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Abstract of Bachelor’s Thesis

Extending TFWC for Multimedia Applications

Multimedia streaming over TCP is common in the Internet. Under condition of scarce net-

work resource, the rate oscillation due to congestion control degrades the user’s experience.

In addition, the data transmisson of multimedia services under the congested network needs

to consider the priority of services depending on the application type. While TFWC sup-

ports smooth congestion control for real-time multimedia streaming, it cannot provide a

high-enough sending rate to the services that require high throughput rather than smooth-

ness. In this thesis, I propose Tunable TFWC (TTFWC), an extension to TFWC to achieve

variable throughput behavior with regard to trade-off between smoothness and the sending

rate based on application or user requirements. Unlike many existing works, this proposal

is suitable for both throughput-sensive applications and smoothness-sensitive application by

using a tuning parameter. I observe that TTFWC with large tuning parameter improves

around 10% higher throughput than the original congestion control algorithm in a low-speed

network. In a high-speed network, TTFWC throughput with large value of the tuning pa-

rameter over 4% compared with the original.
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Abstract of Bachelor’s Thesis

Extending TFWC for Multimedia Applications

マルチメディアアプリケーションのためのTFWCの拡張

近年のインターネット技術の発展に伴い，T C P を利用したマルチメディアストリーミングが普及しつつ

ある．しかし，ネットワーク資源が乏しいモバイルネットワーク環境などでは，T C P による輻輳制御が転送

レートの変動を大きくしてしまい，コンテンツ再生が不安定になる．またネットワークの輻輳が激しい環境で

は，サービスの品質を考慮した上でサービスタイプ別にデータ通信を行うことが求められる．リアルタイムマ

ルチメディアストリーミングサービス向けに提案された T F W C という輻輳制御アルゴリズムがあるが，転送

レートの滑らかさよりも大きさを重視するサービスには利用できない．本研究では， T F W C の拡張を行い，

アプリケーション，ユーザの需要にあわせて転送レートの大きさと滑らかさのトレードオフを調節可能にした

Tunable T F W C ( T T F W C ) を提案する．多くの既存研究とは異なり，本研究で提案する輻輳制御アルゴリズ

ムはチューニングパラメータを設定することで，転送レートの大きさと滑らかさのどちらを優先するアプリ

ケーションにも調節できる．実験の結果，既存の輻輳制御アルゴリズムと比較して，低速なネットワークでは

10%以上のスループットの向上，高速なネットワークでは 4%程度のスループットの向上が観測できた．

キーワード

1. 輻輳制御, 2. 応答性, 3. 高スループット, 4. 滑らかさ, 5. 同調性
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Chapter 1

Introduction

This chapter describes the background on this research topic. Also, I describe the problems

I are concerned with, and the approach to attacking the issues.

1.1 Motivation

The proliferation of high-speed, broadband networks and mobile networks has made mul-

timedia streaming popular. The growth of multimedia streaming increases the demand to

distribute high-quality video and audio data in real-time streaming mode. As the usage of

multimedia streaming requires more bandwidth than normal web browsing or email services,

the design of congestion control multimedia streaming is an important issue in the network,

even atop non-congestion-controlled protocols such as UDP.

Congestion control for multimedia streaming is designed to meet two goals; first, it must be

TCP-Friendly, sharing the equally bandwidth with competing TCP flows at the bottleneck.

TCP transmits the majority of bytes on the Internet, thus compatibility with TCP conges-

tion control is adopted as a reasonable metric to evaluate congestion control algorithms [9].

Second, its throughput must be smooth so that the application achieves constant sending

rate, whereas TCP throughput behavior is sawtooth-shaped. [16] shows that burst trans-

mission does not provide a good user experience. Smoothness is the new functionality that

1



overcomes the drawbacks of TCP congestion control.

TCP-Friendly Rate Control (TFRC) [10] is the Internet standard congestion control for

streaming media applications. TFRC achieves a smooth sending rate without compromising

TCP-friendliness. However, TFRC transmits excessively high sending rate at short Round

Trip Time (RTT), depending on timer granularity of the end system. TCP-Friendly Window

Control (TFWC) [6] is a window-based variant of TFRC, thus it does not require accurate

RTT calculation. TFWC also achieves a smoother sending rate, and is more TCP-Friendly

than TFRC. In addition, TFWC can be implemented in various transport protocols, such

as TCP and SCTP [21], because they also perform window-based congestion control.

1.2 Challenges and Contribution

Smoothness and high sending rate are trade-off, because the congestion control algorithm for

smooth throughput pressures the sending rate not to suddenly increase, even if more band-

width is available. Indeed, in interactive applications, such as VoIP and video conferencing,

data have to be delivered smoothly, because they cannot buffer large amounts of sending and

receiving data. However, applications such as on-demand video and audio streaming, and

non-interactive live streaming can buffer some data. They require a sending rate as high as

possible and a certain level of smoothness, rather than the perfect smoothness that TFRC,

TFWC and the other TFRC extensions strive to achieve. In other words, sending rate is

more important than smoothness in such applications.

In this thesis, I propose Tunable TFWC (TTFWC), a TCP-Friendly congestion control

algorithm that can tune the balance between the sending rate and smoothness. TTFWC

supports a wide range of multimedia applications, including those that desire as high send-

ing rate as possible and certain level of smoothness. I define one tuning parameter to

control the balance between the sending rate and smoothness. In my experiments, TTFWC

2



achieves variable throughput behavior by changing the tuning parameter value. For exam-

ple, TTFWC achieves around 10% higher throughput than TFWC in the low-speed network

and over 4% higher in the high-speed network. I also demonstrate TTFWC is TCP-Friendly

over a wide range of the tuning parameter value.

