypervisor,

which is resource-poor. That is, for testing video encoding, it is expected to consume

more CPU computational power than the disk I/Os. Thus, the virtual machine is

started on a hypervisor with the weaker CPU (laptop hypervisor in this scenario), and

later migrates to a hypervisor with a better CPU, even if that ends up in slowing down

the disk I/Os. When running the disk I/O-related tests, the same thing applies; the

virtual machine starts on a hypervisor accessing the virtual disk over NFS connection,

and later migrates to a hypervisor that has the virtual machine’s disk image. This

limitation is set to make sure that the virtual machine will migrate during the test; if

the virtual machine doesn’t migrate, the test is not a success. Test results are shown

in Table 7.3.

The table has four columns of data:

• Migration Duration: duration of migration from the start of memory syn-

chronization to the end of the state transfer in seconds. This was measured by

monitoring the TCP/IP port specified for using with QEMU-KVM live migration.

• Network Bandwidth: network bandwidth between the laptop and desktop hy-

pervisors measured with iperf tool. This is here to show the network bandwidth
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that was available for accessing NFS disks and executing live migrations.

• Duration of Test: shows duration in seconds till the specified application com-

pleted in seconds. The duration was measured using time command. The pur-

pose of executing the live migration is to shorten this duration, compared to

running them without executing live migration (Table 7.2).

• Change on Performance: The duration of test, divided by the median of the

test without live migration (Table 7.2).

The same test was conducted three times.

The table, compared with Table 7.2, gives the following information:

• In this particular case, CPU-bound jobs will perform better when mi-

grated to a hypervisor with better CPU during the execution of the

job. Although migration took twice as long as it was estimated, the overall per-

formance has improved as the video can be encoded faster on the better CPU.

• Performance of the I/O-bound jobs will not improve even when migra-

tion was executed during the execution of the job. In this particular

case, performance has even declined when migration was executed.

When disk I/Os were made on the virtual machines, the migration didn’t fin-

ish for a significant duration of time. Thus, the migration didn’t finish before it

reaches the point where performance will be improved by executing the migration.

There are several possible reasons for the results, as I/O of the virtual machines are

affected by numerous factors. One of the primal possibilities is the network I/O, which

was used for both live migration and NFS access. In an enterprise network, often

these networks are designed separately. However, this experiment scenario involved

a laptop computer, which typically has a single Ethernet interface. Therefore, both

NFS accesses and memory synchronization for live migration were passing through

the same network interface. This may have saturated the network bandwidth, and

additional tests are necessary to determine if the migration for I/O-bound jobs will not

be accomplished or not.

The other possible reason is the side-effects of tracking statistics using external tools.

For example, Wireshark, which was used for monitoring migration port usage, have

consumed a significant quanta of the hypervisor’s memory space. To prove the effects

of the external applications, additional tests must be conducted with fewer external

applications for taking statistics.
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Figure 7.3: Evaluation hardware with separate networks for NFS and live migration

Table 7.4: Additional hypervisor hardware

Desktop Hypervisor 2

CPU Model Intel Core 2 Duo E6750 2.66GHz, 2 cores

Chipset Intel Q45 Express (with Intel VT-x/d support)

Memory 4GB DDR2

HDD HDT725032VLA360 7200rpm SATA-II

Network
Intel 82567LM-3 Onboard Gigabit Network Connection (Migration)

Intel 82574L PCI-Express Gigabit Network Connection (NFS)

OS Debian GNU/Linux 6.0 squeeze x86 64

Hypervisor QEMU-KVM 0.12.5 (from APT Package)

7.4 Testing with Separate Networks for NFS and

Migration

Section 7.3 gave a basis for discussing execution of live migration while the processes

are running inside of the virtual machines. However, because there was only a single

network, the bottleneck was unclear, even though the scenario involved a laptop that

typically has a single network interface.

