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Abstract

Pattern-based Matrix-size Optimization

Algorithm for Compressive Sensing in

Real-world Body Sensor Networks

Summary

Compressive Sensing (CS) is a novel approach for data representation, which

can represent signals at a rate below the Nyquist rate with low computation costs

on encoder. For these characteristics, CS is very suitable for low power sensor

nodes to save power consumption that is a primary problem in Wireless Sensor

Networks (WSN). But there are many problems when using CS in a real environ-

ment, especially in Body Sensor Network which aims to monitor human health

and detect context. One of these is that pattern of sensor values change dynami-

cally. It decreases the efficiency of power consumption and accuracy of recovery.

To solve the problem, we propose Pattern-based Matrix-size Optimization Algo-

rithm (PMOA), which aims to improve the accuracy of exact recovery and power

consumption. We performed experiments both in real world and simulation and

the result show our approach is effective in energy consumption and reliable. The

result shows our approach can achive the improvement of lifetime by 11.7%.

Keywords:

1 Wireless Sensor Networks 2 Body Sensor Networks 3 Compressive Sensing
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卒業論文要旨 2012年度 (平成24年度)

パターン情報を用いたボディセンサネットワークに

おける圧縮センシングのための効率化手法

論文要旨

圧縮センシングは、低いエンコードコストでより高い圧縮率を得られるデータ圧縮

手法である。その特徴より、無線センサネットワークでの応用に適しているが、実世

界で運用するためには様々な課題がある。センサデータは動的に値が変化するので、

正しい設定をエンコードで行うことが出来ず、復元率が下がったり、より多くの電力

を消費してしまう。特に、人のモニタリングやコンテキスト検知を行うことを目的

としたボディセンサネットワーク環境では、　顕著にその影響が出てしまう可能性

がある。本研究では、あらかじめ設定されたパターンにより、動的に圧縮センシン

グのパラメータを変化させる、Pattern-based Matrix-size Optimization Algorithm

(PMOA)を提案し、より高い復元率と低消費電力を実現する。実験の結果、PMOA

は 11.7%の消費電力の改善を可能にした。
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Chapter 1

Introduction

In recent years, Wireless Sensor Networks (WSN) are becoming important

many applications such as environmental monitoring, target tracking and

health monitoring. In this chapter, we will show the background, motivation

and objective of the research, followed by the organization of the thesis.

1.1 Background

By the development of Micro-Electro-Mechanical Systems (MEMS) and

wireless technology, sensor nodes have been more smaller and cheaper than

previous one. As a result, various kinds of applications such as environmen-

tal monitoring, target tracking are proposed by many researchers. Among

these, one of the most attractive applications is Body Sensor Network (BSN)

that aims to monitor human health or detect context by putting sensors on

human body and processing these data. Although these developments are

remarkable, there are still problems in practical use of it; Since tiny sensor

nodes are designed cheap and small, they have a few resources, such as CPU,

storage, memory and energy sources. Especially, compared to normal WSN

applications, WeSN handle with large and complex data, including multi-

axis acceleration and pressure, in high frequency. Therefore, the WeSN node

is under harsh conditions in terms of data processing and energy consump-
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tion. To solve this, many developer and researcher propose protocols and

algorithms, including data compression and aggregation.

On the other hand, Compressive Sensing (CS) is emerging as a novel data

sensing paradigm that overturn the previous data representation theory; CS

can express certain data under the Nyquist rate. Since CS encodes the data

with a few extra computation costs, it is very suitable for tiny sensor nodes

with low power CPU. Hence, many research apply CS theory to WSN in

order to reduce the data and energy consumption that is one of the most

important problem in WSN research.

1.2 Motivations and Objective

This thesis proposes a system architecture that allows tiny sensor nodes to

apply CS in real-world WeSN. This system architecture aims to maximize

compression ratio and recovery reliability of CS along specific WeSN appli-

cation. It is important to achieve high compression ratio when compressing

and reducing the sensing data because sensor nodes have severe constraint on

resources. Although sensor nodes utilize low-energy, low-power radio chips,

wireless communication consumes large amount of energy compared to other

operations, such as calculation, sensing and data storing. Therefore, it is

important to maximize the CS efficiency and minimize the length of pay-

load. Besides, the recovery reliability of CS depends on signal characteris-

tics. Since, sensor data changes dynamically and also changes their state

especially in WeSN that generally uses sensor which collect continous data

such as acceleration, pressure and gyro. encoding and decoding strategy of

normal CS is unstable and will cause a reduction in the application service.

In order to solve these problems, we propose Pattern-based Matrix-size

Optimization Algorithm (PMOA) which configures some CS parameters

along application state. This thesis describes the design and implementa-

tion of this architecture and evaluates this architecture in some real world

environment and in simulation.
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1.3 Organization

This thesis is organized as follows. In Chapter 2, we introduce the back-

ground of WSNs and WeSNs. We then present the importance of data com-

pression in wireless sensor networks, and describe algorithms and related

works in Chapter 3. In Chapter 5, we present our approach on utilizing

PMOA, an algorithm that improves efficiency and reliability in CS and ex-

plain its design. Chapter 6 describes our implementation of PMOA. We

present the method and results of evaluation in Chapter 7. Finally, in Chap-

ter 8, we conclude this thesis, and discuss our future work.
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Chapter 2

Body Sensor Networks

In this Chapter, we discuss wireless/body sensor networks and energy con-

sumption of tiny sensor nodes. First, we discuss traditional WSNs consisted

of static sensor nodes. We then explain the energy consumption of tiny sensor

nodes and finally, we describe our target environment, Body Sensor Networks

(BSN), issues and requirements.

2.1 Wireless Sensor Networks

For the past few decades, the advances in technologies that relate to MEMS,

various kinds of sensors, and batteries have lead to the development of tiny

device equipped with sensors called sensor nodes. The improvement in these

technologies have made sensor nodes smaller, cheaper and smarter. In ad-

dition, progress in wireless technologies provided these the ability to sensor

nodes in order to communicate with other ones. These sensor nodes with

wireless communication abilities are called wireless sensor nodes, whose ex-

amples are mote, SunSpot (also called OracleSpot), and µpart. Firstly, we

will show various kind of applications and beneits of WSN. We then introduce

the application area of WSN.
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Figure 2.1: Overview of WSN applications [1]

2.1.1 WSN applications

WSN applications can be divided into two categories; environmental mon-

itoring and target tracking (Fig .2.1). Monitoring applications include in-

door/outdoor environmental monitoring, power monitoring, factory automa-

tion and etc. Tracking applications include tracking or counting objects,

animals, humans and vehicles [1]. We will introduce examples of each appli-

cation.

Macroscope of redwood [4] is a typical environmental monitoring appli-

cation. Using WSN, this work monitors and records environmental data

including temperature, humidity and solar radiation at the redwood trees

in Sonoma, California up to 44days. Since the requirements of local biolo-

gist, including the dispersal patterns of wind-borne seeds, the water profiles,

insect densities, the micro climate of meadow and etc, can be acquired by

processing these data, which was previously achieved by walking across the

forest and colleting these, benefits are significantly meaningful.

Design and deployment of industrial sensor networks [5] focuses on pre-
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ventive equipment maintenance and it’s cost. Preventive equipment mainte-

nance is the idea that maintenance is needed only when equipment failure

is predicted; regular check is not needed to reduce maintenance cost. This

work achieved it by using WSN and gathering vibration data and also shows

that the deployment cost of wireless sensor network system is cheaper than

wired sensor network system.