1.3 Structure of Thesis

The remainder of this thesis is organized as follows: Chapter 2 describe related work and

TFWC overview. I describe the design of TTFWC window calculation in Chapter 3. Chap-

ter 4 explains my implementation. I present the results of implementation, over dummynet

and the simulation results in Chapter 5. I evaluate TTFWC in terms of responsiveness,

throughput, TCP-Friendliness, fairness and smoothness. In this Chapter, I include the dis-

cussion for the TTFWC required network. Then, the thesis concludes in Chapter 6.
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Chapter 2

Problem Definition

This chapter describes existing proposals which target smooth congestion control and com-

pare these works with my approach.

2.1 Related work

Congestion control for multimedia streaming falls into three categories: Additive Increase

Multiple Decrease (AIMD)-based [23, 3], formula-based [20, 10, 6, 13] and Constant Bit Rate

(CBR)-based [8]. At the end of this section, I show you another approach as well.

2.1.1 AIMD-based Congestion Control Algorithm

AIMD-based congestion control is RENO extension. In AIMD-based congestion control

algorithms, flows achieve lower throughput than competing TCP flows when congestion

frequently occurs. In congested network, as the sender decrease little window size after a

packet loss, it achieves lower throughput comparing to other types of congestion control. On

the other hand, TTFWC provides high sending rate without the amplitude of saw-toothed

bandwidth change and decrease.
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2.1.2 Formula-based Congestion Control Algorithm

Formula-based congestion control uses TCP throughput equation [14] to estimate cwnd.

SIMD [20] and TEAR [13] are representatives of the second category. They maintain a high

sending rate against frequent congestion. However, SIMD has a slightly higher packet loss

rate than other congestion control algorithm, thus the overall performance is poor. Although

TEAR achieves a smooth sending rate by using sliding window with the receiver control, its

response to congestion is quite slow. TTFWC overcomes these problems, and as shown it in

Section 5.1.

2.1.3 CBR-based Congestion Control Algorithm

The CBR-based approach [8] proposes a congestion control algorithm that achieves a smooth

sending rate with a new definition of TCP-Friendliness. Since multimedia streaming histor-

ically uses UDP, CBR-based congestion control extends existing works to smooth through-

put behavior. Flows employing this algorithm are stochastically TCP-Friendly, that is, these

flows are fair to aggregates of competing TCP flows. However, these flows cause the through-

put of one or some of the competing TCP flows to drastically reduce. In addition, although

TTFWC is designed to meet the current definition of TCP-Friendliness, this approach has

not been throughly vetted.

2.1.4 New Metric-based Congestion Control Algorithm

STCP [22] also aims at smooth throughput behavior by using some counters such as timeout,

fast retransmit and so on. However, its TCP-friendliness is not evaluated and analyzed.

In addition, this uses extra ICMP packets to detect congestion, which will be affected by

middleboxes or routers [17].

5
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Figure 2.1: Window behavior in TFWC

2.2 TCP-Friendly Window-based Congestion Control

The TFWC sender detects packet loss from ACK packets sent from the receiver. The TFWC

sender calculates the congestion window size cwnd from the packet loss event rate p based

on the TCP throughput equation (Equation 2.1) [14].

cwnd =
1�

2p
3 +

�
123p

8

�
p (1 + 32p2)

(2.1)

When the sender detects a packet loss event (i.e., loss of one or more packets in the window

size) from ACK packets, the sender calculates the loss-event interval, which is the number of

packets successfully arriving at the receiver between two loss events. The track of loss-event

intervals is called the “loss-event history”. From the loss-event history, the sender calculates

the Average Loss Interval (ALI), converted to the calculated loss event rate by Equation 2.2.
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Loss Event Rate (p) =
1

Average Loss Interval
(2.2)

The calculation of an ALI is important because it impacts the next cwnd. When the sender

updates its loss event history, two kinds of ALIs are calculated [5]. The first one is calculated

with Exponentially Weighted Moving Average (EWMA), which uses the most recent sixteen

loss intervals, the last one of which is the number of transmitted packets after the last

loss event. The other one is calculated with EWMA which uses sixteen loss intervals, not

counting the number of transmitted packets after the last loss event in (i.e., use an older

loss interval than the first one). The sender adopts the larger one as the estimated ALI to

derive cwnd. We call the interval that the first one is chosen a “flat cwnd period”, and the

interval that the other one is chosen an “increasing cwnd period”.

Fig. 2.1 illustrates TFWC cwnd behavior. A loss event happens at time t0 and t2. Between

time t0 and t1, the flat cwnd interval is applied. Between time t1 and t2, the increasing cwnd

interval is applied, thus the cwnd increases little by little.
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Chapter 3

Tunable TCP-Friendly Congestion
Control

This chapter describes my proposal congestion control algorithm for multimedia streaming

named TTFWC, which is composed of three algorithms.

3.1 TTFWC Overview

In this section, I explain the design of TTFWC and the effect of the tuning parameter tp

that varies between 0.0 and 1.0. I call the range of tp less than 0.5 the “smooth mode” and

more than or equal to 0.5 the “responsive mode”. This is because, the former gives relatively

high priority to smoothness, whereas the latter gives that to throughput. More importantly,

TFWC uses two different window calculations, including different numbers of loss intervals.

I make three modifications in TFWC cwnd calculation to set the tuning parameter: First is

that the sender increases its cwnd more aggressively at the increasing cwnd period, second is

that the sender changes the number of loss interval in the ALI calculation from this value,

and third is cwnd calculation in low bandwidth.

8
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3.2 Base cwnd Update at the Beginning of the Increas-
ing cwnd Period

In order to achieve higher throughput than the original TFWC, TTFWC increases the base

cwnd at the beginning of the increasing cwnd period. The rationale is that TFWC does

not increase the congestion window quickly when the calculated TCP-Friendly congestion

window is larger to keep the smooth sending rate as shown as δ in Fig. 3.1. This is also

the reason why TFWC achieves lower throughput than TCP (see Sec. 5.1 with Fig. 5.6 for

simulation results).

