
Keio University Master’s Thesis Academic Year 2010

User Driven Code Propagation Mechanism for

Urban Sensor Networks

Keio University Graduate School of Media and Governance

Takatosi Kanazawa

修士論文 2010年度 (平成 22年度)

アーバンセンサネットワークにおけるユーザ指向の
アプリケーション動的更新機構の構築

論文要旨
既存のセンサネットワークアプリケーションの多くは特定の環境下であらかじめ規定
された動作を行うことが想定されている．しかし，マイクロプロセッサ技術の発展に
よるセンサデバイスやネットワークのエンドユーザが携帯する携帯端末の高機能化に
より，近年は市街地等における，より広範囲における汎用的なセンシングを行うこと
に関する研究が盛んである．このような環境を対象としたセンサネットワークはアー
バンセンサネットワークと称される．
アーバンセンサネットワーク上でセンシング基盤がユーザのセンシング要求を満

たすことにおける重要な課題として，複数のセンサノードの中からセンシングに用
いるノードの決定，及び選択されたセンサノードにセンシングを行うアプリケーショ
ンの動的挿入があげられる．これに対して，既存研究においてはセンシングの機会を
動的に検索する機会センシングの概念や，階層化されたセンサノードアーキテクチャ
を用いたネットワーク構成に関する研究が多く提案されている．一方で，既存の多く
のアーキテクチャはネットワークの中心を電力や有線ネットワークが整備された地域
に持つ中央集権型のアーキテクチャで構成されており，ネットワークの端に位置する
ユーザの要求に対するセンシング機会の検索及びアプリケーションの挿入は低速で
ある．
本研究ではアーバンセンサネットワークのエッジネットワークにおけるユーザ指

向の動的アプリケーションコード挿入を効率的に行う為の機構を提案する．環境とし
ては電力や有線ネットワーク等既存のインフラが整備されておらず，ネットワークへ
のユーザアクセスが限られるようなセンサネットワークにおいてユーザが自身の近隣
をセンシングする要求がある場合を想定する．このような環境においてユーザは携帯
デバイスを通して近隣のセンサノードを検索し，センサノードに対して自身の要求を
満たすことが可能であるアプリケーションを直接挿入することによる効率的なセンシ
ングを実現する．本研究は実装基盤として IRIS を用い，これを実環境に 18 個配置
し，アーキテクチャにおけるノードのローカライゼーションとアプリケーションコー
ドの挿入の正確性と遅延に関する定量的評価を行った．評価結果を通して，アーバン
センサネットワークのエッジネットワークにおける本機構を用いた近接ノードのロー
カライゼーション及びアプリケーションコードの挿入を十分な精度及び速度をもって
行うことが可能であることを示した．

キーワード:

1 アーバンセンサネットワーク 2 アプリケーションの動的更新

3 ローカライゼーション 4 ネットワークアーキテクチャ

慶應義塾大学大学院政策・メディア研究科
金澤 貴俊

Abstract of Master’s Thesis Academic Year 2010

User Driven Code Propagation Mechanism for

Urban Sensor Networks

Summary
Traditional sensor network applications have focused on deployment for a specific
purpose to perform predefined tasks. On the other hand, advances in micropro-
cessor technology has greatly improvised the sensing capability of sensor devices
both on the user and infrastructural side, and has shed light to sensor network de-
ployment in a broader, more complicated area such as in a city environment. Such
sensor networks are often referred to as an urban sensor network, where the sensor
network’s capability not only covers the traditional, application specific domains
of sensing, but also able to directly serve the user requirements of sensing through
the infrastructure.

The core requirements for an urban sensing architecture is for the architecture to
dynamically and rapidly serve the spontaneous user’s sensing request through sensor
resource allocation and application propagation. Several architectures have been
proposed in order to perform urban sensing, where the core architecture evolves
among the principle of opportunistic sensing, which is a principle to search for
dynamic changing sensing opportunities over time, and the network components
structured in a hierarchical manner. However, most existing urban sensing archi-
tectures assumes a centralized approach when probing for sensing opportunities.
Therefore among the edge networks within the urban sensing environment where
the network is located distant from the network’s core, the above principle and ar-
chitecture could become a bottleneck for user driven application code propagation
into the sensor network.

In our work, we propose an efficient user driven code propagation mechanism
for edge network within the urban sensor network. Our work assumes an user who
wishes to sense his environmental information on a edge network within the urban
sensor network, where the existing infrastructural facilities are insufficient and user
access to the area is limited compared to the central areas of the urban environment.
On sensing requirements from the user, our mechanism first localizes the nearest
nodes around the user, and directly propagates application onto the localized node.

We have implemented and evaluated our work under a real life environment
using 18 sensor nodes. Our experimental results suggests the applicability of our
user driven code propagation mechanism under certain scenarios, and have proved
the applicability of our direct user driven code propagation scheme for future ur-
ban sensing architectures where the environmental characteristics vary over sensing
areas.

Keywords:

1 Urban Sensor Networking 2 Application Reprogramming

3 Localization 4 Network Architecture

Keio University Graduate School of Media and Governance

Takatosi Kanazawa

Contents

1 Introduction 1

2 People Centric Sensor Networks 4

2.1 Sensor Network Research . 4

2.2 People Centric Sensing . 6

2.3 Existing PCSN Architectures 7

3 Use-case Scenario and Environment Assumption 9

3.1 Use-case Scenario . 9

3.2 Problem Definition . 11

3.3 Our Architectural Proposal 13

3.4 Environmental Assumptions 14

3.4.1 Geographical Characteristics of the PCSN 14

3.4.2 Sensor Network Deployment 14

3.4.3 Application Reprogrammable Infrastructure 14

4 User Driven Code Propagation Mechanism 16

4.1 System Overview . 16

4.2 Design Principle . 17

4.3 Enabling Approaches . 20

4.3.1 Existing Localization Methods 20

4.3.2 Existing Code Reprogramming Methods 21

4.4 Core Mechanism . 23

4.4.1 Node Localization . 23

i

4.4.2 Code Propagation . 24

5 Evaluation 26

5.1 Environmental Description 26

5.2 Hardware Implementation . 26

5.2.1 Preliminary Experiments 28

5.2.2 RSSI Value to Distance 28

5.2.3 Code Propagation Completion Time to Distance . . . 29

5.3 Evaluation Method . 30

5.4 Results . 32

5.4.1 RSSI Query Response Time 33

5.4.2 Node Localization Precision 33

5.4.3 Code Propagation Time 34

5.5 Observations . 35

6 Conclusion 37

6.1 summary . 37

6.2 Future Works . 38

Acknowledgements 38

List of Figures

3.1 Use-case Scenario . 10

4.1 System Architecture . 17

4.2 Flow Diagram . 18

4.3 RSSI Query and Acknowlegement Message Format 23

4.4 Node Localization Algorithm 24

5.1 Testbed Environment . 27

5.2 RSSI Value to Distance . 29

5.3 Code Propagation Completion Time to Distance 30

5.4 Deployment of our Testbed 31

5.5 Application Propagation Node 31

5.6 User Traversal Path . 32

5.7 RSSI Query Response Time 33

5.8 Node Localization Precision 34

5.9 Code Propagation Time . 35

5.10 Code Propagation Time for a Single Node 36

iii

List of Tables

3.1 Correspondence of User Requirements and Enabling Applica-

tions . 11

5.1 Implementation Details . 28

iv

Chapter 1

Introduction

Traditional sensor network researches have focused on network deployment

for special purpose applications to perform sensing task where human reach

is difficult or impossible.