ZebraNet [6] aims to track animal migrations by using mobile wireless

sensor network. This system used GPS technology to record high-accurate

position data. From this position data, the biologists can better understand

the animal movements throughout the day.

2.1.2 WSN research area

To enable WSN application, described as above, there are sill many tasks

and problems. These can be roughly classified to three areas (Fig .2.2);

(1) System area, including platform, OS, storage and perform evaluation.

(2) Communication protocol area which deal with data link, network and

transport layer protocol,

(3) Service area includes localization, data aggregation, compression, secu-

rity and etc.

Since wireless communication is the main factor of energy drain which is

fatal problem for tiny sensor node which a few resources, communication pro-

tocol research is prosperous particularly. New protocols are needed because

that sensor nodes have to self-organize, self-manage and self-control networks

in high efficiency in order to reduce communication cost. However traditional

networking protocols are not designed to meet these requirements. We will

describe specifically about the relation between wireless communication and

energy consumption at section 2.3.

In this point of view, our work addresses on service area. This area

does not lead to improvement on these problems directly as communication

6



Figure 2.2: Classification of WSN research issues [1]

protocol research, but it can enhance these communication protocols and

application service. As a result, a significant improvement can be seen on

WSN world. In general since a certain service, such as data processing and

compression, is independent from network protocols, the benefit of these re-

search is acquired without any interference between communication protocol

and service. Therefore, in recent years, service area research is becoming also

important issue in WSN.

2.2 Body Sensor Networks

As described at 2.1.1, WSN provides various kinds of applications such as

monitoring and tracking. Our research targets on certain kind of sensor

network and application; Body Sensor Networks (BSN) as known as Body

Sensor Networks (BSN), generally aims to monitor human health or detect

context of user. According to Wireless Body Area Sensor Networks Signal

Processing and Communication Framework [7], the home health monitoring

market in 2010 was about $10 billion, and this market is growing about

10 percent at annual. Therefore, it can be said that it is more practical and

7



attractive in this area. In this section, we show some examples of BSN firstly.

We then discuss issues and problems of this area.

2.2.1 Applications

Many application of this area is health monitoring. FASH (Fatigue Alerting

SHoes) [8] is a typical one. This system aims to prevent elders from falling

accidents by detecting their fatigue. To achieve this, FASH uses a pressure

sensor embedded in a pair of shoes and notifies the use of ”Tiredness Scale”,

a scale defined in order to show the degree of tiredness. The result shows that

pressure sensor has an ability to detect tiredness of user and this notifica-

tion is siginificantly important to prevent falling accidents. They discovered

three differences in pressure value before and after fatigued; (1) decreases

in maximum pressure, (2) increases time depending on foot on the ground,

(3) transition of pressure in between feet. Based on this observation, FASH

detects the fatigue.

MARS: A Muscle Activity Recognition System [9] is also typical system,

but MARS is designed as more general than FASH. MARS aims to uniquely

distinguish and identify muscle activity. This data is important for many

reasons. For instance, the fatigue level of muscle can be calculated based

on sports medicine theory and this, which prevents injuries and accidents.

Besides, it is useful for precision training and allows athletes to monitor the

progress. MARS achieved this by using inertial sensors and gathering the

vibration of active muscles. To evaluate MARS, they conduct the experiment;

three isolation exercise, including leg extension, standing leg curl and calf

raises work, is selected and these exercise use 3 leg muscle groups. Hence,

MARS is tring to distinguish these muscles. Then, the result shows that

MARS can distinguish muscles with greater than 85% precision.

BodyScope [10] is a platform for activity recognition that enables vari-

ous kind of applications, such as context-aware and life-logging. Although

the implementation cost of wearable sensors on user effects on usability, it is

needed that user need to waear multiple sensors for high accurate recognition.

8



BodyScope focuses on this issue and provides wearable acoustic sensor de-

signed to meet this requirements.This sensor records the sounds in the user’s

throat area and classify them into user activities, such as eating, drinking,

speaking, laughing and coughing. In a small-scale real world experiment,

BodyScope was able to identify four activities (eating, drinking, speaking

and laughing) at 71.5%.

2.2.2 Issues and Problems

Although many protocols are proposed for traditional WSN (described in

2.1.2, they do not well work in BSN due to the unique features and application

requirements. The main two difference between BSN and WSN are listed as

follows [11]:

1. Density

The density of sensor network is an important factor. Since, BSN

nodes are typically placed on the human body, or under clothe, the

network consists of 10 nodes at most within body area. On the other

hand, traditional WSN uses more nodes and deploys wider area. For

example, in A macroscope in the redwoods [4], they deployed 40 nodes

in whole redwood which height is 70m. However, FASH [8] only uses 2

nodes in users shoes. This makes a difference in the policy of protocol

and application design.

2. Data Type

Most BSN collect continuous data such as acceleration, pressure, vibra-

tion and sounds to meet their requirements. Compared to data that is

collected by traditional WSN systems, these need to be gathered in high

frequency. Traditional WSN collect the data per few seconds-minutes

(ex, in A macroscope in the redwoods [4], each data is gathered per

5 minutes). However, BSN need to do per at least tens of millisec-

onds. As a result, in short term, there is a considerable difference in

the amount of data made by each node between WSN and BSN.

9



There is, of course, more difference between them; such as latency, mo-

bility, flexibility and cost-effeciency. But especially density and data type are

the most important. As described in sec .2.1.2, communication protocol is

the main area of WSN research. Since wireless communication is the main

factor of energy drain (we will discuss at 2.3), deciding efficient path to host

and minimizing number of hop is needed to reduce energy consumption of

nodes. Therefore, routing protocol is the key issue and nearly decides the

lifetime of network in traditional WSN. However, BSN isn’t under this condi-

tion; routing is not needed because sensor nodes and the host deploy within

human body area and can deliver their packet to the host by one hop in the

most case. This means that the demands of efficient routing protocol are not

required as the WSN.

We show that the energy consumption problem is hard to be solved by

only improving communication protocols. Although BSN nodes force to han-

dle with bigger and more complex data than WSN ones, traditional stategy

to reduce energy consumption doesn’t work well. To break this condition,

another energy saving strategy is urgently required.

One of the efficient strategy is data compression. As described 2.3, the

enegy consumption of CPU is much smaller than wireless communication

cost. This suggests that it is effective to compress that data and reduce

the number of transmission or the length of payload. Although There are

some works which focus on this, such as [12], [13], some problems still remain

especially in BSN.

2.3 Energy Consumption

In this section, we review the energy consumption problem that is the main

issue of WSN research. Firstly, we study the hardware of tiny sensor node

and enegy consumption of each part. We then show more specific energy

consumption when node sends a packet.

10



2.3.1 Energy Consumption Model

There are many works which address energy consumption modeling and es-

timation, such as [14], [3], [15], [16]. It is difficult to estimate or precisely

obeserve energy consumption because they have unstable energy sources and

each node has a individual difference at level that can’t be ignored. In ad-

dition, since energy consumption is the most considerable problem of WSN,

the result of these works allow researcher and designer to decide a policy

of protocol, algorithm and application. Hence, these works are significantly

meaningful.