To more closely observe the performance of I/O-bound processes, another hypervisor

is introduced. The relationship of the entities is shown in Figure 7.3, and the speci-

fications of the added hypervisor hardware is shown in Table 7.4. The newly added

hypervisor is substituting for the laptop hypervisor; this hypervisor will have the vir-

tual disk image for the virtual machine on the local file system, and the other desktop

hypervisor accesses the virtual disk image through NFS connection.

First, similar to the prior test, the performance was measured without involving

live migration to obtain a baseline for making performance comparisons. For the rest
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Table 7.5: Output of time command without migration

Statistics
Desktop 1 (NFS Disk) Desktop 2 (Local Disk)

1 2 3 1 2 3

Encoding a Ten-Minute Video

User time 175.55 176.23 176.42 230.06 230.07 229.99

System time 4.61 4.42 4.33 6.46 5.98 5.92

% of CPU used by this job 95 97 96 98 97 98

Time (seconds) 188.59 186.11 186.86 241.1 241.17 239.75

Copying a 3.3GB ISO File

User time 0.06 0.10 0.04 0.02 0.04 0.04

System time 8.26 8.09 8.12 8.81 7.98 8.14

% of CPU used by this job 5 5 5 7 6 7

Time (seconds) 159.20 162.10 159.91 115.49 127.98 116.88

Copying Contents of a ISO File

User time 8.26 7.97 8.19 9.05 8.78 8.79

System time 0.12 0.08 0.12 0.07 0.05 0.08

% of CPU used by this job 4 4 4 7 7 7

Time (seconds) 168.58 166.56 166.78 120.78 120.72 119.13

of this chapter, the desktop hypervisor that was also used in the initial test will be

referred as “Desktop 1”; the desktop hypervisor added in this section will be referred as

“Desktop 2”. The results of the tests are shown in Table 7.5. The test was conducted

on hypervisor desktop 1 again as the NFS server holding the virtual disk image has

changed since the previous sections.

Then, the test was conducted on the new environment with the same test set and

threshold as the initial test. This time, a ten-minute video file was used for ffmpeg

test because encoding of a five-minute video completed within a minute or so; since

migration while encoding a video file took around 40 seconds in the initial test, an

encoding duration of a minute can be considered as too short.

This time, the migration duration was measured with the ifstat command instead

of the Wireshark program as the Wireshark may cause a large impact on the hypervi-

sor’s memory usage. The ifstat command monitors the bandwidth consumed by each

network interface on the system. Since there is one network dedicated for executing

live migration and another for accessing NFS storage, monitoring the bandwidth con-

sumed by each interface will give an idea of when the NFS traffic or migration traffic

occurred.
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Table 7.6: Encoding ten-minute DV file with ffmpeg with migration between two desk-

top hypervisors

Run

Time Elapsed Since the Beginning (seconds) App. Performance

NFS Migration Duration Improvement

Start End Elapsed Start End Elapsed (sec) (%)

1 106 219 113 67 106 39 216.89 10.42

2 90 220 130 54 90 36 217.98 9.97

3 94 221 127 57 94 37 217.53 10.16

4 96 221 125 58 96 38 214.56 11.38

5 97 221 124 60 97 37 218.06 9.94

6 98 223 125 61 98 37 219.87 9.19

7 93 219 126 53 93 40 216.31 10.66

8 99 220 121 60 99 39 217.32 10.24

9 99 221 122 60 99 39 217.74 10.07

10 99 221 122 61 99 38 216.90 10.42

7.4.1 Video Encoding

First, the test result for video encoding with ffmpeg software is shown in Table 7.6.

This table has a different format compared to Table 7.3 in the initial test. There are

eight values in the table: test count, start and end of accesses to NFS network, start

and end of accesses to migration network, duration of each network access, duration

of the process, and performance improvement. The start and end times in the table

are when the accesses to the corresponding networks started and ended, relative to the

start of the application. The performance improvement is calculated by comparing to

the median of the test without executing migration (Table 7.5).

The table shows that the migration improves performance of CPU-bound processes.

Each run of the experiment showed similar behavior, which is to start memory syn-

chronization for migration approximately 60 seconds since beginning of the workload,

and to take approximately 30 to 40 seconds for live migration to complete. The median

of workload duration is shown in Figure 7.4.