On the other hand, the emerging propagation of rich communication in-

frastructure in urban areas and the people living in such areas being able

to exploit such infrastructures through smart handheld gadgets, has shed

light to sensor network deployment in urban areas, often referred to as an

urban sensor network. A key focus of urban sensor network is for the sens-

ing infrastructure to not only perform preemptive sensing tasks, such as

acquiring of the temperature within the sensor network’s coverage area,

but rather the infrastructure to collaborate with the people living in such

environments. This collaboration occurs in two-fold; the sensor network in-

frastructure could exploit the people’s communication devices, in order to

achieve functionality statically deployed sensor networks are not capable of,

or people could query the sensor network to acquire information of inter-

est. Therefore, in our work, we specifically refer to such sensor networks as

people centric sensor networks (PCSNs).

Combining statically deployed sensing infrastructure and dynamic mov-

ing humans give several merits compared to statically deployed sensor net-

works. Assume two sensor networks deployed in distant areas where data

1

transmission is impossible between the networks. If the mobile nodes were

to traverse between the two regions and were able to communicate with the

two networks, the mobile node could mule data between the two networks

to interconnect the networks otherwise impossible without the mobile node.

Dynamic sensing area coverage is also an advantageous factor of PCSNs.

While statically deployed sensor network coverage is limited to its initial de-

ployment, if the mobile nodes were to have connectivity with the network,

the sensing coverage area is basically unlimited based on the mobile nodes

movement perimeter. On the other hand, PCSNs require the flexibility to

satisfy the user’s various sensing requirements, and statically deployed sen-

sors are not uniform, but rather heterogeneous to meet this requirement.

Therefore, the infrastructural architecture is required to masquerade the

underlying heterogeneity through multiple layers. For example, if the user

wishes to sense a certain area for a certain time period, the infrastructure

would be required to materialize the user requirement such as by checking

the types of sensors required for the sensing task, the available sensors within

the time frame, and the reliability of the data.

In our work, we extend the notion of PCSNs, especially described by

the MetroSense project[7]. MetroSense applies a tired architecture, where

the components of the sensor network is classified by three components, the

server tier, the sensor access point tier, and the sensor tier. The sensor tier

collects the sensing data required for various tasks which is collected by the

sensor access point tier which maintain the functionality of a sensor network

gateway. The components of the sensor access point tier is interconnected to

the server tier, which offers the core functionality of the infrastructural man-

agement of the PCSN. Further details of MetroSense is described in Section

3. In our research, we assume the heterogeneity of the sensing infrastructure

fidelity, i.e., the infrastructural deployment density of sensor and existing in-

frastructure such as networks and power lines are not uniform, such as in a

metropolitan city area and a natural park located in the edge of the PCSN.

Under this scenario, we present three core problems which arise if applied

current PCSN architectures. First of all, the application code propagation

overhead is closely related to the heterogeneity of the infrastructure. Under

this infrastructure, the opportunistic code propagation model applied by

existing research is verbose because the user’s sensing requirement could be

fulfilled only by sensor and human interaction. Data acquisition is also slow

because the data needs to be relayed to intermediate gathering nodes.

We challenge the problems mentioned above by proposing a user driven

code propagation model for acquiring sensor data. In our model, users would

priory download application code required for sensing through the rich in-

frastructure, and on occasions where users would wish to sense data where

the underlying infrastructure is poor, users would dynamically propagate ap-

plication code to his nearest sensor nodes which enables acquisition of sensor

data. Our model cuts the overhead of user query traversal through exist-

ing urban sensing infrastructure and users directly interacting with nearby

sensors on querying request (application data propagation and querying re-

quirement to the application), and sensor data acquisition from the sensors.

We have implemented our model on the TinyOS[23] software platform

using the IRIS hardware, and evaluated our work under a real world envi-

ronment inside the Keio Shonan Fujisawa Campus using 18 sensor nodes.

Through our evaluation, we have proved the applicability of our architecture

under our assumed environment.

The rest of our work is organized as follows. Chapter 2 discusses the

background details of urban sensing through existing researches and key

characteristics. In Chapter 3, we will describe the use-case scenario and

environmental assumption of our proposed code propagation mechanism,

and Chapter 4 describes the core architecture of our proposal. Evaluation

of our work on a real life environment is shown in Chapter 5, and our

concluding remarks and future works are discussed in Chapter 6.

Chapter 2

People Centric Sensor

Networks

In this chapter, we describe the principles, architecture and enabling tech-

nologies of PCSNs through existing researches, and define our target envi-

ronment and problem statement.

2.1 Sensor Network Research

Many of the existing researches of sensor network technology has focused

on deployment in a specific environment to execute predefined tasks. In

many cases, acquisition of data among the deployed environment is the first

priority task of the sensor network. Such deployment of a sensor network

is often referred to as a data-centric architecture, where the architectural

improvements made were mostly for the purpose of improving performance

of data acquisition. Below we summarize the specific purpose sensor network

applications among various deployment fields.

• Agricultural : Deployment of a sensor network in an agricultural

environment provides several merits, due to the vast area required for

agriculture, and necessity of event detection among an identical land-

scape. The Lofar Agro project[2] has deployed a sensor network in a

4

crop field for precision agriculture, which focuses on monitoring micro-

climates in a crop field. Sensor network deployment in a vineyard is

discussed in [6], which monitors both the state of the vineyard and the

manufacturer in order to study the optimal deployment scenario given

a specific environment. Kwong[21] in his work has proposed a wire-

less sensor/actuator network application for use in the cattle breeding

industry, by deployment of sensor nodes onto a cow.

• Military : Because the initial deployment motivation for a sensor net-

work has derived from military objectives, several applications exists

in this field of research. Bokareva[5] proposes a ground surveillance

sensor network to detect vehicles and troops in a military applica-

tion, using acoustic and magnetic sensors. Simon[34] has presented a

counter sniper system to locate shooters using a sensor network even

in urban environments, and Arora[1]proposes an intrusion detection

system by location of a breach in a certain perimeter by quantitate

deployment of cheap sensors.

• Environmental Monitoring : Data acquisition in areas where hu-

man interference is difficult or impossible is a major characteristic of

a sensor network. A great amount of deployment exists in this cat-

egory; just to name a few, the PermaSense[36] project attempts to

monitor the state of permafrost in the Swiss Alps, for the purpose

of environmental study and avalanche prevention. On the contrary,

Werner-Allen[38] has propose deployment of a sensor network in an ac-

tive volcano for geographical studies using several MICA sensor nodes.

Multiple deployment of sensor network in an underwater environment

is proposed in [8].

In many cases, multiple sensor nodes with low capability such as limited

computation power, storage capacity, and network transmission capability,

are deployed among a field of interest to sample data. Communication

between nodes are often unreliable due to the nature of wireless transmission,

yet applying existing transmission control schemes as applied in existing

infrastructures such as TCP[30] is unacceptable due to the limited capability.

Under this environment, several architectural improvement have been made.