Experimental Evaluation of a WSN Platform Power Consumption [2] is

one of them. They conduct the experiments in real WSN platform, such as

TMote Sky [17] and telosB [18] mote that are widely used in WSN research,

in order to observe energy consumption exactly. According to this work,

in general, sensor node has five energy drain modules; CPU Module, Flash

Module, Timer Module, LEDs, Wireless Module and they estimate specific

energy consumption for each module. Typically, CPU module and Wireless

module have low power mode in order to control their energy consumption.

They also confirm each mode and result is described at Fig .2.4 and Fig .2.3.

Compared to CPU module whose current is 2.6 mA at highest when it com-

mands WHILE loop without using any low power mode, wireless module is

outstanding; The current is 8.5 mA at least even when the module uses the

lowest power mode. Since other modules are much less than this value, it can

be said that wireless module is the main factor of energy drain of wireless

sensor nodes. Hence, to reduce wireless module energy consumption, the

research of an efficient routing protocol which decreases the number of data

transmission has been actively conducted.

2.3.2 Wireless Communication Cost

We then study the specific energy consumption of data transmission in tiny

sensor nodes. An Energy Model for Transmission in Telos-based Wireless
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Figure 2.3: Instruction execution power consumption [2]

Figure 2.4: Radio power consumption [2]
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Figure 2.5: The results of energy calculation (µJ) [3]

Sensor Networks [3] estimate the energy consumption when sensor nodes

send only 1 byte. The result is shown in Fig .2.5.

According to this, there is a clear relation between packet size (or length)

and energy consumption. Therefore, it is effective not only reducing the

number of data transmission but also shortening packet payload.

2.4 Summary

In this Chapter, we studied the application and research area of Wireleess

Sensor Networks and Body Sensor Networks. Although WSN has significant

benefit for monitoring and tracking application, there are a lot of problems

especially energy consumption caused by resource constrains of sensor node.

Body Sensor Network is one of WSN types and applications, which monitor

or detect user’s health and context in most case. Because of the density and

the type of sensing data, traditional energy efficient strategy, such as routing

protocol and time synchronization, is not suitable for BSN. The efficient

strategy is data compression to solve the energy consumption problem and

to be suitable for BSN.
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Chapter 3

Compressive Sensing

In this Chapter, we discuss Compressive Sensing (CS) that is a novel data

compression scheme. We firstly introduce theorical basics of CS and then

show related works and discuss their problems.

3.1 Compressive Sensing

In this section, we will describe the CS basics. We firstly introduce the

abstract idea of CS. The CS basic theory can be divided into encoding and

decoding [19], [20], [21], [22] and we then study each theory.

3.1.1 Abstract Idea

It is well known that human looks at a part of the object when he/she

recognize it; human has an ability in their brain, which can recover the correct

image from incomplete information. For instance, look at following sentence

which is passage at the beginning of Lewis Carroll’s Alice’s Adventures in

Wonderland [23]:

The ra*bit-h*le went strai**t on lik* a tu*nel for some way,

and then dipped suddenly do*n, so suddenly th*t Al**e had not a
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mom*nt to think ab**t sto*pin* hers**f before sh* found herself

fal*in* down a very de*p we*l.

Although some characters are replaced intentionally, you could read and un-

derstand this sentence. It is because that you (may) know the story of Alice’s

Adventures in Wonderland and you have the common knowledge about En-

glish. We call this condition a priori knowledge.

And then, we look the same sentence once again.

The *****-h*** *en* straight on like a t**n*l for some w*y,

and then d***ed suddenly down, so suddenly that Alice had not

a mom*** to t**k about sto****g herself before she fo**d herself

falling down a very deep well.

You may not read or understand this sentence completely even you have a

priori knowledge. This is simply why that the position of characters which

replaced are too wrong. It is almost impossible that recover rabbit-hole from

*****-h*** even if the human brain is clever enough. We call this constrain

appropriate selection.

As shown above, human can acquire the whole data from incomplete

information based on their a priori knowledge and appropriate selection. In

CS, each is equivalent to the following things: a priori knowledge is Sparsity

and appropriate selection is Random Sensing.

3.1.2 Compressive Sensing Encoding

Sparsity

Encoding depends on sparsity of signals. Sparsity is the idea that when

signals are expressed in a convenient basis (such as a fourier or a wavelet

basis), nearly all bases have zero or very small values; a few basis have

nonzero values.

For example, sounds are sparse signal. Needless to say, sounds are vi-

bration of the air and can be expressed into waveform in time domain such

15



Figure 3.1: Sound waveform

as Fig .3.1. Applying fourier transform sounds also can be expressed in fre-

quency domain and show result in Fig .3.2. It is easy to understand that

the sparsity of sound signal. And next example is acceleration of human

movement. Fig .3.3 and Fig .3.4 shows that the acceleration of human walk-

ing and apply discrete cosine transform in order to analyze spectrum. This

also shows the acceleration data is sparse; most coefficient have 0 or nearly

0 value and a few one has meaningful value. As shown in examples, many

natural signal or data, such as sounds, acceleration, pressure and image, can

be transformed to sparse signal.

We then study the mathematical definition of sparsity. Let S =

[s1, s2.....N ] denotes the N-length original signal, and Ψ = [ψ1, ψ2....ψN ] de-

notes the convenient basis. We acquire the following equation:

S =
N∑
i=1

ψixi = Ψx (3.1)
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Figure 3.2: Sound representation in frequency domain

Figure 3.3: Acceleration data of human walking
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Figure 3.4: Acceleration data representation in frequency domain

where xi is the coefficient sequence of S (Fig .3.5) when there are k−nonzero

entries of xi, S is called k−sparse.

Random Sensing Problem

We then study how to compress and reduce the sparse signal. We consider a

general linear measurement process between sparse signal x (N -length) and

M×N (M < N) measurement matrix Φ = {ϕj}Mj=1 defined with independent

identically distributed (i.i.d.), such as Gaussian or Bernoulli distribution.

y = Φx = ΦΨS (3.2)

y is M−length vector, thus, we succeeded in reducing N − M values

(Fig .3.6).

Considering two matrices Φ and Ψ which are acquired from these for-

mulas (3.1 and 3.2), we introduce the condition to improve exact recovery
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19



accuracy, called incoherence. Comparing the convenient basis Ψ and the

measurement matrix Φ, if the relation between these is low, the condition is

called incoherence. Mathematically speaking, this relation is calculated from

the correlation of each matrix elements; when Ψ and Φ contain correlated

elements, the coherence is large.

µ(Φ,Ψ) =
√
n · max

1≤k,j≤n
∥⟨ϕk, ψj⟩∥ (3.3)

To minimize the above formula, CS can achive high reliability.