In this test scenario, the performance had improved for approximately 10 percent

while the difference of CPU clocks between two hypervisors were approximately 20

percent. In the test, the computation has lasted for 210 to 220 seconds, and the live

migration has completed about 100 seconds since the computation has started, which

is near half of the total workload duration. Thus, the first half of the computation took

place on the first hypervisor, and then the latter half of the computation took place on

the second hypervisor. If the migration of a CPU-bound job takes the same duration

as this experiment, the workload will finish sooner when the live migration takes place
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Figure 7.5: Median of network utilization for ffmpeg test

as soon as the workload has started. The performance improvement will depend on

duration of the workload.

Figure 7.5 shows utilization of NFS and migration networks. The figure indicates

that NFS accesses start right after the live migration completes; this is where disk I/Os

have changed from local access to network access.

7.4.2 Copying a Single Large File

The next test was conducted to observe disk I/O performance. In the test with a

laptop hypervisor, live migration did not finish when a disk I/O-intensive process was

running on the virtual machine; now each hypervisor has two network interfaces, to

avoid filling available network capacity with combination of NFS accesses and memory

synchronization traffic.

The result is shown in Table 7.7. From the table, it can be inferred that the live

migration didn’t complete even when networks for NFS accesses and migration were

separated. The performance was close to without performing live migration, or de-

creased for a little, as shown in Figure 7.6.
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Table 7.7: Copying a single large file with migration between two desktop hypervisors

Run

Time Since the Beginning (seconds) Diff. End App. Performance
NFS Migration Mig. & End Durat- Improve-

Start End Elps. Start End Elps. NFS (sec) ion (s) ment (%)

1 0 167 167 52 180 128 13 164.36 -1.14

2 0 147 147 53 158 105 11 142.03 12.60

3 0 169 169 55 182 127 13 165.19 -1.65

4 0 167 167 57 180 123 13 163.74 -0.76

5 0 167 167 55 180 125 13 163.55 -0.64

6 0 167 167 59 180 121 13 163.62 -0.68

7 0 167 167 61 179 118 12 164.05 -0.95

8 0 168 168 64 180 116 12 164.82 -1.42

9 0 167 167 69 179 110 12 164.06 -0.95

10 0 167 167 48 179 131 12 164.55 -1.26
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Figure 7.6: Performance comparison when copying a single large file, median of ten

trials

Network traffic while running the test is shown in Figure 7.7. The network traffic had

the same trend as running the test on a laptop hypervisor: memory synchronization

iterates while NFS network has traffic, and the iteration finishes after 11 to 13 seconds

since the end of NFS traffic.

7.4.3 Copying Multiple Files

Copying a single large file produced the same result whether running the test with

a single network interface or with two. The next test involves duplication of multiple

files. The result is shown in Table 7.8.
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Table 7.8: Copying multiple files with migration between two desktop hypervisors

Run

Time Since the Beginning (seconds) Diff. End App. Performance
NFS Migration Mig. & End Durat- Improve-

Start End Elps. Start End Elps. NFS (sec) ion (s) ment (%)

1 3 180 177 56 195 139 15 172.47 -3.30

2 4 182 178 67 195 128 13 175.24 -4.96

3 4 180 176 59 195 136 15 173.60 -3.98

4 4 181 177 59 196 137 15 174.86 -4.73

5 3 192 189 56 207 151 15 187.03 -12.02

6 3 181 178 55 195 140 14 174.14 -4.30

7 4 180 176 65 194 129 14 173.68 -4.03

8 4 185 181 58 196 138 11 175.67 -5.22

9 4 183 179 55 195 140 12 174.28 -4.39

10 5 184 179 58 197 139 13 174.92 -4.77

In the median of ten trials, performance for copying multiple files has declined by

4.56 percent; the result indicates that the performance will decline when live migration

was attempted while copying multiple smaller files. The performance comparison is

shown in Figure 7.8.