Several researches exists in the field of data routing[40][41][18][39][16][19], in

order to assure data transmission with better capability than the primitive

flooding technique where the node broadcasts data to its adjacent nodes.

Diverse software composition primitives also exists for the sensor net-

work to perform specific tasks. A common approach is to modularize the

necessary components before installation onto the sensor nodes to reduce the

total software size. TinyOS[24] is a commonly used software primitive which

is written in nesC[12] and applies a component based architecture with an

event driven execution paradigm. Contiki[10] enables dynamic loading of

software modules in a standard ELF format over the network, and intro-

duces proto-threads , an abstraction of a thread-like programming model

with minimal memory overhead. Mantis[4] and Nano-RK[11] is based on

preemptive multithreading, which unlike event driven primitives allots a

time frame for each thread and the kernel decides the execution thread.

2.2 People Centric Sensing

However, drastic advances in technology both on the infrastructural and the

end user’s handheld gadgets have risen novel opportunities to bring sensor

network technology centered around the presence of humans. Human cen-

tric sensing is a notion adopted by the MetroSense architecture[7], where the

sensor network would sense data for people queried by people themselves, or

of people where the environment would sense humans for multiple opportu-

nities. PCSNs differ from traditional sensor networks in characteristics with

the introduction of humans, not only as a sensing target, but also as an

infrastructural component to preform important tasks within the network.

2.3 Existing PCSN Architectures

Several architecture have been proposed in effort to bring existing sensor

networks to urban environments. Our work has heavily been affected by

the MetroSense project[7], an attempt to design a sensing platform in urban

environments where the architectural design grows around the interaction of

static and mobile sensors. The core design principles of the MetroSense ar-

chitecture include network symbiosis with existing infrastructures, resource

asymmetric aware design where the composing sensor nodes are classified

into specific tiers based on its role within the network, and localized interac-

tion for avoiding complex multi-hop interactions. The tiered architecture is

composed of a server tier which manages the central architectural control-

ling of the network, the sensor access point (SAP) tier which serves as an

intermediate access point and gateway for mobile and static sensor nodes,

and the sensor tier composed of mobile and static sensors. The MetroSense

architecture exhibits the principle of opportunistic sensor networking, which

extends the sensing capability of a network via collaboration of mobile and

static nodes. For example, a query to sense an environment without static

sensor deployment could be achieved by a mobile node with its traversal

path overlapping in the area of interest, in the specific time window the user

wishes to acquire data. The SenseWeb[17] architecture describes a deploy-

ment scenario with similar architectural characteristics as the MetroSense

architecture. Three core components, namely a sensor gateway which acts

as a gateway for statically deployed sensors, mobile proxy with the same

functionality as the prior but applies to mobile nodes, and the coordinator

which handles the central administration within the network, are intercon-

nected via API in order to achieve sensing in an urban atmosphere. The

SenseWeb infrastructure could be access through an web interface in order

to perform various sensing tasks, such as visualization of historic pollution

distribution within a city from car-mounted devices, a debris flow monitoring

and warning application and national scale weather monitoring. Finally, the

CitySense[26] project proposes an attempt to construct an efficient testbed

infrastructure for sensor network deployment in an urban atmosphere.

Chapter 3

Use-case Scenario and

Environment Assumption

In this chapter, we first give an example use-case scenario of our work, and

summarize our environmental Assumptions.

3.1 Use-case Scenario

Assume an outdoor environment located at the edge of the urban atmo-

sphere; supposedly a national park with a decent floor space. Under this

environment a sensor network is deployed, in which it’s mission is to support

and inform users of their surrounding events (Figure 3.1). For convention,

we refer to this area as National Park SFC (NPS).

Now assume an elderly woman, Alice, whom finished his afternoon teatime

with his fellow elders, and decided to take a walk in the NPS. Her recent

concerns are; too much exposition to the sun which might result in ultra-

violet ray poisoning, bird watching, and life logging, an attempt to log his

environmental data which is recommended by his physician for planning his

future treatment. Our attempt here is to solve his concerns by his inter-

action with the PCSN deployed in the NPS. Each of her matters could be

dealt with the following PCSN applications described in table 3.1.

9

User Enters the NPS

User Exits the NPS

P1

P2

P3

Sensor Node

Application Propagation
Perimeter for UV Sensing

Application Propagation
Perimeter for Birdwatching

User Traversal Path

Application Code Propagation

Figure 3.1: Use-case Scenario

Table 3.1: Correspondence of User Requirements and Enabling Applications

User Requirement Enabling Application

Ultraviolet Ray Avoidance Violet Ray Sensing and Guidance

Bird Watching Movement Sensing

Life Logging Environmental Sensing

Alice has entered the NPS at P1 the time is 2PM, and her main concern

is to avoid the ultraviolet rays within her traversal path. She would then

issue a query through her smartphone, to sense the ultraviolet ray near her

current position, to avoid direct sunlight and walk through the shady path.

Internally, the smartphone would localize the nearest sensor nodes, and

propagate an application code to the localized nodes. After code propagation

is done, her nearest nodes would sense and send the ultraviolet ray data

towards her smartphone. During her time span of concern towards her

ultraviolet ray poisoning, the smartphone would continue to issue query to

nearest nodes even while she is moving, and update the most local nodes and

propagate application code, and the application on each sensor node would

time out after a specified time interval. At P2, the sun has shaded into

the clouds, moderate temperature among her surroundings, and Alice has

decided to enjoy birdwatching. She would then issue a query to birdwatch in

the same manner as sensing ultraviolet rays, and this time the application

would sense the movement of nearby creatures, in which the direction of

the movement is sent to her. All this time, her life logging application has

also been running, i.e., localized and application code propagated, in the

background in the same manner as the previous two applications, which

enables her collecting of the necessary information.

3.2 Problem Definition

In our scenario, we assume the PCSN to serve the user’s imminent request

for sensing environmental data around the user by direct localization and

code propagation to the users nearest node, in effort to efficiently select-

ing the necessary nodes for sensing and propagation code over a minimal

hop count. The sensor network is located at the edge of an urban sensor

network where human access is rare, and are not able to improve commu-

nication reliability or the lifespan of the sensor nodes through exploiting

existing infrastructures. That being said, existing human sensing architec-

tures are able to cope with this scenario through its own functionalities,

but are inefficient specifically because of the heterogeneity of the deploy-

ment environment; . Below we summarize the concerns which would arise

under our example scenario, specifically on the MetroSense and SenseWeb

architecture.

1. Significant Code Propagation Overhead to Distant Networks

: MetroSense and CitySense assumes a tier architecture for network

composition. The crutch of this architecture among application code

propagation is the intermediate access points (SAP in MetroSense,

mobile proxy and sensor gateway in CitySense). If applied to our

scenario, among code propagation, the user query would first be ac-

cumulated in the management domain of the architecture, where it

would sense for opportunity of available sensors for application prop-

agation. The application would then be delivered to the intermediate

nodes, where it would install sensors to the opportunistic nodes. This

would be non-problematic if the intermediate nodes were to be con-

sistently deployed among an area. However the case is rare because

a city consists of areas of various geographical characteristics, mak-

ing deployment of sensor nodes in a certain area difficult than others.