3.1.3 Compressive Sensing Decoding

L1−norm minimization

Next, we study how to recover original signal S from compressed signal y

and measurement matrix Φ. We can recover S by solving L0− norm min-

imization, which minimizing 0−norm subject to linear equality constrains

(y = Φx):

x̂0 = arg min
x

∥x∥0 subj. to y = Φx (3.4)

Superior point of this idea is that if M > km, L0−norm minimization

can always recover S without the condition of Φ. Although L0−norm mini-

mization can achieve high reliability, this is NP − hard problem [24]. Thus,

we hove to consider realistic way. In general CS, L1−norm minimization is

used to solve this problem. Formula is as follow:

x̂1 = arg min
x

∥x∥1 subj. to y = Φx (3.5)

Since L1−norm minimization can be easily solved as liner program-

ing, this is served as alternative. Needless to say, it is nonsense that

L1−norm minimization can’t recover original signal S. However, surpris-

ingly, L1−norm recover original signal S with high probability when S is

sparse [19], [20]. Therefore, L1−norm minimization is generally used in CS.
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Restricted Isometry Property (RIP)

x̂1 equals to x with high probability under particular circumstance, which

is called restricted isometry property(RIP) [24]. For 1 ≤ K ≤ N define the

isometry constant δS of Φ

(1− δN)∥x∥22 ≤ ∥Φx∥22 ≤ (1 + δN)∥x∥22 (3.6)

holds for all K−sparse vector x. If K exists when δ2K <
√
2 − 1 holds for

Φ, L1−norm minimization can recover for all K−sparse vector x with high

probability.

3.2 Compressive Sensing in WSN

In this section, we review related works that use CS in WSN and discuss

their problems.

3.2.1 Related Works

Since CS can encode and reduce the data with extra low computation costs,

It is very suitable for tiny sensor node which has a few resources. Thus, there

are many works that tries to apply CS to WSN to reduce energy consumption,

signal processing and bandwidth.

In-situ Soil Moisture Sensing [25] focuses on monitoring soil moisture

using a wireless underground sensor network. To reduce cost and prolong

lifetime, this work applies CS based sensing scheduling algorithm. They

designed two matrices, measurement matrix Φ and representation basis Ψ,

to address these issues. The design policy of these is following:

1. Measurement Matrix

Measurement matrix corresponds to sensing scheduling; if the column

which position is (m,n) (1 ≤ m ≤ M, 1 ≤ n ≤ N) has 1, the m−th

measurement is taken at n−time. Periodic and random policy was used
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for definition of this matrix. This is called Measurement scheduling

Matrix.

2. Representation Basis

Representation basis is designed to meet two requirements: (1) It guar-

antees to convert natural signal to sparse representation. (2) It meets

the incoherence between Measurement matrix Ψ. To achieve these re-

quirements, they used the characteristics of soil moisture signals; The

soil moisture change relatively smooth except at the onset of a rainfall.

Based on this observation, they designed representation basis Ψ called

different matrix.

Numerical experiments are performed on both real and simulated data.

The result shows that these approach and design is extremely effective.

Compressive Oversampling [26] is also one of CS applications, which use

a randomness of CS and add a redundancy and robustness to data transmis-

sion. Since measurement matrix is normaly, except for a certain application

such as above, defined with i,i,d, the worth of each measurement value is

equal. Focusing on this point, this work designed a measurement matrix Φ

to afford a redundancy to wireless data transmission by adding some extra

rows a to Φ, which is called Compressive Sensing Erasure Coding (CSEC).

It is possible to recover exactly on decoder even if some packets are lost

via wireless transmission within RIP hold. Simulation based experiments

are performed and results shows that CSEC can achieve robust data trans-

mission. This work suggests that CS has applicability not only to energy

consumption but also to data transmission.

Compressive Sensing Method for Human Activity Sensing [27] proposes

the CS-based framework for human activity monitoring in mobile devices,

such as mobile phone and smartphone. Since mobile device, suceas mobile

phone and smartphone, has resource constrains as same as wireless sensor

nodes, it is significantly meaningful to reduce communication costs and power

consumption. Normally, 3-axis accelerations are used for human activity
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recognition application; the Euclidean norm defined as
√
Acc2x + Acc2y + Acc2z

is more convenient for this kind of applications. Thus, original signal x is set

to the Euclidean norm values. The experiment is performed to evaluate the

effect of CS on energy consumption. The result shows that CS can reduce

energy consumption by 16% compared to ZIP scheme.

3.2.2 Issues

These related works are remarkable and interesting. However, it is insuffi-

cient or do not work well in our target environment, Body Sensor Networks.

As studied in Chap .2, there are some charateristics in BSN: density and

data type. Especially, data type is very important in CS encoding because

of it depends on signal sparsity and a priori knowledge. In BSN, sensor data

changes dynamically in many application, such as human movement detec-

tion. Existing works use only static property about CS. For instance, In-situ

Soil Moisture Sensing [25] adapt CS parameters to meet their requirements.

However, it is adequate to set static value because the signal characteristics

of soil moisture is smooth, much differs from BSN data. Hence, these static

design will not work well in BSN. We proof this issue in next chapter 4.

3.3 Summary

In this section, we study the basics of Compressive Sensing (CS), a novel

data compression/representation scheme which can express the signal under

the Nyquist. CS encoding depends on a convenient basis Ψ and measurement

matrix Φ. We then surveyed the related works which focus on CS applications

in WSN.
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Chapter 4

Case Study

In this chapter, we performed some experiments in real and mathematical

environment to confirm the efficiency of CS in terms of energy consumption

and decoding reliability. We then discuss the suggestion from the result of

these experiments and the problems to address in this work.

4.1 Energy Consumption Analysis

In this section, we analyze theoretical and actual lower bound of compres-

sion ratio that is defined by measurement matrix size Φ. Firstly, we study

theoretical lower bound and then show real world experiments results.

4.1.1 Theoritical Analysis

As described at 2.3, the main factor of energy drain in tiny sensor node is

radio communication module. However, there is a fact that CPU also con-

sumes a little energy. Thus, too much computation also causes shortening of

lifetime. Compared to previous data compression scheme, CS has weird char-

acteristics about compression ratio. Since encoding process is executed as a

multiplying between vector (sparse signal S) and matrix (measurement ma-

trix Φ) and larger matrix sizeM means that lower compression efficiency and
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ratio, makes larger computation and transmission costs in terms of energy

consumption. Addressing this point, we study the numerical lower bound.

Let Ep denotes the power consumption of a sigle multiplying operation

and Et denotes the power consumption of transmitting one packet. This

time, we choose a fourie transform to represent sparse signals. Generally

O(NlogN)-time is needed to compute the Fast Fourier Transform(FFT) and

that of a general linear measurement process between n−length vector and

M × Nmatrix is O(MlogN). Thus, An extra computation energy to exe-

cute CS is Ep × (NlogN + logMN) Many techniques can be used to reduce

computation time, but to simplify the problem, we consider as above to sim-

plify the problem even there are many techniques that can be used to reduce

computation time. SinceM−N length data can be reduced using CS, a sen-

sor node can save Et × (M − N) energy. Therefore we obtain the following

formula:

Ep × {O(NlogN) +O(logMN)} < Et × (M −N) (4.1)

CS can save energy if the formula4.1 is true. Since Ep ≪ Et in general

case [2], depending on the configuration (especially M or N), CS will far be

effective in many cases.

4.1.2 Real World Experiment

Next, we perform the real-world experiment to observe the impact of CS on

energy consumption. We implement CS encoding algorithm on 4 SunSPOTs

which are equipped with temperature, light and 3-axis acceleration sensor

and controlled by Java progming [28]. They sense and send or compress

acceleration data at every 30ms.