In the responsive mode (i.e., 0.5 ≤ tp < 1.0), TTFWC increases the base cwnd by tp × δ,

where tp is the tuning parameter and δ is the difference between the current TCP cwnd and

the calculated TCP-Friendly cwnd (Fig. 3.2 illustrates δ at time t1). Hence, the responsive

mode achieves the higher throughput based on the tuning parameter.

In the smooth mode (i.e., 0 ≤ tp < 0.5), TTFWC increases the base cwnd by tp2 × δ. Since

10



the smooth mode is sensitive to throughput oscillation caused by the transient congestion, I

conservatively increase the base cwnd.

In Fig. 3.2, the integral of TCP cwnd and TFWC cwnd are equal through the time between

t0 and t1. When a packet is lost before the time t1, the TFWC sender receives higher

throughput than TCP. Hence, I limit the opportunity to increase the base cwnd to prevent

unfair utilization of the bottleneck link. I increase the base cwnd only when Equation 3.1 is

true on the ALI calculation:

� <
1�n

i=1 weighti
(3.1)

Let � be the cwnd decrease fraction after the packet loss event, as illustrated in Fig. 3.1, and

weighti be the i-th EWMA weight. Fig. 3.2 and 3.3 show TTFWC cwnd behavior when

Equation 3.1 is true and not true, respectively. If the value � of Equation 3.1 is not true

after a packet loss, the sender uses its window size as is the case with TFWC cwnd behavior.

3.3 Change of the Number of Loss Intervals in the ALI
Calculation

I change the number of loss intervals from sixteen to eight in the responsive mode. The

larger number of loss intervals makes cwnd decrease more slowly. Hence, if I use the same

number of loss intervals as the original TFWC, the TTFWC flow becomes overly aggressive,

because it increases the base cwnd at the beginning of the increasing cwnd period. When the

number of loss intervals is halved, the sender receives the convergence to the ideal window

size up to twice as fast. Since the total EWMA weight in an ALI calculation is halved, the

sender decreases its cwnd by up to half after the sender experiences an extremely short loss

interval. After the sender experiences an extremely long loss interval, it increases its cwnd

up to twice. I note that throughput in responsive mode TTFWC using 8 loss intervals in its

ALI calculation is still much smoother than TCP (See Fig. 5.9 in Sec. 5.1).

11



I adopt the same number of loss intervals as the original TFWC in the smooth mode. If I

apply the tuning parameter in the same way as in the responsive mode, the smooth mode

TTFWC flow is obviously overly aggressive as the tuning parameter is larger. Hence, I have

to conservatively apply the tuning parameter to the base cwnd. My design choice is applying

the tuning parameter to the base cwnd exponentially.

3.4 RENO Operation when cwnd is Less than two

TTFWC performs RENO operation [7, 11] when cwnd falls below two. While the original

TFWC uses rate control, I adopt RENO operation to prevent from high CPU load as a result

of cwnd calculation. I will describe the CPU processing time for the main functions in the

evaluation.

12



Chapter 4

Implementation

This chapter describes the TTFWC implementation.

I implemented TTFWC as a TCP congestion control algorithm in the Linux 3.0.0 kernel.

The implementation consists of around 900 total lines of code, structured as a loadable kernel

module. Thus, the application and the system administrator can enable TTFWC with ease.

As TTFWC is a sender-only algorithm, I do not need modification to the receiver so long as

the receiver behaves as well as regular TCP. We enable TTFWC by a sysctl parameter. The

subsequent sections describe how to perform TTFWC to match the congestion avoidance,

slow start, and loss recovery behavior.

Fig. 4.1 shows the logic of a TCP socket after the connection is established on a sender. The

TCP option structure must be initialised at this time and a call to TCP register congestion

control is made. Then, every time the machine receives ACK, it checks the state of the socket

in the function tcp ack(). When the function tcp ack is dubious() returns its state is

normal, the machine enters the congestion avoidance phase. At this time, the soceket calls

congestion control function cong avoid(). In the Linux kernel, when the machine encounters

a loss event, three types of states are prepared for loss recoveries. TCP CA Recovery is

set for fast transmission. TCP CA CWR means that the machine raises congestion inside

NIC, or ECN and etc. The machine handles loss recovery depending on the loss event

13



!"#"$%"&'()*'
!!"#$%&#'()

+),'#-.&'/0&12"'
"#$%#*+,%&-*./()

Normal state?
tcp_ack_is_dubious()

3"4

56

01#&2#32&"1!44"56145!

Duplicate ACK?
tcp_fastretrans_alert()

7142'281.49$44$6.'
086#"&/8"'

3"4

56

Figure 4.1: The TCP procedure diagram

type. In the Linux implementation, the function tcp fastretrans alert() divides into

fast retransmission and other procedure.

Fig. 4.2 shows the variables in the TTFWC structure with the definitions and Fig. 4.3

shows the TTFWC procedures. The TTFWC structure and TTFWC procedures’ definition

are employed only if the kernel is compiled with the TTFWC support enabled.