7.4.4 Examining the Results

The result indicated that executing live migration will improve performance of video

encoding, but not on file copy tests, which was similar on the test conducted with

the laptop hypervisor. On file copy tests, migration traffic ended eleven to fifteen

seconds after NFS traffic ended. The throughput for the migration network, measured

by the iperf utility, was approximately 700Mbps. From the Equation 5.1 introduced
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Figure 7.8: Performance difference with migration between two desktop hypervisors,

while copying multiple files

in Section 5.2.2, it can be estimated that a virtual machine with 1GB of memory

allocated at an idle state will take approximately 11 to 12 seconds, which is similar

to the time difference between the end of NFS traffic and migration traffic. From the

network traffic, it can be estimated that the last set of migration took place after the

file operation has ended.

To investigate why the migration didn’t finish during the file copy test, dirty pages

on memory was examined. On a Linux system, information related to memory can be

found in /proc/meminfo. In this file, a row “Dirty” indicates the memory space that

may need to be written to disk or swap space. Documentation for RedHat Linux[53]

gives a log file as an example, but files being written are first stored in cache, and

written out to the disk when it gets to a certain size. This documentation was written

for Linux kernel 2.4, but the idea remains the same on kernel 2.6.

When the row was grepped every second while video encoding was in progress, dirty

pages changed as shown in Figure 7.9; and they have changed as shown in Figure 7.10

during file copy. During ffmpeg, changes were ranged from several kilobytes to several

megabytes per second. On the other hand, during file copy operations, sometimes

changes were as big as ten to twenty megabytes in one second, or more. During the

file copy, a massive area of the memory space may be predicted as being changed by

file copy operations.

As explained in Section 4.2.2, live migration of a virtual machine requires synchro-

nization of memory space on source and destination hypervisors. If massive changes

are made to the memory space while executing a live migration, the migration proce-

dure may not reach the point where it can proceed to the final step of transferring the

machine state from the source hypervisor to the destination hypervisor. This may be

the reason why migration did not complete during file copy operations.

Since the migration was done from a hypervisor accessing the virtual disk image over

NFS connection on the destination hypervisor, the bandwidth of the NFS network
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Figure 7.10: Dirty row from /proc/meminfo file while copying an ISO image

is also visible in the output. Figure 7.7 indicated that the network bandwidth for

migration network has been constant since the beginning of the migration until the end

(the graph ends at the point where migration was actually executed). This network

bandwidth consumption was the result of iteration, which didn’t end until the I/O-

bound job running on the virtual machine was accomplished.

This is due to the behavior of QEMU, the emulation software running on top of KVM

for utilizing virtualization technology. On November 20, 2010, there was a discussion

on QEMU developer’s mailing list on whether to add the limits for iterating memory

space while executing migration[54]. According to the discussion, Xen hypervisor has

a limit of three times the size of the guest OS’s memory of iteration before migration

executes. At the time this thesis was written, QEMU doesn’t have this behavior,

continuing to iterate memory space until the time remaining to complete the state

transfer is estimated to fall below the threshold.

In the evaluation, the threshold of I/O wait was set to 10% for 20 seconds, which is
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Figure 7.11: CPU utilization of virtual machine for 30 seconds while running ffmpeg
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Figure 7.12: CPU utilization of virtual machine for 30 seconds while copying a file

not as great as the threshold of CPU computation time. The CPU time utilization for

%user, %system, and %iowait were recorded using the sar command with -u option.

30 seconds were sampled from the output, and graphed in Figures 7.11 and 7.12. On

ffmpeg test, CPU utilization was high, and some I/O waits occurred in interval of three

to five seconds. On the file copy test, %iowait was high for the whole 30-second range

of sampling. The interval on video encoding could be explained as: encoder reading

some portion of source file, and writing out to disk after a certain chunk of video and

audio was encoded. The threshold proposed in the thesis used both utilization and

duration, both of which has turned out to be significant on determining the virtual

machine state from the evaluation.
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Table 7.9: Building an application with migration between two desktop hypervisors

Run

Time Elapsed Since the Beginning (seconds) App. Performance

NFS Migration Duration Improvement

Start End Elapsed Start End Elapsed (sec) (%)