The results of each node are shown at 4.1-4.4. CS can achieve the improve-

ment of lifetime by 38.8% in the average case. It is clear that CS significantly

improves their lifetime despite of making extra computation costs.
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Figure 4.1: Experiments result1: comparison between CS and Normal in
terms of energy consumption

Figure 4.2: Experiments result2: comparison between CS and Normal in
terms of energy consumption
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Figure 4.3: Experiments result3: comparison between CS and Normal in
terms of energy consumption

Figure 4.4: Experiments result4: comparison between CS and Normal in
terms of energy consumption

27



Figure 4.5: Experiments environment

4.2 Decoding Reliability

In this section, we study the reliability of CS in real BSN application. As

described at 3.1.3, sparse signal S can be always recovered within each con-

dition meeting the RIP. We confirm this theory is also available in real sensor

data and, if true, observe the behavior of CS in real environment.

4.2.1 Environment

We decided the experiments environment assuming human movement detec-

tion application. We put iris mote [29], which is also widely used in WSN

reasearch, on user’s back as shown in picture 4.5. Then, they walk and run.

The sensor nodes sense and send these acceleration data at every 10 ms. We

choose Discrete Cosine domain as a convenient basis Ψ, gaussian distributed

matrix as a measurement matrix and CoSAMP [30] as a decoding algorithm,

which is pupularly used some CS applications.
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Figure 4.6: Experiments Sample data: the raw acceleration data of running

4.2.2 Result

The result is shown in 4.6 - 4.10. Fig .4.8 and Fig .4.6 illustrate the example

data, including raw acceleration data and sparse frequency data before ap-

plying DCT. It is clear that there are big differences between these values on

both the acceleration and the frequency. For instance, the sparsity of human

running acceleration data k, shown at Fig .4.7, is 45. On the other hand,

the it of human walking acceleration data k, shown at Fig .4.9, is 11. This

difference affects CS parameters such as matrix length M in terms of relia-

bility of decoding. Fig .4.10 shows the relation between exact recovery ratio

(ER) and measurement matrix size M . It is simply caused by the difference

of signal characteristics and sparsity.

4.3 Matrix Collision Problem

We then discuss the suggestion obtained by the result. To maximize the per-

formance, it is desirable to optimize measurement matrix size for the signals.
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Figure 4.7: Experiments Sample Data: running data in DCT domain

Figure 4.8: Experiments Sample data: the raw acceleration data of walking
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Figure 4.9: Experiments Sample Data: walking data in DCT domain

Figure 4.10: Experiments result: Comparison ERR between walking and
running
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Since largerM length of measurement matrix Φ makes lower compression ra-

tio and high computation costs, it is desirable to set appropriate M length.

WhenM length is minimum, the performance is maximum in terms of energy

consumption.

Described in chapter 3.1, when M length of measurement matrix Φ is

minimum in a range of meeting RIP [19], CS gets the highest compression

ratio and most effective. However, real sensor value changes dynamically,

which mean the sparsity of signals and M that depends on it are not static

values. As shown section 4.2, there are big difference between the acceleration

values and the sparsity of each state. This difference affects CS encoding and

decoding. Fig .4.10 shows it; When user is walking, measument matrix size

M is adequate to 100 in this case, otherwise, it is needed to set 200. We call

this situation Matrix Collision Problem. This makes it difficult to set the

length of M uniquely. Much larger M makes inefficiency and much smaller

M makes inaccuracy, both cases are not desirable. We address this dilemma

as a problem to solve in this research.

4.4 Summary

In this chapter, we performed some experiments in real and athematical

or situmulation environment to confirm and study the performance of CS

in terms of energy consumption. These results suggest that the Matrix-

size Collision Problem decreases CS performance both in terms of energy

consumption and reliability. In this thesis, to solve this problem, we propose

Pattern-based Optimization Algorithm (PMOA).
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Chapter 5

Approach and Design

In this Chapter, we firstly propose our approach to attack matrix size collision

problem defined in chapter 4. We then propose Pattern-based Matrix size

Optimization Algorithm (PMOA) that provides high efficiency and reliability

in CS.

5.1 Approach

This thesis proposes Pattern-based Matrix size Optimization Algorithm

(PMOA) that optimizes measurement matrix size M dynamically. This al-

gorithm achieves high efficiency in compression data and high reliability in

CS decoding. PMOA optimizes CS parameter, measurement matrix size M ,

along application state in order to improve the energy consumption and de-

coding reliability. Appropriate measurement matrix size Mopt leverage to

achieve high efficiency in data compression. As shown in chapter 4, there is

a big difference between sensor value and these sparsity of each application

state especially in BSN applications. Fig 4.10 shows the impact of this dif-

ference on CS. Although, in this case, M size is sufficient at 100 to achieve

almost 100% exact recovery ratio when user is walking, it is insufficient when

user is running. In order to solve this matrix size collision problem defined

in 4.3, PMOA optimize the measurement matrix size M and achieve high
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Figure 5.1: Overview of classic CS process

efficiency in data transmission and high reliability in recovering signal.

Existing CS encoding algorithm uses static properties including mea-

surent matrix and convenient basis. Fig. 5.1 illustrates how sensor nodes

encode data to CS measurement. Whenever user state changes, such as

walking, running and jumping, it uses the static measurement matrix with

fixed sizeM . Hence, measurement matrix sizeM is forced to fix to apply the

highest sparsity state; if the matrix size M is 200 along the highest sparsity

state, encoded value length is always 200 despite of it is adequate that matrix

size is 100 at other lower sparsity state.

Unlike existing CS encoding scheme, in PMOA, encoder can selects some

kind of matrix size Mopt that is calculated beforehand. This approach suits

our target environment, where sensor data forms waveform and patterns.

Fig. 5.2 illustrates a preparatory process of PMOA. At first, PMOA collects

sensor data patterns along application scenario and calculate appropriate

matrix sizeMopt.While application is running, CS encoder detect application

state based on the sparsity and select corresponding matrix size (Fig. 5.3).
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Figure 5.2: Preparatory process of PMOA

Figure 5.3: Overview of PMOA
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5.2 Design of PMOA

In this section, we show the specific algorithm of PMOA. We firstly describe

how to calculate appropriate measurement matrix size M and then show the

design of it. Finally, we discuss the validity and effectiveness of our approach,

PMOA.

5.2.1 Matrix Size Calculation

PMOA collects sensor data along specific application scenario, including hu-

man movement detection and health monitoring, and calculate appropriate

matrix size M for each pattern beforehand. This calculation phase decides

the balance between efficiency and reliability. For instance, we assume hu-

man movement detection application which detects human movement from 3

states: walking, running and jumping. Firstly, we put sensors on user’s body

and collect the acceleration data for each pattern We then divide each raw

data into convenient time slot N (corresponds to original signal length) and

apply transformation algorithm which expresses in frequency domain, such

as fourier transform and discrete cosine transform, to it. After this process,

we get some sample sparse signals for each pattern. We then apply CS en-

coding, random matrix projection, and decoding, L − 1 norm minimization

to these data with various value of M , which range is within 1 − N . Thus,

we can acquire the relation between matrix size M and exact recovery ratio

(ERR) for each pattern. User set the appropriate matrix size M for each

pattern based on this result; if application needs high reliability, M is set

to the value which meets the 100% ERR, otherwise, application does not

require highest reliability, almost 70%, it is set to the value which adequate

to reach this ERR. Since higher reliability needs larger Mopt and this makes

more extra data transmission and processing costs, there is a trade-off be-

tween reliability and efficiency. Thus, application designer can modify this

value to meet their requirements.
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5.2.2 Measurement Matrix Design

We discuss a measurement matrix design in order to suit for our architecture.