1 struct ttfwc {
2 u32 tcp_cwnd; // TCP cwnd calculated by TTFWC procedures
3 u32 is_reno; // flag when it is in RENO phase
4 u32 reno_cwnd; // RENO cwnd estimation
5 u32 alpha_cwnd; // additional cwnd depending on a parameter
6 u32 li_dif; // the number of packets until the ALI is over
7 u32 li_counter; // the counter of loss intervals
8 u32 li_mean; // the weighted ALI
9 struct ttfwc_loss_hist *lh; // array to stock loss intervals
10 };

Figure 4.2: ttfwc structure
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1 static struct tcp_congestion_ops tcp_ttfwc __read_mostly = {
2 .init = ttfwc_init, // variables initiate
3 .ssthresh = ttfwc_recalc_ssthresh, // ssthresh calculation
4 .cong_avoid = ttfwc_cong_avoid, // cwnd update
5 .undo_cwnd = ttfwc_undo_cwnd, // a false loss detected
6 .owner = THIS_MODULE,
7 .name = "ttfwc",
8 };

Figure 4.3: the TTFWC procedures’ definitions

4.1 Slow Start and Congestion Avoidance

ttfwc cong avoid() updates the cwnd every time a packet is acknowledged. Fig. 4.4 dis-

plays congestion avoidance phase of TTFWC. TTFWC slow start and timeout behaviors are

the same as RENO. The sender applies TTFWC operation after the slow start phase.

Upon receiving an ACK from the receiver, the TTFWC sender performs the following up-

date. The TTFWC sender calls RENO operation in the slow start phase or when cwnd is

less than two (Lines 9-16). When the sender is out of RENO mode, it estimates RENO cwnd

(Lines 17-26). In this scope, the sender estimates based on the window behavior as described

Chapter 3. After the number of packets is over the ALI, it increases cwnd (Lines 27-). In

this time, the TTFWC sender adds extra cwnd into base cwnd when a tuning parameter is

set (Lines 14-17).

The TTFWC sender after increasing cwnd period starts to calculate cwnd by using the ALI.

When the ALI is over the estimation of next loss interval, the sender add extra cwnd if the

tuning parameter is set more than zero (Line 29-30). I adopt inaccurate ALI estimation

(Line 32 and 34). In the substitute calculation, the smooth mode is a little smoother than

accurate ALI calculation because the accurate ALI is increased when the sender receives

5.3 ACKs. As well, the responsive mode is more aggressive than accurate ALI calculation

because the accurate ALI is increased when the sender receives 2.8 ACKs.
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I find that the exact procedure of the ALI calculation wastes processing time. The cwnd

update with accurate ALI calculation sometimes stops data transmission due to the overhead,

TTFWC algorithm in the Virtual Machine (See Section 5.2.3). Through the experience, the

limitation of the machine resources affects data transmission. I recommend approximate ALI

calculation to minimize the overhead in the congestion avoidance phase. I will also comment

about ALI calculation in Section .

I explain the specific functions as below. tcp is cwnd limited shown in Lines 7-8 prevents

burst data transmission if the current cwnd is not much. ttfwc invert imean executes to be

the inverse number of the ALI (Line 38).

4.2 TTFWC Loss Recovery Behavior

The TTFWC sender enters into ttfwc recalc ssthresh when the SACK or ACK proof contains

a loss. Fig. 4.2 shows the procedure of TTFWC loss recovery.

For the request after a loss event, TTFWC performs the following operation: When its cwnd

is less than two, the TTFWC sender skips the following operation and is in RENO operation

(Line 7-10). When the sender detects the first loss event, it calculates a pseudo-loss interval,

loss event rate and the number of packets until the increasing cwnd period by using the

Equation (Line 11-17). In this scope, the sender estimates loss interval by using Equation

2.1 and sets the number of packets until the ALI is over as li dif. After the first loss

event, the sender updates loss intervals and calculates the ALI and the next cwnd. When

the calculated cwnd is more than two, the sender reverses TTFWC (Line 19-22). Then, the

sender returns the current cwnd as ssthresh (Line 16).

Fig. 4.6 indicates how to estimate RENO cwnd and how to calculate the additional cwnd

in the function ttfwc alpha cwnd. The sender is halved RENO cwnd and compares to next

TTFWC cwnd (line 4). A part of lines 13-14 indicates the exception for the estimation. The

16



sender enters this scope when its state is TCP CA CWR because the cwnd is set 1.

When next TTFWC cwnd is over the halved RENO cwnd, the sender checks Equation 3.1

(Line 10-12). Then, if Equation 3.1 is true shown in line 17 and 19, the sender calculates

additional cwnd. If not, additional cwnd is reset.
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1 static void ttfwc_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2 {
3 struct tcp_sock *tp = tcp_sk(sk);
4 struct ttfwc *ca = inet_csk_ca(sk);
5 u32 li_mean, p, cwnd;
6
7 if (!tcp_is_cwnd_limited(sk, in_flight))
8 return;
9 if (ca->is_reno || ttfwc_lh_length(ca) < 1){
10 ca->lh->li_length[0]++;
11 if (tp->snd_cwnd <= tp->snd_ssthresh)
12 tcp_slow_start(tp);
13 else
14 tcp_cong_avoid_ai(tp, tp->snd_cwnd);
15 return;
16 }
17 if (ca->lh->li_length[0] >= ca->li_dif/2) {
18 if (ca->lh->li_length[0] == ca->li_dif/2)
19 ca->reno_cwnd = ca->tcp_cwnd;
20 if (tp->snd_cwnd_cnt >= ca->reno_cwnd) {
21 if (ca->reno_cwnd < tp->snd_cwnd_clamp)
22 ca->reno_cwnd++;
23 tp->snd_cwnd_cnt = 0;
24 } else
25 tp->snd_cwnd_cnt++;
26 }
27 if (++ca->lh->li_length[0] > ca->li_dif) {
28 u32 count = ca->lh->li_length[0] - ca->li_dif;
29 if (count == 0 && sysctl_ttfwc_tuning_p > 0)
30 tp->snd_cwnd += ca->alpha_cwnd;
31 if (sysctl_ttfwc_tuning_p <= 5){
32 if (count%6 == 0) goto common;
33 } else {
34 if (count%3 == 0) goto common;
35 }
36 }
37 common:
38 p = ttfwc_invert_imean(++ca->li_mean);
39 cwnd = ttfwc_calc_x(p);
40 if (cwnd + ca->alpha_cwnd > tp->snd_cwnd)
41 tp->snd_cwnd++;
42 }