For example a downtown location would be an easy deployment en-

vironment due to the underlying infrastructure and ease of access for

node maintenance, but a national park located at the edge of the town

would be the opposite due to accessibility and human traffic. Assum-

ing this heterogeneity of environmental characteristics correlate with

node deployment, delivering an application image with a significant

size of data to an edge network would obviously be problematic be-

cause the quality of intermediate path for data delivery dissipates as

the opportunity for sensing shifts to the edge network.

2. Redundancy of Opportunistic Operations: The existing archi-

tectures provide opportunistic sensing capability for sensing, which in-

cludes operations such as resource allocation to available sensors and

opportunistic delegation. This functionality exists because the princi-

ple of the architecture is to utilize static and mobile sensor activity in

order to achieve better sensing capability. However, among the above

scenario, the necessity for opportunistic operations are limited to the

availability of resources among the sensors at best because the query

derives one way from the mobile user to static sensors., which makes

opportunistic probing of geographically available sensors are unneces-

sary. As mentioned in our previous problem statement, it is desirable

to avoid redundant traffics at the edge of the human centric network

because of the great communication overhead.

In short, edge networks within the human centric network suffer from

network communication overhead because of the geographical heterogeneity.

3.3 Our Architectural Proposal

In our work, we present a user driven code propagation mechanism to solve

the problems mentioned in the previous section. As in the use-case scenario,

our architecture takes part as an individual network within the human cen-

tric sensing environment such as mentioned in the MetroSense architecture.

Within our proposed network, the user interacts with the static deployed

sensors in the environment, directly, through a portable device. Application

code the user wishes to propagate are pre-installed onto his portable device

through a rich infrastructure, which is brought inside the edge network for

installation. Our architecture addresses the above problems because the op-

portunistic operations reside inside the network without interaction with a

central identity.

3.4 Environmental Assumptions

In this section we summarize the environmental characteristics assumed in

our work.

3.4.1 Geographical Characteristics of the PCSN

Our architecture assumes a PCSN where its deployment purpose is expected

to satisfy a user’s sensing requirement within the network, but is geograph-

ically located at the edge of the urban atmosphere, such as the example

shown in our use-case scenario. Contrary to PCSNs where existing infras-

tructures such as power lines, wired communication backbones, and other

specifically deployed sensor networks, are free to exploit for the network’s

stability and better performance, our target environment lacks such features,

therefore with limited capability.

3.4.2 Sensor Network Deployment

As mentioned in the previous section, the PCSN we target cannot exploit

existing infrastructures, but are instead required to self-manage the network

architecture and resources of each sensor nodes, such as the node’s power

supply. We also target an outdoor environment with a large area, such as

forests or natural land sights, which requires a significant amount of sensor

nodes for area coverage. Therefore, our requirements for sensor network

deployment are i) deployment of multiple cheap sensor nodes to quantita-

tively deploy in a large area, and ii) an energy-aware sensing platform

without need for relying on existing infrastructures.

3.4.3 Application Reprogrammable Infrastructure

Our architecture focuses on dynamic serving of user request issued towards

the sensor network. Assuming multiple users each with his own requests

towards the network, the infrastructure is required to host multiple applica-

tions corresponding to user request. A naive solution would be to predict the

user requests which might be issued in the future, and store the applications

to match the request inside the network. However, our assumption of a sen-

sor node lacks the storage capacity to hold several megabytes of application

data. Therefore, we assume an application reprogrammable infrastructure

for dynamic interaction with the users in order to leave potential for serving

future applications.

Chapter 4

User Driven Code

Propagation Mechanism

In this chapter, we describe our proposed architecture in detail. First we

describe the overview of our architecture, followed by description of our core

mechanism, node localization and code propagation.

4.1 System Overview

Figure 4.1 describes the system architecture diagram of our system. Our

system consists of the propagation node and the sensing node, where

the propagation node is the user’s handheld device, and the sensing node

resides within the environment.

The propagation node consists of mainly three components, the system

management interface, the node localization module, and the application

code propagation module. The system management interface receives appli-

cation query from the user, which then calls the node localization module

for nearest node localization. The localization module then sends an RSSI

query message over the radio to the sensing nodes which sends an RSSI ac-

knowledgment packet to the propagation node. The acknowledgment packet

is then queued in a buffer of size N, and the x number of highest RSSI val-

16

Sensor Node OS

Node Embedded Device

System Management Interface

Application

Code Images

:

App 1

App n

App 2

Application Code

Propagation Module

Node Localization

Module

Localization Cmd

Reception and Issuing

Module

Application Image

Reception and Loading

ModuleApplication

Cache

Region

Issue application propagation

command to propagation node

Issue command for node localization

Notify propagation module for

nearest nodesPropagation Node

Broadcasts RSSI Query Msg,

While the Sensing Node

Responds with its Node ID

Application Code is Sent

over the Radio if not already

sent. Otherwise the sensing

node looks inside its internal

cache for the relevant application.

Sensor Node OS

Sensing Node Propagation Node

Figure 4.1: System Architecture

ues and its corresponding nodes are selected as the candidate node for code

propagation. This information is then sent to the application code prop-

agation module, which is used to issue application propagation commands

to the target node. The localized node which has received the propagation

command would then act as follows; a) if the application for propagation

have not been previously installed on the sensing node, the node would is-

sue a binary code image transmission request to the propagation node, or

b) if the application has already been previously installed on the sensing

node and the code image still resides inside his cache region, the sensing

node would simply load and run the application image in his cache memory.

Figure 4.2 describes our code propagation flow of our architecture.

4.2 Design Principle

The goal of our work is to sense information around the user environment

in the target PCSN area. The Deluge[15] approach of flooding the network

Propagation Node

Embedded Device Propagation Node Sensing Node

User issues application

code propagation query

propagation node

broadcasts RSSI probing

command

Acknowlegement packet

in response to the query

is returned

Application binary code

image is sent over the

radio to the localized

nodes

Application propagation

completion message is

sent

Application propagation

completion is notified to

the user

Figure 4.2: Flow Diagram

with a single application although efficient for that purpose, irrelevant in

terms of our usage to sense a specified area of interest, i.e., human surround-

ings. The requirement for code propagation in our scenario is to multicast

the necessary code image to the pre-specified node. We have achieved our

goal by applying the following modification to the Deluge architecture; a)

optional multicasting of propagation command to the sensor nodes, and b)

self-management of application state on each sensor nodes.

Optional Multicast

Nodes programmed with the Deluge framework broadcasts its current state

over the network for the purpose of application propagation and for confir-

mation of the newest application code image. In our architecture, we disable

this functionality of autonomous broadcasting of control sequences over the

network, and instead each node would only respond to control messages sent

by the propagation node. After localization of the nearest nodes, the prop-

agation node would queue a message corresponding to the node ID of the

nearest nodes in its internal buffer, and start a timer on a 500ms interval

for queue consumption. Call to the timer would cause the propagation node

to unicast a code propagation control message over the radio directly to the

specified node. The timer would be called until it has consumed the queue.

The sensing node would return an acknowledgment message corresponding

to the propagation message. If the acknowledgment packet were not to be

received on the propagation node, the propagation node would retransmit

the propagation packet until it has successfully acknowledged the reception

of the sensing node.