1 167 233 66 116 167 51 231.53 6.50

2 153 231 78 109 150 41 226.69 8.46

3 146 228 82 107 144 37 225.4 8.98

4 150 232 82 112 150 38 227.18 8.26

5 169 240 71 110 169 59 233.78 5.59

6 153 230 77 111 150 39 226.21 8.65

7 169 236 67 131 166 35 232.07 6.28

8 172 238 66 129 168 39 230.78 6.80

9 169 235 66 135 168 33 230.79 6.80

10 234 254 20 195 233 38 249.81 -0.88

7.4.5 Combination of Computation and File Accesses

The previous tests has indicated that migrating a virtual machine while CPU-bound

jobs are running would improve performance, and performing the migration while disk

I/O-bound jobs are running would not. The experiments were strictly bound to either

CPU or disk I/O. However, in the real world, there are applications that access the

disk quite frequently while utilizing CPU at the same time. To illustrate an example,

additional tests were conducted by building an application from its source code.

The sample application used for this experiment is ffmpeg, which is the video encoder

used for the CPU-bound test. The source code for ffmpeg version 0.6.1[55] was compiled

with the make command. C source code files are fetched from the disk, compiled with

gcc, and output files are written to the disk. Then, when all the required source codes

are compiled, files are linked to produce binary files. Thus, building an application

from the source code is expected to cause both CPU and disk I/O utilization.

The test result is shown in Table 7.9. Although disk accesses have occurred during

the workload, the migration has completed successfully in this case. However, the per-

formance improvement was not as great as it was on video encoding, with improvement

of 6.8 percent in median of ten trials (Figure 7.13). In fact, there was even a case where

the performance has declined.

The difference between video encoding and application building is the type of CPU

utilization. Figure 7.14 shows CPU utilization of video encoding and application build-

ing. In the graph, there are two lines for each workload: CPU utilization of user space

(%user), and CPU utilization of kernel space (%system). The figure indicates that

%user is constantly high on video encoding while %system sometimes becomes high on
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application building. The CPU utilization of %system for application building comes

from disk I/Os; even though disk I/Os for application building were not great enough

to affect the live migration, large disk I/Os occurred more frequent compared to the

video encoding.

The system used for evaluation determines migration based on applications’ CPU

utilizations, which is %user in the figure. When %system, which is caused by disk I/Os,

is great, the CPU utilization is not counted against application CPU utilization. In this

case, because CPU utilization for the particular application is not massive enough, live

migration will not occur; the computation is done on the relatively weak hypervisor.

And, when the CPU utilization for user space became great for quite a duration of

workload, finally the live migration was determined. This delay in determining live

migration is likely to be a cause for declining performance. Even though this test did

not, CPU utilization of the kernel space should also be incorporated for determining

the live migration.
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7.5 Migration Strategies from the Evaluation

From the evaluations, it can be inferred that:

• It is effective to migrate CPU-bound jobs. If a process seems to occupy

a massive amount of CPU time, migrating to a hypervisor with better CPU is

expected to improve performance.

• Migration should not be executed when there is one or more I/O-

bound jobs currently running in the virtual machine. Because file I/O

may change a big chunk of memory space allocated to the virtual machine, mem-

ory synchronization may repeat on the hypervisor until the I/O-bound job com-

pletes. Since the migration may even take place on idle state after the job is

completed, the migration may not bring a positive outcome on resource utiliza-

tion.

• However, I/O performance itself will improve if the I/O-bound job is

done locally close to data. When file copies were tested in Table 7.5, file

operations completed faster when the disk was accessed locally than accessing

the disk over NFS connection. If migration was not executed while I/O-bound

jobs are running, the virtual machine would be benefitted from migration.

• And, when migrating a virtual machine with CPU-bound workload,

the migration should be determined based on CPU utilizations of both

user processes and the whole system. Although the goal of the system is

to shorten the workload duration, observing only the workload will not always

successfully improve the performance; other activities on the system should also

be taken into account.