Figure 4.4: ttfwc cong avoid function
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1 static inline u32 ttfwc_recalc_ssthresh(struct sock *sk)
2 {
3 const struct tcp_sock *tp = tcp_sk(sk);
4 struct ttfwc *ca = inet_csk_ca(sk);
5 u32 next_cwnd, p;
6
7 if (tp->snd_cwnd < 2){
8 next_cwnd = tp->snd_cwnd;
9 goto out;
10 }
11 if (++ca->li_counter == 1) {
12 ca->tcp_cwnd = tp->snd_cwnd >> 1;
13 ca->lh->li_length[1] = ca->li_mean = pseudo_li_calc(ca->tcp_cwnd);
14 ca->lh->li_length[0] = 1;
15 ca->li_dif = ca->li_mean/100;
16 ca->li_counter++;
17 goto out;
18 } else {
19 if (ca->is_reno > 0)
20 ca->is_reno = 0;
21 ttfwc_loss_hist_update(ca);
22 ca->li_mean = ttfwc_avg_loss_interval(ca);
23 if(ca->li_mean > 0) {
24 p = ttfwc_invert_imean(ca->li_mean);
25 next_cwnd = ttfwc_calc_x(p);
26 } else
27 next_cwnd = 0;
28 if (sysctl_ttfwc_tuning_p == 0) goto out;
29 else{
30 if (ca->tcp_cwnd <= ca->reno_cwnd)
31 ttfwc_alpha_cwnd(ca, ca->tcp_cwnd, next_cwnd);
32 }
33 }
34 out:
35 ca->tcp_cwnd = next_cwnd;
36 if (cwnd <= 2 && ca->is_reno == 0) {
37 cwnd = 2;
38 ca->li_dif = 0;
39 ca->is_reno = 1;
40 }
41 return max(ca->tcp_cwnd, 2U);
42 }

Figure 4.5: ttfwc recalc ssthresh function
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1 static inline void ttfwc_alpha_cwnd
2 (struct ttfwc *ca, u32 cwnd, u32 next_cwnd)
3 {
4 ca->reno_cwnd = ca->reno_cwnd >> 1;
5 if (ca->reno_cwnd > next_cwnd)
6 ca->alpha_cwnd = 0;
7 else{
8 u32 dthresh;
9 if (ca->alpha_cwnd > 0)
10 dthresh = (u32) next_cwnd*100/(cwnd-ca->alpha_cwnd);
11 else
12 dthresh = (u32) next_cwnd*100/cwnd;
13 if (dthresh >= 100)
14 ca->alpha_cwnd = 0;
15 else {
16 u32 thresh = next_cwnd - ca->reno_cwnd;
17 if (sysctl_ttfwc_tuning_p >= 5 && dthresh > 72)
18 ca->alpha_cwnd = (u32) thresh*sysctl_ttfwc_tuning_p/10;
19 else if (sysctl_ttfwc_tuning_p > 0 && dthresh > 81)
20 ca->alpha_cwnd = (u32) thresh*pow(sysctl_ttfwc_tuning_p, 2)/100;
21 else
22 ca->alpha_cwnd = 0;
23 }
24 }
25 }

Figure 4.6: ttfwc alpha cwnd
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Chapter 5

TTFWC Performance Evaluation

This chapter evaluates the efficiency of TTFWC via simulation and experiment with the

implementation. First, I describe simulation testbed and results. Second, I evaluate my

implementation in the Linux kernel.

5.1 Simulation Results

I evaluate TTFWC in terms of responsiveness, throughput and TCP-Friendliness, and

smoothness through ns-2 simulation [18]. Through all experiments, I execute using three

values of the tuning parameter value 0.0, 0.4 and 0.9. All TCP flows leveraged in experi-

ments are SACK TCP [12]. The tuning parameter value 0.4 and 0.9 are representatives of

the smoothness-sensitive and the throughput-sensitive node of TTFWC. When the tuning

parameter is 0.0, TTFWC is equivalent to the original TFWC shown in Equation 3.1. I

denote TTFWC with the tuning parameter a as TTFWC(a).

5.1.1 Responsiveness

I run TTFWC flows on a environment with dynamic changes of available bandwidth to

evaluate responsiveness. In the simulation, I run two TTFWC flows over the 15 Mbps

bottleneck link. RTTs of the two TFWC flows are 8.4 and 8.8 ms. At time x seconds,

10 Mbps CBR flows are injected, remain for x seconds, and leave. Each trial repeats this
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Figure 5.1: TTFWC(0.0) on constant CBR flows
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Figure 5.2: TTFWC(0.4) on constant CBR flows
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Figure 5.3: TTFWC(0.9) on constant CBR flows
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Figure 5.4: The packet loss rate in experiments in Fig. 5.1 - 5.3

interval for 200 seconds, and x varies between 0.05 and 51.2. For comparison, I conduct the

equivalent experiments on TCP instead of TTFWC. These scenarios are called SlowCC [4],

being widely used to evaluate congestion control behavior on ON/OFF CBR flows.

Fig. 5.1 - 5.3 show utilization of the idle bandwidth of TTFWC and TCP flows. The horizon-

tal axis and the vertical axis represent x and utilization of the idle bandwidth, respectively.