Self-Management of Application State

Our architecture assumes the propagation node to move over time, and the

nodes required for sensing at a single time frame does not change. If the

sensing node would be left to be reprogrammed with the previous application

until the next reception of a reprogramming query from the propagation

node, the node could continue to run its previous application even after the

user has left the necessary sensing range. Therefore, in our architecture we

apply a runtime counter for each sensing node, which expired would stop

the execution of its current application.

4.3 Enabling Approaches

In this section we summarize the alternative approaches which exists for

node localization and application code propagation in a PCSN, and propose

our motivation for application of RSSI and the Deluge framework for system

composition.

4.3.1 Existing Localization Methods

Localization of nearby nodes is a critical factor among our architecture be-

cause our focus is to sense the user’s surrounding environment. Several

approaches exists for node localization in a sensor network, as detailed in

[14]. Below we summarize the localization methods used in a mobile net-

work, and our approach for node localization.

GPS Based Methods : The most obvious solution localization would

be for each sensor nodes to be equipped with a location tracking device such

as GPS or precoded with an absolute location indicator before deployment.

Niculescu[28] assumes a sensor network in which some nodes within the net-

work are equipped with GPS receivers, while the sensor network presented

by Priyantha[31] assumes some nodes in the network to be hardcoded with

geographical information pre deployment. However, GPS hardware is ex-

pensive and causes significant overhead on power resources, especially con-

sidering a cheap sensor node supposed for mass deployment. The precoding

of location is also ineffective in our scenario because we assume an outdoor

environment where the sensor node’s location could change over time, such

as by natural force, wild animals, malicious users, etc.

Range Based Methods : The works in [33] and [34], applies localiza-

tion via time difference of arrival of two different signals (TDOA). TDOA

is based on triangulation, where the node is localized via time difference

of arrival of three or more nodes. Though TDOA could achieve precise lo-

calization through calculation and with the use of high-precision antennas,

they often rely on expensive hardware for signal transmission, which in our

case unacceptable in terms of deployment cost.

RSSI Based Methods : In our architecture, we localize nearest nodes

by Received Signal Strength Indicator. RSSI is a metric for signal strength

of a radio signal and is acquired by the signal receiving transceiver during

the intermediate frequency stage before amplification. Depending on the

radio transceiver used for measurement, the value would range from 0 to

255. RSSI based localization of nodes are applied in various system archi-

tectures. RADAR[3] uses the RSSI signal strength information gathered by

multiple sensor nodes to triangulate the users coordinate by empirical data

and theoretically computed signal strength information. The work proposed

by Patwari[29] combines RSS and connectivity information.

In our architecture, we do not require a precise localization scheme,

but rather sufficient with a vague localization; i.e.,acquiring the nearest

nodes from the propagation node. Although RSSI values does not necessary

correlate to distance between the two nodes, we show through our evaluation

that RSSI is a sufficient parameter for localization in our scheme.

4.3.2 Existing Code Reprogramming Methods

Several architectures exists for reprogramming a sensor network, each target-

ing a specific domain of network deployment, and such architectures could

be classified as either it requires transmission of a minor update or a scripted

application specification, or a full, binary application image for reprogram-

ming. The former approach includes the Reijers[32] and Jeong[9] proposed

method, which applies a platform independent patch to the target nodes in

order to achieve reprogramming functionality. Mate[25] introduces a script-

ing approach, where the application script sent from the reprogrammer

would be interpreted and run on the end nodes using pre-build functions

inside the end nodes. Though the updating or scripting method requires

less packet transmission compared to full image propagation methods, the

end sensor nodes are required to be smart and fat enough to comprehend

and restructure the meta information sent by the reprogrammer. Another

downside of this method, is that its capability to materialize applications

are limited by its pre-build functions, which therefore lacks the flexibility to

cope with on-the-fly user requests.

The full application code image transfer includes the works mentioned

in [24], [35], [15], [20], [27], and [22]. A full binary image transfer requires

higher bandwidth and longer code propagation time compared to scripting

and updated methods. Under this restriction, Deluge[15] and MNP[20] en-

ables partitioning of application code image into pages, and enables data

transmission in a pipelining manner which enables efficient code propaga-

tion throughout the network. On the other hand, Deluge and MNP envisions

reprogramming of the whole network, and does not assume reprogramming

of a specified node.

Deluge T2 Architecture

Our code propagation mechanism derives from the Deluge architecture. Del-

uge is an application reprogrammable framework which runs on the TinyOS

software stack which performs reprogramming of an entire sensor network by

propagation of the application’s binary execution image. The propagation

of application code is done via trickle[25], and epidemic flooding protocol,

throughout the whole network. For example, if an application were to be

running on a sensor network and the user wishes to update the code image

within the network, the sink node broadcasts an advertisement message for

new code propagation. If the node which receives the broadcast message

were to be running old code image compared to the advertised message, the

target node requests an code update query to the advertiser, which then

starts the transmission of application code image. The newly updated code

would then advertise the new code image it has just received, and in the

same manner updates the outdated sensor nodes.

4.4 Core Mechanism

In this section we discuss the core mechanism of our architecture, localization

of nearest nodes, and the code propagation mechanism to end nodes.

4.4.1 Node Localization

The localization algorithm applied for our architecture relies on RSSI values

received by the propagation node by the sensing nodes. As described in

Figure 4.1, the user query for application propagation is led by a broadcast

message which demands an acknowledgment message from the sensing node.

The message format of the request and acknowledgment message is described

in Figure 4.3(b) and (c).

8bit 8bit 8bit 8bit

8bit 8bit 32bit

8bit 8bit

Command
Identifier

Command
Type

UID Hash of Application Image Image
Number

Application Image Size Node
Identifier

Command
Identifier

Command
Type Sequence Number

Command
Identifier

Node
Identifier

Application Propagation Message Format

RSSI Query Message Format

RSSI Query Acknowlegement Message Format

(a)

(b)

(c)

Figure 4.3: RSSI Query and Acknowlegement Message Format

The received RSSI signal is queued in a queue of size N in the propagation

node, in which N is a function of the number of sensor nodes, ns to propagate

code corresponding to a query. The queue is then linearly scanned for the

largest RSSI values, and the sensor node ID corresponding to the ns largest

values are selected as the node to propagate code. Figure 4.4 illustrates our

algorithm in detail.

・・・

Sensing Nodes

Propagation Node’ s

Intervnal Buffer
RSSI Acknowlegement

Message

Candidate Node Selection for

Application Propagation

Localization

 Module

Propagation

 Module

Selected Node Identifier

for Application Propagation

Figure 4.4: Node Localization Algorithm

4.4.2 Code Propagation

The requirements for application code propagation are, a) the capability for

dynamic reprogramming over the radio, and b) the capability to support

multiple applications. Several methods of over-the-air dynamic reprogram-

ming of sensor network reprogramming exists. In our research, we base

our code propagation mechanism on the Deluge, a dynamic reprogramming

environment implemented on TinyOS. Below we will discuss the Deluge ar-

chitecture and other dynamic reprogramming methods in a sensor network.

Sending large objects in the Deluge architecture is facilitated via paging of

the application code image. Among code transmission, the sender splits the

code image into manageable page size, which is then orderly transferred to

the reception node. This allows the reception node to become the sender

of the portion of the newly received code image, even if it has not finished

completed downloading the whole code image.