In previous CS scheme, Gaussian or Bernoulli distribution is used for defining

of the measurement matrix Φ. Although these distribution guarantee the

randomness of matrix, which is needed to achieve high incoherent between

a convenient basis, there are deviation of each entries. This is caused by

the lack of random processes. We perform a simple experiment to proof

this. We conducted a Bernoulli process 100 - 100000 times using Mersenne

Twister which is popular random generator [31] and observe the correlativity

between the number of process and the probability of deviation. Bernoulli

process provides 2 states, 0 or 1, in a certain probability, thus, it is easily

calculated the theoretical value and the error ratio. Fig .5.4 shows that the

result and it is clear that less processes make high error ratio. Since the

number of measurement matrix entries is at most 256× 256, this means that

it is difficult to achieve highly precise randomness. Besides, in our approach,

it is rare to use whole matrix; CS encoder uses a measurement matrix with

various optimized size Mopt, which means CS encoder uses a part of the

matrix. Therefore, there are no guarantee that each part of matrix have

same randomness.

To achieve high incoherent between a measurement matrix Φ and a con-

venient basis Ψ with high reliability in decoding, it is needed to adjust this

randomness in order to keep fairness among each part of matrix. We select

the Balanced Bernoulli Matrix to address this issue. This matrix is adjusted

that the sum of each row is 0. Since each row has the same value and same

pseudo randomness, fairness between each part of matrix is maintained in

any Mopt numbers. Specific implementation of this is described at Chap. 6.

5.2.3 Discussion

We discuss about the validity and effectiveness of our approach. At first

glance, our approach is too simple and not smart. But we believe that this

37



Figure 5.4: Performance of Mersenne Twister

is the best compromise between CS effectiveness and resource constrain of

tiny sensor nodes. If there are no constrains about sensor node resources,

we could improve our approach and effectiveness. Using existing works and

algorithms, such as [32], we can calculate and modify measurement matrices

M to achieve more incoherence for each pattern. However, this calculation

and implementation makes huge overhead both on memory and CPU. Firstly,

it is impossible to calculate this optimization for a sensing signal in sensor

node because they have only low power CPU and this calculation is very

complex process. Even if pattern classification and calculation this for each

of it is performed beforehand, like our approach, implementation of these

matrices makes huge burden on their little memory.

On the otherhand, our approach uses only single matrix and optimize the

size of it. Since calculation of this size is performed beforehand, sensor nodes

only detect the sparsity of sensed signal and select from static values, matrix

size Mopt. Compared to previous CS scheme, our approach make very little
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overhead on sensor nodes, however, our approach can improve CS efficiency

and reliability.

5.3 Summary

In this chapter, we show and discuss the approach and design of PMOA.

PMOA optimize measurement matrix size M along application state based

on the sensor data pattern which is collected beforehand. We also study that

the measurement matrix design in order to keep the fair randomness among

optimized matrix sizeMopt. Since there are resource constrains in tiny sensor

nodes, complex algorithm isn’t suit for it. Although PMOA is too simple,

therefore, our approach is the best compromise.
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Chapter 6

Implementation

In this Chapter, we describe the implementation of PMOA. First, we dis-

cuss the platform we used to implement the proposed algorithm on. Second,

we explain the system overview. Finally, we describe the implementation of

PMOA including measurement matrix, convenient basis and decoding algo-

rithms.

6.1 Implementation Platform

We choose to implement proposed algorithm on SunSPOT [28], [33] which

are widely used in the area of WSNs. Table 6.1 shows the specification

Table 6.1: SunSpot spec description

SunSpot
CPU ARM AT91SAM9G20
CPU Type 32bit
Clock Speed 400MHz
Flash Memory 8MB
RAM 1MB
Radio Chip TI CC2420
Battery 770 mAh
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Figure 6.1: System Architecture of PMOA

of SunSPOT. We use Java language for sensor node programming because

SunSPOT is controlled by java and C++ for decoding and matrix calculation.

6.2 System Overview

Fig. 6.1 illustrates the overall system architecture of proposed algorithm.

We show the description of PMOA as follows: Encoder consists of 4

modules, including Sensor, Sparse expression, Random projection and Send

module, and 3 queues connect between each modules and absorb processing

time difference of each module (Fig .6.2). Sensor module such as acceleration,

gyro or pressure sensor, collects a data and pushes it to the FIFO queue.

When the number of storing data is equal to original signal length N , sparse

expression module that convert raw signal to sparse signal and count sparsity

k, calls the queue to pop data. Sparse expression module get these data

corresponding to x and apply the sparse represent algorithm. The result
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Figure 6.2: Encoder Implementation

of this, including sparse signal S and sparsity data k, is also pushed into

second FIFO queue. Random Sensing Module pop the sparse signal S from

this queue and sparsity data k. Based on sparsity k, this module select the

matrix sizeMopt which is calculated beforehand and apply random projection

to sparse signal S. Then, it pushes third queue. Finally, send module pop

the data from third queue and send it to host with sparsity data k.

Decoder has almost same architecture design as encoder but this side

is more simple than encoder; it consists of 3 modules, including Receive

module, L − 1 norm minimization module and application interface, and 2

queues (Fig .6.3). Receive module gets the measurement signal y and sparsity

k from each sensor nodes and checks these data. If there are no errors, this

module pushes the data into the queue, otherwise, drop it. Solver module

is a decompression module that applies l − 1 norm minimization to sparse

signal S. This module has also installed a pattern information, Mopt length,

and based on this information, solves linear programming problem, l−1 norm

minimization. Finally, the result is pushed into the second queue and pop to

application interface that sends it to application via UDP.
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Figure 6.3: Decoder Implementation

6.3 Implementation of PMOA

In this section, we show the specific implementation of PMOA both side,

encoder and decoder.

6.3.1 Encoder

We show the implementation of an important property of CS encoding; Con-

venient Basis and Measurement Matrix.

Convenient Basis

In this work, in order to express original raw signal to sparse signal, we select

1-dimension discrete cosine transform (DCT):

Xk =
1

2
x0 +

N−1∑
n=0

cos
π

N
(n+

1

2
)k (6.1)

DCT is known as the algorithm that transforms a signal to a linear com-

bination with the cos basis, which means that the sum of a frequency and a

amplitude. Unlike the Fast Fourier Transform (FFT), also well known as a

43



signal transform algorithm and it express the signal in frequency domain with

real and complex number, DCT can express the signal in frequency domain

with only real number. In programming language, complex number is treated

as the array of two number; imaginary part and real part. Thus, handling

with complex number makes unnecessary costs both on CPU and memory.

From this point of view, DCT is a reasonable selection as a convenient basis.

In general, it is needed to apply window function to a raw signal before

performing such algorithms, FFT and DCT, in order to remove side-lobe. We

select the Hamming Window which is one of the most widely used window

function:

ω(x) = 0.54− 0.46 cos 2πx, if 0 ≤ x ≤ 1 (6.2)

These two algorithms are implemented on sparse expression module.

Measurement Matrix

As described 5.2.2, we select the Balanced Bernoulli Matrix as a measurement

matrix. Entries of this matrix is, basically, defined as the result of Bernoulli

process, a stochastic process that takes only two values with independent

probability, like coin-tos. Bernoulli process is formalized in the language of

probability space. Formal definition is following as [34]:

Probability space (Ω, Pr) is given as a random sequence in 0, 1.