Values are normalized, thus 1 means idle bandwidth is fully utilized by TTFWC or TCP

flows. TTFWC(0.0) (i.e., original TFWC) and TTFWC(0.4) flows are up to approximately

20% less utilization of the idle bandwidth than TCP flows. On the other hand, TTFWC(0.9)

flows, more responsive in the TTFWC design, utilize almost equal idle bandwidth to TCP

flows. I conclude from these results that the TTFWC with the greater tuning parameter

responds to change of the idle bandwidth more quickly. As the result, they achieved higher

throughput than TTFWC flows with the lower tuning parameter. I observed higher packet

loss rate with the greater tuning parameter than with the smaller tuning parameter. Fig. 5.4

plots the packet loss rate during the experiments in Fig. 5.1 - 5.3. I believe the reason is

that the TTFWC mode toggles between the flat cwnd period and cwnd increase period fre-

quently. However, I believe this problem is minor, because it happens in a very small range
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Figure 5.5: Simulation Topology

of congestion patterns.

5.1.2 Throughput and TCP-Friendliness

I evaluate the TCP-Friendliness of TTFWC. I use the dumbbell topology in the simulation

shown in Fig. 5.5. I set the same number of TCP and TTFWC flows, which varies from 1

to 64. The bottleneck bandwidth fixes 15 Mbps with a 20 ms delay and droptail queuing.

The sender-side access links have 100 Mbps bandwidth with 1 ms delay. The receiver-side

access links have 100 Mbps bandwidth with 0 - 2.6 ms delay.

Fig. 5.6 - 5.8 show the throughput of TTFWC and TCP flows. The horizontal axis repre-

sents the number of TTFWC and TCP flows. The vertical axis represents the normalized

throughput. If the TCP flow’s value and TTFWC flow’s value overwrap, it means that TCP

flows and TTFWC flows achieve equal throughput. The bottom of each figure is the packet

loss rate on each trial. From these result, TTFWC is TCP-Friendly regardless of the tuning

parameter value, although TTFWC flows achieve a little lower throughput than TCP flows.

I observed TTFWC flows with the larger tuning parameter achieve higher throughput than
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Figure 5.6: TTFWC(0.0) and TCP throughput

25



 0

 0.5

 1

 1.5

 2

 2.5

16 32 48 64 80 96 112 128

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

TCP Flows
TTFWC Flows(0.4)
Mean TCP
Mean TTFWC(0.4)

 0   

 5

 10

 15

16 32 48 64 80 96 112 128L
o
ss

 R
a
te

 (
%

)

Number of TCP Flows, Number of TTFWC Flows(0.4),
 15Mb/s DropTail

Figure 5.7: TTFWC(0.4) and TCP throughput
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Figure 5.8: TTFWC(0.9) and TCP throughput
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those with the smaller tuning parameter (i.e., closer to the original TFWC). TFWC(0.4)

flows achieve approximately 2% higher throughput than TFWC(0.0) or the original TFWC.

TFWC(0.9) flows achieve approximately 10% higher throughput than TFWC(0.0). There-

fore, I conclude that TTFWC certainly achieves the higher throughput than the original

TFWC with the larger tuning parameter.

5.1.3 Smoothness

Finally, I evaluate TTFWC smoothness. I adopt the same dumbbell topology as that for

evaluation in Section 5.1.2. The number of TTFWC and TCP flows are set to eight. I adopt

this value to observe steady-state behavior of both TCP and TTFWC flows, avoiding an

unacceptable number of timeouts.

Fig. 13 shows throughput behavior of these eight TTFWC flows. The horizontal axis

represents the time, and the vertical axis represents throughput. The bottom graph shows

behavior of TCP flows competing with TTFWC(0.9) flows for comparison with TTFWC

behavior.

I observe almost the same throughput behavior between TTFWC(0.0) and TTFWC(0.4)

as the difference of the tuning parameter value is small. On the other hand, I observe

that TTFWC(0.9) flows exhibit larger oscillation as they respond to the packet loss more

aggressively. However, their behavior is much smoother than that of TCP flows (See top

figure). From these results I conclude TTFWC behaves as intended in its design, which

achieves higher throughput with the larger oscillation when the tuning parameter value is

greater.
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5.2 Experimental Results

In this section, I evaluate TTFWC with the implementation. Fig. 5.10 shows the experimen-

tal setup. I use four machines: two sender nodes marked A and C and two receiver nodes

marked B and D. These senders share a bottleneck link that is regulated over dummynet

[19]. One of the sender nodes is equipped with an Intel Core 2 Duo 1.6 Ghz CPU and 4GB

memory. The other node is equipped with an Intel Core i5-2520M CPU and 4GB of memory.

Throughout all the experiments in this section, I set the bandwidth of the bottleneck link

to 10 Mbps and 250 Mbps to emulate relatively low- and high-speed networks.

I measure TTFWC and TCP throughput by iperf [2] in the experiments except for Section

5.2.3. The sender continues to send 16Kbytes data during 200 seconds with the configuration

that produces five-second average of its throughput. I observe processing time by using

ftrace tool [1] in Section 5.2.3.

5.2.1 Fairness

I analyze the protocol fairness between competing TTFWC flows by using two kinds of

viewpoints. First, I measure TTFWC throughput with different RTT. When flows with

different RTT compete, more bandwidth is unfairly allocated to the flow having smaller

RTT. Thus, I can see that a user with longer RTT may not be able to obtain sufficient
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bandwidth by the congestion control. Second, I measure TTFWC throughput on a network

that competes same protocol with same RTT. In this test, we check the fair allocation of

the bandwidth for each protocol, when all the flows in the network uses the same congestion

control. In these experiments, I inject three parallel flows for each machine and set their

delay of 16 ms, 32 ms, 120 ms, 240 ms and 320 ms.