Chapter 5

Evaluation

This chapter discusses the evaluation results of our work. We have per-

formed our evaluation under a real-life testbed environment using 18 IRIS

sensor nodes. We will first describe our experimental background, and then

present the node localization and application code propagation time un-

der our testbed. We then observe the experimental results and discuss our

application for existing and future PCSNs.

5.1 Environmental Description

We have evaluated our work under a real-life environment using 18 IRIS

sensor nodes. Our experiment took place in the central courtyard of the Keio

Shonan Fujisawa Campus (62m x 18m) from 11:44, 12/29/10 through 0:28,

12/30/10. Environmental obstacles are shown in figure 5.1. Also, during

the time span while the experiment was performed, no human movement

were observed.

5.2 Hardware Implementation

We have implemented our mechanism on the IRIS platform, under the

TinyOS software stack using the nesC language for development. The un-

derlying functionality of our mechanism relies on the Deluge architecture.

26

Figure 5.1: Testbed Environment

Table 5.1 describes our implementation details and contribution in addition

to the Deluge architecture.

Table 5.1: Implementation Details

Software Development Environment TinyOS 2.1.1

Development Language nesC 1.3.2[13]

Hardware Platform IRIS Mote[37]

Line Count Comparison with Deluge T2 +1628 lines

Application Image Size Comparison with Deluge T2 (ROM size) +6828bytes

Application Image Size Comparison with Deluge T2 (RAM size) +67bytes

5.2.1 Preliminary Experiments

Localization and code propagation to the nearest sensor node is a key factor

for success for our proposed architecture. In this section, we describe two

experiments preformed in prior to our system’s evaluation to understand

the factors related to localization in our environmental field; the correlation

of RSSI value to distance between two IRIS sensor nodes, and the code

propagation completion time to distance among two nodes.

5.2.2 RSSI Value to Distance

We have measured the correlation of RSSI value and distance using two sen-

sor nodes. Our experiment took place within point point a and point b in

Figure 5.4. A single node which acts as the data sender would send 200 pack-

ets on a 1 second interval to the data collection node, which would retrieve

the RSSI value of the sent packet. As mentioned in the previous chap-

ter, RSSI values depend on the node’s underlying radio transceiver. In our

case we use the IRIS mote hardware platform which embed the AT86RF230

transceiver; therefore the RSSI value range from 0 (weak signal) to 28 (strong

signal). Figure 5.2 describe the results of our experiment.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20

R
S

S
I

V
a
lu

e

Distance Between Nodes [m]

Figure 5.2: RSSI Value to Distance

The x-axis indicate the distance between the two nodes, while the y-axis

represents the average RSSI value of 200 packets sent and the variance of the

values. Though we could observe a moderate amount of variance between

6m to 9m, we could assume an exponential reduction in RSSI value as the

nodes draw apart.

5.2.3 Code Propagation Completion Time to Distance

As the prior experiment, we have measured the application code propa-

gation completion time to distance between the same two nodes. In our

architecture, application code is propagated after nearest sensor nodes are

localized. Therefore, we have defined code propagation completion time as

the time frame within when the user have first issued the code propagation

request to when the user have received the first application packet from the

sensor node. Application code used for propagation is a simple sense and

send application of 80KB in size, which broadcasts the temperature value

to near nodes after node reboot. Application image is uncached on each

try, therefore each trial requires a full code image transmission. Figure 5.3

describes the results of this experiment.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20

P
ro

p
a
g
a
ti
o
n
 C

o
m

p
le

ti
o
n
 T

im
e
 [

s
]

Distance Between Nodes [m]

Figure 5.3: Code Propagation Completion Time to Distance

In contrast to the prior experiment, application code propagation time

does not show correlation between distance, but instead uniform among all

distances in our environment. The results of this experiment indicates that

users could predict the code propagation time under various sensor network

deployment density.

5.3 Evaluation Method

Figure 5.4 describes the sensor node placement in our testbed. 18 IRIS

sensor nodes were consistently placed within the environment, simulating a

grid-like sensor network deployment topology.

In this experiment, we simulate an application to sense the environmental

data of the user’s surroundings. The application assumes uses to interact

with his handheld device for application propagation and data collection.

At the time of the experiment, we have used an IRIS mote connected to a

MacBook Pro via usb to serial programming board (5.5).

8m

16m

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

Figure 5.4: Deployment of our Testbed

Figure 5.5: Application Propagation Node

In this experiment, we evaluate the system-wide performance corre-

sponding to the user traversal within the PCSN. The user first starts off

from point a, in which he propagates a single application to two of his

nearby nodes. The propagation of the application is notified to the user via

application packet which is sent after reboot of the propagated sensor node.

After reception of the two application packets, the user shifts to point b,

where he performs the same operation as prior. The same application im-

age as the preliminary experiment is used for propagation, and application

image is cached on the sensor node’s flash storage. Therefore, receiving ap-

plication query which has already been submitted in the past would result

the node to fetch code from his internal storage, rather than code transmis-

sion from the user’s node. The user would traverse the field as marked in

figure 5.6, until reaches the edge of the network.

Pa

Pb

Pc

Pd

Pe

Pf

Pg

Ph

Pi

Pj

Pk

Pl

Pm

Pn

Po

Pp

Pq

Pr

Pab Pdc Pef Phg Pij Plk Pmn Ppo Pqr

Figure 5.6: User Traversal Path

5.4 Results

From our experimental results, we have evaluated 3 system specific parame-

ters of our method; response time of localization query, localization precision

and code propagation time. In this section, we observe and analyze the re-

sults corresponding to each parameter.

5.4.1 RSSI Query Response Time

Figure 5.7 describes the RSSI querying overhead for our architecture. The

x-axis represent the trial in which code propagation was performed, while

the y-axis represent the RSSI querying overhead which is the time inter-

val between RSSI querying from the user to propagation node specification

within the propagation node. In our architecture, each deployed sensor node

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.03 0.04 0.05 0.06 0.07 0.08 0.09

P
e
rc

e
n
ta

g
e
 o

f
C

o
m

p
le

ti
o
n
 T

im
e

Node Localization Completion Time [s]

Figure 5.7: RSSI Query Response Time

reflexively sends a 2 byte packet consisting of the sender’s node identifier and

the command identifier on reception of the query command, and calculation

of RSSI is done on the propagation node. Therefore, the overhead resides

through 3 to 9 milliseconds, which combined with the preceding result of

application code propagation overhead, negligible in most cases.

5.4.2 Node Localization Precision

In our testbed environment, the nodes are deployed in an uniform manner;

i.e., lengthwise and crosswise, the nodes are apart from each other in a mul-

tiple of 8m. Now let us assume the minimal common multiple of distance

between adjacent nodes, 8m, as a single unit of measurement, 1u. Under

this assumption, node a and c would be 1u apart, whereas 2u for nodes a

and b. Evaluation of the precision of our localization method is performed

as follows. At each measurement point, two nodes are chosen for applica-

tion code propagation. The distance from the measurement point and the

target nodes are triangulated using our theoretical measurement unit, and

the mean value of distance for the two nodes are plotted in figure 5.8. The

x-axis indicate the mean distance based on the theoretical unit, while the

y-axis indicate the distribution function of the x-axis. The results indicate

the localization range variance between 0u and 3.5u (0m to 28m), where

under most cases, the distance between the propagation and sensing node

resides below 2u (16m), while the average of all localization is 1.6u (12.8m).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5

P
e
rc

e
n
ta

g
e
 o

f
A

c
c
u
ra

c
y
 w

it
h
in

 R
a
n
g
e

Value of Accuracy fx(Pn)

Figure 5.8: Node Localization Precision

5.4.3 Code Propagation Time

Figure 5.9 show the application code propagation time for our experiment.