Pr = p, 1− pN (6.3)

Pr([ω1, ω2, ...ωn]) = pk(1− p)n−k (6.4)

where k is the number of times 0 appears.

Pr(X1 = ω1, X2 = ω2, .....Xn = ωn) = pk(1− p)n−k (6.5)
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where Xi is a random variable.

Based on process above, we implemented the Balanced Bernoulli Matrix.

We used the Boost C++ libraries [35], which are popular and powerful li-

braries, in order to use more accurate random generator, Mersenne Twister.

Fig 6.4 is the abstract code of this algorithm. Firstly, we repeat the Bernoulli

process N times, where N is original signal length, and store each binary

value, as a result, to double array. We then check the number of each value

in the array and take the balance so that the sum of each row to be 0. This

balance algorithm is simple; Using Mersenne Twister, we get the random

value r in the range of 0 and N -1, and check the r-th value of the array. If

this value is a larger one, we replace it to a smaller one and repeat this until

the sum of row is 0. This balance algorithm is performed for each row.

6.3.2 Decoder

On decoder side, the main module is Solver module which performs l−1 norm

minimization algorithm to compressed measurement y and recover sparse sig-

nal S from it. In general, this module is the key of CS because the reliability

of it depends on this algorithm. However, our work addresses on encoder

problem in order to reduce cost both on computation and data transmission

from tiny sensor nodes. Thus, we used existing algorithm, except for dynamic

setting of measurement matrix measurement.

L− 1 norm minimization

We used 4 algorithms, which are provided by KL1p a portable C++ library

for Compressed Sensing [36], for signal recovery in order to verify the effec-

tiveness in many algorithms. 4 algorithms are following:

1. Compressive Sampling Matching Pursuit (CoSaMP) [30]

CoSaMP is a fast signal recovery algorithm where the running time is

just O(N log2(N)), where N is the length of the signal, for many cases
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� �
#define N 256

double ba l anc ed be rnou l l i ma t r i x [N ] [N ] ;
random generator MT;
int balance = 0 ;

for ( int i =0; i++; i<N){
for ( int j =0; j++; j<N){

i f (MT. getRandomValue ( d i s t r i b u t i o n=be rnou l l i , p r obab i l i t y =0.5))
ba l an c ed be rnou l l i ma t r i x = 1 ;

else
ba l anc ed be rnou l l i ma t r i x = −1

}

while (sum( ba l an c ed be rnou l l i ma t r i x [ i ] !=0) ){

i f (sum( ba l an c ed be rnou l l i ma t r i x [ i ] > 0) )
balance = 1 ;

else
balance = −1;

int r = MT. getRandomValue ( d i s t r i b u t i o n=uni form int , from=0, to=N) ;

i f ( ba l an c ed be rnou l l i ma t r i x [ i ] [ r ]==balance )
ba l an c ed be rnou l l i ma t r i x ∗= −1;

}

}� �
Figure 6.4: Balanced Bernoulli Matrix Algorithm
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of interest with as the same guarantees as the best optimization based

approaches.

2. Regularized Orthogonal Matching Pursuit (ROMP) [37]

ROMP is also a signal recovery algorithm with the strong guarantees of

the convex programming method. This method recovers a signal x with

k nonzero values from its inaccurate measurements y in at most k iter-

ations, where each iteration amounts to solve a least squares problem.

The noise level of the recovery is proportional to
√
log n||e||2, where e

is error vector.

3. Subspace Pursuit [38]

Subspace Pursuit is a signal recover algorithm that has two characteris-

tics: low computational complexity, comparable to orthogonal match-

ing pursuit techniques, and reconstruction accuracy of the same order

as that of LP optimization method.

4. Smoothed L0 (SL0) [39]

Unlike other algorithms, this algorithm minimizes L0 norm directly.

SL0 is about two to three orders of magnitude faster than the state-

of-art interior-point LP solvers with providing the same (or better)

accuracy.

We use these algorithms and evaluate our approach in Chapter 7.

6.4 Summary

In this chapter, we describe the implementation of PMOA. We firstly show

the platform and then the description of each module. We select DCT domain

as a convenient basis, Balanced Bernoulli Matrix as a measurement matrix

and some l − 1 norm minimization algorithm which are produced by KL1p

library in order to clarify the effectiveness of our approach.
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Chapter 7

Evaluation

In this Chapter, we present the evaluation of proposed algorithms. We con-

duct evaluations both in the real world environment and in simulation. For

each of them, we provide the evaluation methodology, including evaluation

environment, metrics and comparison targets, and then present its results

and discussions.

7.1 Application Scenario

In this section, we define the application scenario which is used for experi-

ments. Firstly, we show the scenario and then we perform preparatory ex-

periment. We illustrate the result and calculate the optimized matrix size

Mopt.

7.1.1 Scenario

In this experiment, we assume the human movement detection application,

and based on this scenario, we firstly collect the raw data and calculate

optimized matrix size Mopt as described in Chap .5. Using these data, we

conducted simulation evaluation to evaluate the impact of Balanced Bernoulli

Matrix in some solver algorithms.
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Table 7.1: Pre-experiemtns environment

Parameter Values
The number of test subjects 3
The number of data-sets for each pattern 20 (at minimum)
Sensing Rate 30 mili seconds
Data set size N 256
Data Type Acceleration
Convenient Basis Ψ DCT
Measurement Matrix Φ Gaussian
Decoder algorithm CoSaMP [30]

The description of scenario is following: This application detects 3 human

state, walking, running and skipping, whose patterns occur with same prob-

ability, from acceleration data that is collected from the sensor attached to

user’s back. Thus, the application state is 3 patterns: walking, running and

skipping and we collect these accelerations and calculate optimized matrix

size M for each pattern.

7.1.2 Pre-experiments environment

Table 7.1 shows the description of pre-experiments which collects sensor data

patterns and calculate optimized matrix size M . Based on the scenario (de-

scribed as above 7.1.1), we attached sensors to 3 users and collect acceleration

data for each pattern. The number of data-sets which is fixed to CS process

for each pattern is at least 20. We select the CoSaMP [30] to define the

optimized matrix size M .

7.1.3 Result and properties

Fig .7.1 - Fig .7.6 shows example acceleration and sparse representation data

for each pattern.

Based on above, we calculate appropriate matrix size Mopt: this result is

shown in Fig 7.7.
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Figure 7.1: Experiments result1-1: Acceleration data of walking

Figure 7.2: Experiments result1-2: Walking data in DCT domain
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Figure 7.3: Experiments result2-1: Acceleration data of running

Figure 7.4: Experiments result2-2: Running data in DCT domain
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Figure 7.5: Experiments result3-1: Acceleration data of skipping

Figure 7.6: Experiments result3-2: Skipping data in DCT domain
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Figure 7.7: Experiments result: Comparison ERR

Each optimized matrix size Mopt is following as:

• Running (Mopt:run): 192

• Walking (Mopt:walk): 96

• Skipping (Mopt:skip): 124

7.2 Evaluation of Energy Consumption

We conduct a real world evaluation to clarify the impact of PMOA on energy

consumption. Unless otherwise noted, values expressed in this Section are

rounded to four significant figures.