Thus, a strategy for executing live migration based on resource utilization, which de-

rived from the evaluation results, involves automatic migration based on CPU utiliza-

tion, and avoiding migration when I/O-bound jobs are executed. In order to improve

I/O performance, either: manual migration by user before running I/O-bound jobs, or

detecting execution of I/O-bound applications inside the virtual machines and execute

migration before the job starts would be a possible selection. Pausing the I/O-bound

virtual machine allows iteration to complete, but the pause may affect other processes

especially if they involve interactions with other entities, such as a file or other hosts

on networks.
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To conclude this thesis, this chapter summarizes the work that was done and the

future work.

8.1 Summary

In this thesis, a computer architecture with dynamic adaptation to computer resource

requirements was proposed. As new technologies, such as device and machine virtu-

alization, are being used commonly in computers today, a new computer architecture

based on the virtualization mechanisms has become possible.

8.1.1 Applications and Requirements

Applications running on computers have different requirements, depending on the

tasks those applications are working on. Certain applications require CPU power and

memory space, while other applications may take storage I/O time. As computers

and applications have become virtualized and distributed, tasks that computers have

to handle have become more complicated; these tasks cannot be divided simply into

CPU-bound or I/O-bound processes, but have more complicated relationships.

8.1.2 Virtualization Architecture

Computer virtualization has gained attention since the era of IBM System/360.

Computing resources were expensive at that time, and applications were more depen-

dent on the computer hardware and the OS running on top of the hardware. Thus,

virtualization has helped retaining compatibility of the software among different hard-

ware.

Computing resource allocation over an IP network is another way to extend comput-

ing resources, in forms of applications or I/O transport over IP networks. Use of remote

storage and remote controlling of a distant computer have been a major focus on this

area. Even further, as computer networks gained more bandwidth and link quality, it

has become common to transport device I/O over IP networks. Nowadays computer
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resources can be accessed over device-level encapsulation in addition to application-

level accesses, allowing transparent use of remote devices on operating systems and

applications just as similar as locally available devices and applications.

In computer virtualization, there is an advantage which allows computers to mi-

grate over IP networks, even though there are several requirements and restrictions.

Hypervisors supporting virtual machines can absorb the differences of devices, which

abstract different models of a same type of device into a single virtual device to virtual

machines.

8.1.3 Computing Architecture Based on Virtualization

With the combination of virtualization and device I/O extension over IP networks,

a new architecture for migrating virtual machines to different hypervisors is proposed.

Virtual machines have advantages over ordinary computers as virtual machines can:

abstract different models of devices into a single virtual device, bundle user data and OS

environment into a single virtual machine, and migrate from a hypervisor to another

without terminating the virtual machine. Even when a virtual machine migrates,

applications and network communications running within the virtual machine continue

to run. As network communications within the virtual machine continues even after

migration, devices that are connected over IP networks can retain their communication

sessions when migration occurs on the host virtual machine.

In this architecture, a virtual machine can migrate depending on the resource uti-

lization of applications running inside of the virtual machine. Nowadays, computers

no longer reside within a single “box”. Computers are capable of migrating around

different hypervisors, and computers can request additional resources when necessary.

This will allow any types of users, not only the enterprise users but including the gen-

eral consumers, to gain computing capability upon their requirements. As computers

are widely used and distributed in the society, the system should be able to handle the

requirements users expect on the computers.

8.2 Accomplishments of This Work

In this work, a new architecture of computer migration was proposed. The archi-

tecture was designed to allow virtual machines to migrate by observing the resource

requirements of running applications. The migration of virtual machines based on

application resource requirements is expected to improve computer performance with

minimum duration of time and network bandwidth consumed for migration.

The goal of this architecture is to run virtual machines on hypervisors with suitable

resources. When computational power is necessary, a virtual machine should migrate
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to a hypervisor with better CPU and memory allocation; when disk I/O is critical,

a virtual machine should migrate to the hypervisor that can access disk images with

better access speed. In theory, since many applications which users execute on the

computers require a certain amount of computational power with a certain amount

of disk I/O, the requirement cannot be determined simply by looking at a single pa-

rameter. Thresholds for different resource utilizations were set, and when the resource

utilization above the threshold continued for a certain period of time, migration was

triggered.