The x-axis represents the application code propagation time overhead which

is the time interval after the propagation node has issued the application

propagation command to when the propagation node has received the appli-

cation message from both nodes, while the y-axis represents the cumulative

distribution of the x-axis values.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100 110 120

P
e
rc

e
n
ta

g
e
 o

f
C

o
m

p
le

ti
o
n
 T

im
e

Application Code Image Completion Time [s]

Figure 5.9: Code Propagation Time

From the results we could observe two clusters of data which represents

respectively, a fast served user query and a slow served query. The former

cluster represents the application message after code propagation from sen-

sor nodes which have already received the same code image in the past, while

the latter represents code propagation to the sensor nodes which have been

newly selected as the candidate node for code propagation. If limited to

code propagation completion for a single node, the distribution is as Figure

5.10.

5.5 Observations

Throughout our experiment, we have evaluated the time required for node

localization, node localization precision, and application propagation time

for the localized sensor nodes. The localization related results have been

sufficient enough considering the deployment density of sensor nodes and

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100 110

P
e
rc

e
n
ta

g
e
 o

f
C

o
m

p
le

ti
o
n
 T

im
e

Application Code Image Completion Time [s]

Figure 5.10: Code Propagation Time for a Single Node

deployment area. However, the initial code propagation completion time,

although our work relies on the Deluge T2 framework, could be issued for

further consideration; i.e., assuming an average person traversal velocity is

3km/h (50m/minute), the user could traverse far more than our minimal

unit of traversal (1u), during the initial application propagation time. That

being said, we list our future works to be done in the following chapter.

Chapter 6

Conclusion

In this chapter, we summarize our work and provide future research topics

corresponding to our proposal.

6.1 summary

In our work, we have proposed a user driven code propagation architecture

for human centric sensor networks. Our problem statement was that previ-

ous human centric network architectures lacks performance when the user’s

application requirement towards the sensor network is to sense his surround-

ings. The core design principle of our work is the direct user interaction

(i.e., nearest node localization and direct code propagation) with the sensor

network, which in our assumed environment could be done rapidly without

redundancy, compared to a centralized approach. We have implemented our

architecture on TinyOS, and have evaluated our work on a real-life testbed

using 18 sensor nodes. Our evaluational results provide insights for future

PCSNs that localization of sensor nodes could be done rapidly with succinct

precision. Also under scenarios where the user traverses the same path more

than once, the binary code image transmission overhead could be greatly re-

duced via caching, which has shed light to deployment of our architecture

among such environments.

37

6.2 Future Works

Throughout our thesis, we have only focused on the architecture within

the edge network. As our proposed architecture resides in the human cen-

tric sensing architectures mentioned in previous researches, we would need

to consider the incorporation mechanics of our architecture with existing

architectures. We have also limited the use-case to interaction between a

single user and the network. In a real world environment, multiple users

could reside within the same sensor network, which rises several research

issues, such as resource sharing, privacy and security.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my pro-

fessor Hideyuki Tokuda for supervising me throughout my years in bachelors

and masters degree. Not only have you have you generously tolerated my

stupidity, but you have always brought me up when I was lost in academics,

research and my life. I will always keep in my how you have literally saved

my life in the fall of 2009 (details omitted), and promise my gratitude after

graduation.

Members of the lab, especially fellows of ECN, I am who I am because

I have spent my years surrounded by your outstanding minds and presence.

Thank you very much.

Finally, I would like to thank my family for the continuous financial

support and tolerance. I would not have been able to write fulfill my duties

as a student without your everyday help.

39

Bibliography

[1] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik,

V. Mittal, H. Cao, M. Demirbas, and M. Gouda. A line in the sand:

a wireless sensor network for target detection, classification, and track-

ing. The International Journal of Computer and Telecommunications

Networking, 46(5):605–634, Dec. 2004.

[2] A. Baggio. Wireless sensor networks in precision agriculture. In

ACM Workshop on Real-World Wireless Sensor Networks (REALWSN

2005), Stockholm, Sweden. Citeseer, 2005.

[3] P. Bahl and V. N. Padmanabhan. RADAR: an in-building RF-based

user location and tracking system. In Proceedings IEEE INFOCOM

2000 Conference on Computer Communications Nineteenth Annual

Joint Conference of the IEEE Computer and Communications Soci-

eties Cat No00CH37064, volume 2, pages 775–784. Ieee, 2000.

[4] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker,

C. Gruenwald, A. Torgerson, and R. Han. MANTIS OS: an embedded

multithreaded operating system for wireless micro sensor platforms.

Mobile Networks and Applications, 10(4):563–579, 2005.

[5] T. Bokareva, W. Hu, S. Kanhere, B. Ristic, N. Gordon, T. Bessell,

M. Rutten, and S. Jha. Wireless sensor networks for battlefield surveil-

lance. In Proceedings of the Land Warfare Conference, number October.

Citeseer, 2006.

40

[6] J. Burrell, T. Brooke, and R. Beckwith. Vineyard computing: sensor

networks in agricultural production. IEEE Pervasive computing, pages

38–45, 2004.

[7] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, and R. a.

Peterson. People-centric urban sensing. Proceedings of the 2nd annual

international workshop on Wireless internet - WICON ’06, pages 18–es,

2006.

[8] J. Cui, J. Kong, M. Gerla, and S. Zhou. The challenges of building

scalable mobile underwater wireless sensor networks for aquatic appli-

cations. IEEE NETWORK, 20(3):12, 2006.

[9] D. Culler. Incremental network programming for wireless sensors. The

First IEEE International Conference on Sensor and Ad hoc Communi-

cations and Networks, pages 25–33, 2004.

[10] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and

flexible operating system for tiny networked sensors. In 29th Annual

IEEE International Conference on Local Computer Networks, volume 0,

pages 455–462. IEEE Computer Society, 2004.

[11] A. Eswaran, A. Rowe, and R. Rajkumar. Nano-RK: An Energy-Aware

Resource-Centric RTOS for Sensor Networks. 26th IEEE International

RealTime Systems Symposium RTSS05, pages 256–265, 2005.

[12] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler.

The nesC language. Proceedings of the ACM SIGPLAN 2003 conference

on Programming language design and implementation PLDI 03, page 1,

2003.

[13] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler.

The nesC language. Proceedings of the ACM SIGPLAN 2003 conference

on Programming language design and implementation PLDI 03, page 1,

2003.

[14] L. Hu and D. Evans. Localization for mobile sensor networks. Proceed-

ings of the 10th annual international conference on Mobile computing

and networking - MobiCom ’04, (October):45, 2004.

[15] J. Hui and D. Culler. The Dynamic Behavior of a Data Dissemination

Protocol for Network Programming at Scale. In Proceedings of the 2nd

international conference on Embedded networked sensor systems, pages

81–94. ACM, 2004.