7.2.1 Evaluation Methodology

The impact of normal CS on energy consumption of sensor nodes is shown

at Chap .4. PMOA aims to maximize the efficiency of CS in terms of energy

consumption, therefore, we compare it against existing CS algorithm. We use
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same CS encoding parameter, original signal length N , measurement matrix

Φ and convenient basis Ψ, both on normal CS and PMOA, except for matrix

size M . We evaluate PMOA and normal CS in perspective of A) energy

consumption and B) the number of transmission. Unless otherwise noted,

we evaluate each item by deriving the average of all data.

A. Energy Consumption

The purpose of PMOA is to minimize energy consumption of sensor

nodes, therefore, this is the most important perspective in our work. En-

ergy consumption is calculated by subtracting the voltage of batteries at

the end of the experiment from that at the beginning of it. It is affected

by the characteristics of both sensor nodes and batteries, therefore, we

use them as pairs throughout the evaluation.

B. The number of transmission

The number of transmission also indicates energy consumption because

data transmission is the main factor of energy drain in tiny sensor nodes.

Since our approach can reduce transmission data, we evaluate this to

verify the our approach. The number of transmission is counted at sink

by checking the sequence number of packets.

Table 7.2 shows the parameters used in the evaluation. Since there are no

combination of measurement data in this experiments, every measurements

are sent alone; M data can be generated in a single CS process and these

are sent one by one, which means that M packets are sent to host in a single

process. Of course, it is more effective to store 2 or 3 generated data into 1

packet, however, we select this method in order to clarify the performance of

PMOA. We use DCT and Balanced Bernoulli Matrix as described in Chap .6

and the scenario shown in sec .7.1 based matrix size Mopt and static matrix

size M . Each pattern switching was carried out at random. We let the

evaluation run until battery expires.
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Table 7.2: Energy Consumption Evaluation Environment

Parameter Values
The number of sensor nodes 5
Duration Over 9 hours
Sensing Rate 30 mili seconds
Data Type Acceleration
Scenario human movement detection, shown in sec .7.1
Convenient Basis Ψ DCT
Measurement Matrix Φ Balanced Bernoulli
Original Signal Length N 256
Optimized Matrix Size Mopt 96, 124, 192

Table 7.3: Experiments Result3: The number of packet transmission

Parameter Normal CS PMOA
The average of transmission 765168 times 632772 times
The average of packet reduction – 132396 times
The reduction ratio of transmission – 15%

7.2.2 Evaluation Results and Discussions

Some example of results are shown in Fig .7.8 - 7.9. It is clear that our ap-

proach is effective on energy consumption. Compared to normal CS, PMOA

improves their lifetime by 11.7% in average case. Table 7.3 shows the result

of the reduction of packet transmission. PMOA can reduce the number of

data transmission by 15% in average case.

7.3 Evaluation of Reliability

This section describes the simulation evaluation conducted to clarify the im-

pact of PMOA and Balanced Bernoulli Matrix on the CS decoding reliability.
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Figure 7.8: Experiments Result1: Comparison of Energy Consumption be-
tween Normal CS and PMOA

Figure 7.9: Experiments Result2: Comparison of Energy Consumption be-
tween Normal CS and PMOA
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Table 7.4: Reliability Experiments Environment

Data Type Acceleration
Scenario human movement detection
Convenient Basis Ψ DCT
Measurement Matrix Φ Balanced Bernoulli, Gaussian and Bernoulli
Original Signal Length N 256
Optimized Matrix Size Mopt 96, 124, 192
Decoding algorithm CoSaMP, ROMP, SL0 and Subspace Pursuit

Table 7.5: Experiments Result8: Optimized Matrix Size Mopt on Gaussian
Matrix

Data-sets CoSaMP SL0 SP
Run 192 154 222
Skip 124 124 138
Walk 96 78 128

7.3.1 Evaluation Methodology

Though this experiment, we observe the impact of proposed algorithm on CS

decoding reliability. In this experiment, we observe the reliability of PMOA

and Balanced Bernoulli Matrix as a measurement matrix on various decoding

algorithm described in 6.3.2. Using same data-sets in 7.2, we measured the

relation between exact recovery ratio (ERR) and the kind of measurement

matrix. Table .7.2 shows the parameters.

7.3.2 Evaluation Results and Discussions

Some example of results are shown in Fig .7.10 - 7.13. The almost of all

graphs show Balanced Bernoulli Matrix slightly improves ERR on various

decoding algorithms except for ROMP. ROMP didn’t work well on any ma-

trices or data-sets. Thus, we exclude ROMP from this evaluation.

Table 7.5 and 7.6 show optimized matrix size Mopt for each matrix.
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Figure 7.10: Experiments Result4: The Exact Recovery Ratio of Balanced
Bernoulli Matrix and Gaussian Matrix on CoSaMP

Figure 7.11: Experiments Result5: The Exact Recovery Ratio of Balanced
Bernoulli Matrix and Gaussian Matrix on ROMP
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Figure 7.12: Experiments Result6: The Exact Recovery Ratio of Balanced
Bernoulli Matrix and Gaussian Matrix on SL0

Figure 7.13: Experiments Result7: The Exact Recovery Ratio of Balanced
Bernoulli Matrix and Gaussian Matrix on Subspace Pursuit
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Table 7.6: Experiments Result9: Optimized Matrix Size Mopt on Balanced
Bernoulli Matrix

Data-sets CoSaMP SL0 SP
Run 190 150 216
Skip 112 118 142
Walk 92 80 118

Compared to Gaussian matrix, Balanced Bernoulli Matrix can reduce 4.22

matrix length in average case.

7.4 Summary

In this section, we performed real-world and stimulation experiments. It

turned out that our approach, PMOA, can improves the lifetime of sensor

nodes by 11.7% in average case and reliability on many data-sets, measure-

ments matrix and decoding algorithms.
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Chapter 8

Conclusion and Future Work

In this Chapter, we summarize this thesis, and discuss future direction of our

research.

8.1 Conclusion

In this thesis, we proposed Pattern-based Matrix-size Optimization Algo-

rithm (PMOA), an algorithm which improve Compressive Sensing (CS) ef-

ficiency and reliability. In Body Sensor Network applications, sensor value

changes dynamically and also appropriate matrix size changes. This leads

inefficiency and inaccuracy on Compressive Sensing. In order to improve

this, PMOA optimizes the measurement matrix size M along specific Body

Sensor Network application scenario. This approach and design enable them

to efficiently encode sensor data with high reliability in decoding.

We conducted real-world and stimulation experiments in order to evalu-

ate PMOA. The result shows our approach can achieve the improvement of

lifetime by 11.7%.
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8.2 Future Work

In this section, we describe our future work: convenient basis optimization

and more sophisticated measurement matrix design.

As described in Chap .5, it is hard to optimize a structure of measure-

ment matrix for each pattern due to resource constrains of sensor nodes.

However, an additional implementation of sparse representation algorithm is

low complexity, 100 - 200 lines at most. If, therefore, we optimize not only

measurement matrix size but also a convenient basis for each pattern, we

will get more sparsity and this improves CS efficiency and reliability. For

instance, DCT can achieve high sparsity for human walking. When human

is running, however, DCT don’t work well as walking and make low sparsity.

So, we select alternative algorithm, such as FFT, to improve sparsity for

running. This optimization may improve our approach.

Second is sophistication of measurement matrix design, which is used

Balanced Bernoulli Matrix in our work, to make more incoherence. Many

existing works attack this issue and improve CS efficiency and reliability.

Thus, it is reasonable to consider another approach.
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