I explain the index of fairness as below. Let xi(k) be the average throughput of flow i in

the five-second period k. If the same link pressure sustains the composition of flows during

k = 1, ...,m and changes when k is m+1, I define that [1, m] is the maximum-length interval

over fixed link state. Suppose there are n active flows in this interval, indexed by i = 1, ..., n,

let

xi =
1

m

m�

k=1

xi(k) (5.1)

Jain’s fairness index [15] for the interval [1, m] is defined,

F =
(
�n

i=1 xi)2

n(
�n

i=1 xi
2)

(5.2)

In this case, F = 1 indicates the ideal condition for the network.

Fairness with Different RTT

I measure the protocol unfairness between competing flows with different RTT. I show a

brief scenario as below. The node A transmits three TTFWC flows to the node B. RTT

between the node A and B is 120 ms and its value is static. The node C also transmits

three TTFWC flows to the node D. To measure RTT unfairness of TTFWC, I change RTTs

between the node C and D, and observe throughput of the flows transmitted from the node

A and C. I performed equivalent tests with RENO and CUBIC instead of TTFWC, then

compare each of fairness by using Equation 5.2.

Fig. 5.11 plots the results of experiments. The horizontal axis of the figure shows RTT in

the network and the vertical axis shows fairness. TTFWC achieves inversely proportional
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throughput to RTT and the results mostly support this observation on a range of the tuning

parameter value of TTFWC.

From the figures, we can see that the fairness of TTFWC little differs from tuning parameter

values or from other congestion control in the low-speed network. This results indicate that

TTFWC remains fairness in the low-speed network.

In the high-speed network, TTFWCmarks the same result as well. Interestingly, TTFWC(0.9)

over the short RTT is significantly fairer than RENO and CUBIC. I believe that idle band-

width in the network affects the result. Comparing to low-speed network, the flows generates

idle bandwidth between flows with different RTT in the high-speed network. In addition, as

TTFWC flows with short delay are more aggressive to available bandwidth than that with

long delay. Thus, TTFWC flows with different delay achieve fairer allocation of bandwidth

than TTFWC with smaller tuning parameter value.

Fairness with same protocol

In this subsection, I evaluate the fairness between active TTFWC flows. I run three TTFWC

flows for each node and inject 10Mbps bottleneck link. The competing flows are set with

the configuration of same congestion control and with same RTTs. Then, I change the

bandwidth of the bottleneck link to 250Mbps for the equivalent experiment.

Fig. 5.12 plots the protocol fairness in the low- and high-speed network. The horizontal

axis and the vertical axis show RTT in the network and the index of fairness, respectively.

When I see the fairness of TTFWC in the low-speed network, TTFWC marks less fairness

than CUBIC or RENO when the propagation delay is long. I assume that, when two kinds

of window behaviors of TTFWC are mixed in the link, the different throughput between

competing flows grows up. On the other hand, when the propagation delay is short, the

fairness of TTFWC is same with others.
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Figure 5.11: Fairness with six active flows three flows with 120 ms delay and the other
three flows with varying delays. Results are shown for 10 Mbps (top) or 250 Mbps (bottom)
bottleneck bandwidth.
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Figure 5.12: Fairness of active six flows under symmetric conditions (same propagation delay,
shared bottleneck link, same congestion control algorithm). Results are shown for 10Mbps
(top) or 250Mbps (bottom) bottleneck bandwidth.
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The same observation with high-speed network can be observed in in the low-speed net-

work. We do not observe the difference between tuning parameter values and TTFWC

keeps fairness only when the propagation delay is short.

It is difficult to avoid protocol unfriendliness and insufficient throughput performance on a

symmetric network. This is the limitation of TTFWC because TTFWC design assumes to

get high throughput in a network that RENO flows competes in the link. I will address this

issue in future work.

5.2.2 Throughput and TCP-Friendliness with different RTT

In this subsection, I describe TTFWC throughput and TCP-Friendliness. Unlike the simula-

tion results, I set three TTFWC flows and three RENO flows in the link with different RTTs.

Fig. 5.13 - 5.15 show the results when the bandwidth of the bottleneck link is 250Mbps and

Fig. 5.16 - 5.18 plot when the bandwidth is 10Mbps. The horizontal axis and the vertical

axis represent RTT and normalized throughput, respectively.

TTFWC gets high throughput in proportion to tuning parameters. When I compute average

throughput, TTFWC with great tuning parameter value increases 4% of original TFWC

throughput in the low-speed network and TTFWC with large tuning parameter increases

10% of TTFWC throughput in the high-speed network.

From the viewpoint of TCP-Friendliness, TTFWC remains totally TCP-Friendly in the low-

speed network and acceptable TCP-Friendly in the high-speed network. Although TTFWC

throughput is proportion to tuning parameter values, there is little difference between TCP

and TTFWC throughput. On the other hand, in the high-speed network, TTFWC with

large parameter value gets high throughput comparing to TCP. But the longer propagation

delay I set in the network, we do not observe the difference between TCP and TTFWC

throughput. I will show you detail observation and consideration as below.
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Figure 5.13: TTFWC(0.0) and TCP throughput (Bottleneck Link 250Mbps)

TTFWC reacts to latency of the link in high-speed network when we see Fig. 5.13 - 5.15.

In the high-speed network with short delay, the bandwidth utilization of TTFWC(0.9) is

allocated more than TCP. I believe the influence of temporal idle bandwidth generated by

TCP. In the high-speed network, sawtooth shape throughput behavior makes idle bandwidth

between competing flows. As TTFWC window behavior does not make idle bandwidth, it

causes the throughput difference between TCP and TTFWC flows.

The same result is observed in low-speed network. When the available bandwidth is limited,

TCP leaves very little bandwidth in saw-tooth shaped throughput behavior. Therefore,

TTFWC throughput is basically as much as TCP from Fig.5.16 - 5.18.