When executing virtual machine migrations, not only the resource utilization but

the cost for performing migration must be considered. Experiments showed that CPU-

bound jobs perform better if the virtual machine was migrated to a hypervisor with

better CPU. The migration duration may become longer than executing the migration

at idle state, but the migration will accomplish at some point. On the other hand,

migration of virtual machines that are executing I/O-bound jobs must be determined

carefully. When I/O-bound jobs are currently running on the virtual machine, in

some cases migration does not complete until the job running inside of the virtual

machine has ended. The evaluation has shown that migrating the virtual machine

to a hypervisor that is closer to virtual disk image will improve the virtual machine

performance. Therefore, “when” to execute the migration becomes critical on a virtual

machine with I/O-bound jobs being executed.

In conclusion, this work has proposed a new architecture of computer migration. The

architecture allows migration of virtual machines by focusing on resource utilization of

applications that are running inside of virtual machines.

8.3 Future Work

This work has introduced a migration architecture focusing on device I/O status.

There are various possible additions to the proposed architecture.

First of all, this thesis has used several resource utilizations as criteria for deter-

mining whether or not to migrate the virtual machine. Since user applications would

require much more variety of resources, using only several resource utilizations for de-

termining migration may not be enough. In addition to the resources mentioned in the

thesis, availability of other specific hardware resources, such as video capture devices

or sound devices, may also be considered as a parameter for accomplishing the required

application tasks to be completed. Additional availabilities should also be considered

in addition to the basic computing resources.

Next, the tests conducted in the thesis used a program where execution duration

was known beforehand. However, on most of the applications that are used in the

real world, expected runtime durations of the applications are unknown when they

are started. For certain applications, such as video encoding, the duration could be
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estimated from the files which the applications are accessing to. However, since it

is difficult to know the execution time of most of the applications that are used in

the real world today, a method such as prediction or learning trends of “well-known”

applications becomes necessary. However, evidence from process migration studies

suggests that systems that are currently compute-bound are likely to remain so[56].

In addition, the experiments conducted in the discussion already had a NFS server

running on one of the hypervisors. To improve the disk access efficiency, other mecha-

nisms, such as iSCSI, could be used. Use of iSCSI may not be difficult in an enterprise-

class networks, but the goal of introducing this architecture is to be used with various

different computers, including from home-use laptops to an enterprise-class servers.

Thus, the presence of iSCSI or other network-shared storage server may not always be

a good assumption for all the targets focused in the proposal; even having NFS services

running on the hypervisors may not be common if end-users become a major part of

the users of this system. To make the live migration less complicated, a mechanism

for switching the access method to disk drives, such as having a disk image within a

laptop, and when migration is necessary, automatically export the disk image using

NFS or iSCSI accesses, may become necessary.

Lastly, in this thesis, live migration did not complete while disk I/O-bound processes

were running on the virtual machine. This phenomena was caused by design of QEMU-

KVM, but on other hypervisor implementations, for example Xen, sometimes force the

virtual machine to suspend for few seconds to accomplish the migration. This approach

is effective when the virtual machine has to be removed from hypervisors, such as the

case where the hypervisor needs to be shut down for maintenance or other reasons.

However, because the virtual machine will pause for few seconds, there is a greater

chance of running processes getting affected by the pause. For example, if the processes

are creating network sockets, the connection may be terminated as the virtual machine

stops responding to the network requests. Nowadays, many applications create network

connections for various purposes. Thus, the termination of network connection may

even affect the running processes. To avoid running processes from getting affected from

network disconnection, introducing a new mechanism for accomplishing live migration

without pausing the virtual machine may become a solution. This introduction of a

new mechanism would be a future work for improving the system effectiveness.

The proposed system is only a step toward the computing architecture with virtu-

alization and device I/O transport over IP networks. Various additional works can be

made to extend the computer resources to be used widely without boundaries.
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