[16] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and

F. Silva. Directed diffusion for wireless sensor networking. IEEE/ACM

Transactions on Networking, 11(1):2–16, 2003.

[17] A. Kansal, S. Nath, J. Liu, and F. Zhao. Senseweb: An infrastructure

for shared sensing. IEEE MultiMedia, 14(4):8–13, 2007.

[18] B. Karp and H. Kung. GPSR: greedy perimeter stateless routing for

wireless networks. In Proceedings of the 6th annual international confer-

ence on Mobile computing and networking, volume pages, pages 243–

254. AFOSR MURI Grant F49620-97-1-0382, and NSF Grant CDA-

94-0124, and in part by Microsoft Research, Nortel, Sprint, ISI, and

ACIRI, ACM, 2000.

[19] J. Kulik, W. R. Heinzelman, and H. Balakrishnan. Negotiation-based

Protocols for Disseminating Information in Wireless Sensor Networks.

Wireless Networks, 8(2/3):169–185, 2002.

[20] S. S. Kulkarni and L. Wang. MNP: Multihop Network Reprogramming

Service for Sensor Networks. In Proceedings of the 25th IEEE inter-

national Conference on Distributed Computing Systems ICSCS, pages

7–16. Ieee, 2005.

[21] K. H. Kwong, T. T. Wu, H. G. Goh, B. Stephen, M. Gilroy, C. Michie,

and I. Andonovic. Wireless Sensor Networks in Agriculture: Cattle

Monitoring for Farming Industries. Progress In Electromagnetics Re-

search Symposium, 5(1):31–35, 2009.

[22] P. Levis and D. Culler. The firecracker protocol. Proceedings of the

11th workshop on ACM SIGOPS European workshop: beyond the PC -

EW11, page 3, 2004.

[23] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,

D. Gay, J. Hill, M. Welsh, E. Brewer, and Others. Tinyos: An operating

system for sensor networks. Ambient Intelligence, pages 115–148, 2005.

[24] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill,

M. Welsh, E. Brewer, and D. Culler. TinyOS: An operating system for

sensor networks. Ambient Intelligence, 35:115–148, 2005.

[25] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle : A Self-Regulating

Algorithm for Code Propagation and Maintenance in Wireless Sensor

Networks. In Proceedings of the First USENIX/ACM Symposium on

Networked Systems Design and Implementation, pages 15—-28, 2004.

[26] R. Murty, A. Gosain, M. Tierney, A. Brody, A. Fahad, J. Bers, and

M. Welsh. CitySense: A vision for an urban-scale wireless networking

testbed. In Proceedings of the 2008 IEEE International Conference on

Technologies for Homeland Security, Waltham, MA. Citeseer, 2008.

[27] V. Naik, A. Arora, and P. Sinha. Sprinkler: A Reliable and Energy

Efficient Data Dissemination Service for Wireless Embedded Devices.

26th IEEE International Real-Time Systems Symposium (RTSS’05),

pages 277–286, 2005.

[28] D. Niculescu and B. Nath. Ad Hoc Positioning System (APS). In

Review Literature And Arts Of The Americas, volume 5, pages 1–4.

Ieee, 2001.

[29] N. Patwari and A. O. H. Iii. Using Proximity and Quantized RSS for

Sensor Localization in Wireless Networks Categories and Subject De-

scriptors. WSNA ’03 Proceedings of the 2nd ACM international con-

ference on Wireless sensor networks and applications, 2003.

[30] J. Postel. RFC 793: Transmission Control Protocol, 1981.

[31] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket

location-support system. Proceedings of the 6th annual interna-

tional conference on Mobile computing and networking - MobiCom ’00,

2000(August):32–43, 2000.

[32] N. Reijers and K. Langendoen. Efficient code distribution in wireless

sensor networks. In Proceedings of the 2nd ACM international confer-

ence on Wireless sensor networks and applications, WSNA ’03, pages

60–67. ACM New York, NY, USA, ACM Press, 2003.

[33] A. Savvides, C. Han, and M. Strivastava. Dynamic fine-grained local-

ization in ad-hoc networks of sensors. In Proceedings of the 7th annual

international conference on Mobile computing and networking, pages

166–179. ACM, 2001.

[34] G. Simon, M. Maróti, A. Lédeczi, G. Balogh, B. Kusy, A. Nádas,

G. Pap, J. Sallai, and K. Frampton. Sensor network-based counter-

sniper system. Proceedings of the 2nd international conference on Em-

bedded networked sensor systems - SenSys ’04, page 1, 2004.

[35] T. Stathopoulos, J. Heidemann, D. Estrin, and C. U. L. A. C. F. E. N.

SENSING. A Remote Code Update Mechanism for Wireless Sensor

Networks, 2003.

[36] I. Talzi, A. Hasler, S. Gruber, and C. Tschudin. PermaSense: investi-

gating permafrost with a WSN in the Swiss Alps. In Proceedings of the

4th workshop on Embedded networked sensors, pages 8–12. ACM, 2007.

[37] C. Technology. IRIS Mote Specification Sheet, 2011.

[38] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson,

M. Ruiz, and J. Lees. Deploying a wireless sensor network on an active

volcano. IEEE Internet Computing, (April):18–25, 2006.

[39] C.-D. Wu, F. Chen, P. Ji, and Y.-Z. Zhang. A LEACH-based routing

protocol for wireless sensor network to optimize QoS. Dongbei Daxue

XuebaoJournal of Northeastern University, 30(8):1091–1094, 2009.

[40] D. Yang, X. Li, R. Sawhney, and X. Wang. Geographic and energy-

aware routing in Wireless Sensor Networks. International Journal of

Ad Hoc and Ubiquitous Computing, 4(2):61, 2009.

[41] F. Ye, G. Zhong, S. Lu, and L. Zhang. GRAdient Broadcast: A Ro-

bust Data Delivery Protocol for Large Scale Sensor Networks. Wireless

Networks, 11(3):285–298, 2005.

	1 Introduction
	2 People Centric Sensor Networks
	2.1 Sensor Network Research
	2.2 People Centric Sensing
	2.3 Existing PCSN Architectures

	3 Use-case Scenario and Environment Assumption
	3.1 Use-case Scenario
	3.2 Problem Definition
	3.3 Our Architectural Proposal
	3.4 Environmental Assumptions
	3.4.1 Geographical Characteristics of the PCSN
	3.4.2 Sensor Network Deployment
	3.4.3 Application Reprogrammable Infrastructure

	4 User Driven Code Propagation Mechanism
	4.1 System Overview
	4.2 Design Principle
	4.3 Enabling Approaches
	4.3.1 Existing Localization Methods
	4.3.2 Existing Code Reprogramming Methods

	4.4 Core Mechanism
	4.4.1 Node Localization
	4.4.2 Code Propagation

	5 Evaluation
	5.1 Environmental Description
	5.2 Hardware Implementation
	5.2.1 Preliminary Experiments
	5.2.2 RSSI Value to Distance
	5.2.3 Code Propagation Completion Time to Distance

	5.3 Evaluation Method
	5.4 Results
	5.4.1 RSSI Query Response Time
	5.4.2 Node Localization Precision
	5.4.3 Code Propagation Time

	5.5 Observations

	6 Conclusion
	6.1 summary
	6.2 Future Works

	Acknowledgements