5.2.3 CPU Processing Time

I measure the processing time in congestion avoidance procedure and in ssthresh recalcu-

lation with ftrace. The ftrace tool traces procedures inside the kernel, thus I can use

this tool for debugging or analyzing latencies and performance issues from user-space. I

measure congestion avoidance procedure over 200,000 calls and sshthresh procedure more

than 1,500 calls for analysis.
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Figure 5.14: TTFWC(0.4) and TCP throughput (Bottleneck Link 250Mbps)
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Figure 5.15: TTFWC(0.9) and TCP throughput (Bottleneck Link 250Mbps)
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Figure 5.16: TTFWC(0.0) and TCP throughput (Bottleneck Link 10Mbps)
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Figure 5.17: TTFWC(0.4) and TCP throughput (Bottleneck Link 10Mbps)
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Figure 5.18: TTFWC(0.9) and TCP throughput (Bottleneck Link 10Mbps)

My question is “How long does it take to process TTFWC in comparison with other con-

gestion control algorithms? Is TTFWC impractical for machines?” As TTFWC calculates

cwnd with loss event history, it is unavoidable to take more processing time than RENO. I

compare TTFWC processing time with RENO or CUBIC in this subsection.

Table 5.1 shows that TTFWC takes nine times more processing time than RENO, however,

TTFWC takes as long as CUBIC. Recall the discussion some notes about inaccurate ALI

calculation in Section 4.1. When I use the accurate ALI calculation in congestion avoidance

phase, I find that the ALI calculation adds about 0.78 µs to the current processing time of

TTFWC. Although TTFWC does not call the ALI calculation when the number of packets is

under the estimation of next loss interval, I find that this procedure makes a machine whose

resources are limited. In order to reduce the processing time, I adopt the inaccurate ALI

calculation. As the result of this modification, the TTFWC processing time is reasonable,

because optional congestion control procedure including CUBIC cannot avoid a little higher

overhead than RENO. In addition, since CUBIC is used as the default congestion control of

Linux, the processing time of TTFWC to RENO is not so important.

I find that there is only a small difference of processing time between different values of the
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Table 5.1: CPU processing time for congestion avoidance procedure

Protocol Average Time Standard Deviation

TTFWC(0.0) 1.770 µs 0.271 µs

TTFWC(0.4) 1.951 µs 0.380 µs

TTFWC(0.9) 1.975 µs 0.400 µs

CUBIC 1.771 µs 1.069 µs

RENO 0.240 µs 0.015 µs

tuning parameters. The difference indicates the processing time of RENO cwnd estimation

and additional cwnd procedure. Also, I observe that the standard deviation of TTFWC is

proportional to the tuning parameter value. The result tells µs the condition branching that

adds base cwnd.

Table 5.2 shows the processing time to calculate ssthresh for each protocol. In this proce-

dure, TTFWC sender updates the loss histories, then calculates the next window size and

additional cwnd. Therefore, based on high overhead in TTFWC, I compare how long the

processing time of TTFWC differs from others. I observe that TTFWC procedure takes

twice as long as CUBIC or RENO and the standard deviation of processing time of TTFWC

affects the value of parameters from the tables.

Now, I return the first question. Although the answer to the question is not definitive,

I believe that the total processing time of TTFWC is not different from the others. For

example, CUBIC have two other procedures: one is parameters’ control upon receiving

ACKs and the other is when the congestion state of TCP is changed. The average of the

former is 1.307 µs and that of the latter is 0.100 µs. In addition, the former procedures are

called more frequently than the procedure of ssthresh recalculation. When I consider the

total processing time of the procedures, I can see that CUBIC is about the sames TTFWC.
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Table 5.2: CPU processing time for loss recovery procedure

Protocol Average Time Standard Deviation

TTFWC(0.0) 2.200 µs 0.052 µs

TTFWC(0.4) 2.258 µs 0.508 µs

TTFWC(0.9) 2.159 µs 0.439 µs

CUBIC 0.189 µs 0.00 µs

RENO 0.225 µs 0.00 µs
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Chapter 6

Conclusion and Future Work

In this thesis, I have proposed and examined TTFWC for multimedia streaming, which

allows us to tune the balance between smoothness and the sending rate. The motivation is

to improve TFWC throughput for throughput-sensitive multimedia services. As I control

TTFWC throughput by using tuning parameter, I can choose whether or not to use smooth

congestion control based on the application type.

I find that TTFWC with a large tuning parameter value keeps a high sending rate in the

network even in the case of frequent bandwidth changes through the simulation result and

real-world experiments. This is a significant contribution, because such services have becomes

common with the deployment of Content Delivery Networks (CDNs).

In future work, I address three issues: first is the dynamic adaptation of the tuning parame-

ter, second is the convergence between compatible TTFWC flows, and third issue is to adapt

it for use in the high-speed networks.

The first issue is very difficult to improve because the number of frames are not predictable,

especially video applications. Although I understand the number of packets stored in the

queue, the data rate generated for encoded video varies second by second, making flexible

selection of the tuning parameter hard. I will research the inner structure of multimedia

application and consider approaches for dynamic control.
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The second issue is the limitation of TTFWC design. When we compare throughput-sensitive

TTFWC to original TFWC, the TTFWC design towards high throughput affects protocol

friendliness and flows’ throughput between competing flows.

The third problem is a significant concern for future congestion control algorithms. The

limitation of my proposal is its formula-based congestion control algorithm. This means that

TTFWC throughput does not exceed RENO throughput. Today, it is important to have

not only TCP-Friendliness but also high throughput with fast convergence in the high-speed

network. For example, CUBIC is used as the Linux default congestion control algorithm

despite not being TCP-Friendly in the long, fat pipe. I think that one of the messages of

this research is the requirement to satisfy both stability and high transmission rates. Thus,

I will consider what approaches are suitable for multimedia streaming in the high-speed

network.
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