
Keio University Master’s Thesis Academic Year 2006

LOLCAST:
Abstract Layered Overlay Multicast Protocol

Keio University Graduate School of Media and Governance

Kohei Ogura

Abstract of Master’s Thesis Academic Year 2006

LOLCAST:

Abstract Layered Overlay Multicast Protocol

Summary

The Internet has became a social infrastructure, and peoples are using the
Internet as a place to present their creation. These creations takes various
media type such as text, audio and video. However, peoples are still not
free to go for enjoying group communication using an real-time streaming
contents. The difficulty lies in that both sender and receiver is just only an
ordinary user. Objective of this research is to support creative activity of
users, distributing real-time streaming contents to large group of peoples.

There are several group communication models proposed in the past.
However, there are technical and policy issues to solve for targetting or-
dinary users. Recently, Overlay Multicast, a substitute technology for IP
Multicast has been proposed which could support ordinary users. Never-
theless, Overlay Multicast has two major issues to consider, heterogeneous
resource environment and unstableness at end nodes.

In this paper, LOLCAST is proposed as an adaptive Overlay Multicast
protocol for real-time group communication in a heterogeneous environment
to solve these issues. In LOLCAST, data is divided into multiple layers using
abstract layered data structure. Number of layer is used for the main metric
to construct the multicast tree to suffuse the demand for end nodes resource
environment. Furthermore, multi-path layer distribution method for fast
recovery from multicast tree partition and congestion avoidance method are
proposed to deal with the instability at end node.

LOLCAST has been designed and implemented as an streaming applica-
tion sending abstract layered data. In the evaluation, it has been confirmed
that LOLCAST solved the major issues in Overlay Multicast research for
realizing the objective of this research. Using LOLCAST, user could send
and receive contents with ordinary resource environment and freely select
media type or quality of the content on demand. Furthermore, LOLCAST
prevents discontinuation of the content delivery in case of network congestion
and multicast tree partition.

Keywords: 1.Overlay Multicast, 2. Content Distribution 3. Layered Cod-
ing

Keio University Graduate School of Media and Governance
Kohei Ogura

修士論文要旨 2006年度 (平成 18年度)

LOLCAST:

Abstract Layered Overlay Multicast Protocol

論文要旨

社会インフラとしてのインターネットは成熟期を迎え, 人々の活動を支え
る表現の場として活発に利用されるようになった. この新たな表現の場にお
いて, 人々は様々な表現メディアを用いて活動成果を発信している. しかし,
現状においてこれらの人々がリアルタイム性の高い映像表現を用いた配信を
行なうことは困難である. これは, 受信者・配信者が共に一般利用者であり,
計算機資源やネットワーク帯域資源に限界があることに起因する. 本研究で
は, 「多くの受信者を対象とするコンテンツ配信を行なう人々の表現活動を
支援すること」を目的とする. インターネットにおいて放送型の通信を実現
する技術はこれまでも盛んに研究が行なわれてきた. しかしこれらの技術は,
一般利用者が手軽に利用できるものではない. 近年, IPマルチキャストの代
替手段として登場したオーバーレイ・マルチキャスト技術は一般利用者を対
象とできるが, 各利用者における資源環境の異種性への対応と不安定なエン
ドノードにより構築される通信基盤の維持の大きな二つの問題がある.
本研究では上述した問題点を解決するため, 新たなオーバーレイマルチ

キャストプロトコルであるLOLCASTを提案する. LOLCASTは各利用者に
おける資源環境の異種性に適応するための機能として, 抽象化されたレイヤ
を持つデータを利用する. これを配信するために, レイヤ数を基準としたマ
ルチキャストツリーの構成を行う. さらに不安定な通信基盤の維持のために
複数パスを利用した冗長的なレイヤ配信を行う機能とレイヤ構造の特徴を活
かした輻輳制御の機能を提供する.
更に本研究では, LOLCASTを利用した抽象化されたレイヤ構造を持つ

データのストリーミングを行うアプリケーションの設計・実装を行った. ま
た評価として, 実装を行ったアプリケーションによる実験, 他プロトコルとの
機能比較, プロトコルの処理速度の計測を行いLOLCASTがオーバーレイマ
ルチキャスト研究における二つの問題点を解決したことを確認した.

LOLCASTにより配信者は一般利用者が持ちうる現実的な資源環境で配
信網を構築でき, 受信者はその要求に基づいた自由なコンテンツの品質や表
現の選択が行える. また, 受信者は配信元の離脱やネットワークの輻輳状態
においてもシームレスにコンテンツを視聴する事が可能となる.

キーワード: 1.オーバーレイマルチキャスト, 2.コンテンツ配信 3.階層符
号化

慶應義塾大学大学院 政策・メディア研究科
小椋康平

Acknowledgments

I would like to thank my thesis supervisors, Professor Jun Murai, Pro-
fessor Osamu Nakamura, and Dr. Hideaki Imaizumi for their guidance and
advice throughout the process of writing this thesis. Especially I would like
to thank Dr. Hideaki Imaizumi for assinting me for writing this thesis. He
guided me from the really fundamental stuffs such as “what is research”
when I was working on my bachelor thesis. His request for the work was very
hard for me but precise. His guidance always made me the research fun and
excitng.

A huge thanks to all the members of the SING/IA* research group for
assisting me for this research. I am especially grateful to Masaki Minami and
Yasuhiro Ohara for supporting on both technical and mental stuffs. Support
from Shin Shirahata, Masayoshi Mizutani, Yusuke Okumura, Akira Kanai,
Yohei Kuga, Takaaki Ozaki, Ryu Sato and Toshiaki Hatano really helped for
finish writing this thesis.

I am also thanks to my colleagues encouraging me for working together on
a this hard task, Ryusaburo Tani, Masahumi Yoshida, Kazuhisa Matsuzono,
Yoshihiro Toyama and Manabu Tukada. It was not the same without these
members encouraging each other to reach the goal.

Above all, I would like to thanks to my family for the huge support to be
here.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Objectives . 1
1.3 Fundamental Propositions . 2
1.4 Organization of This Paper 3

2 Current Group Communication Models and Issues 4
2.1 Server-client model . 4
2.2 CDN . 5
2.3 IP Multicast . 5
2.4 Overlay Multicast . 6

2.4.1 Topology classification in Overlay Multicast 7
2.4.2 Summary . 7

2.5 Issues in Overlay Multicast . 8
2.5.1 Approaches to adapt end node heterogeneity 8
2.5.2 Approaches to adapt end node instability 10

2.6 Summary . 12

3 Overview of LOLCAST 13
3.1 Abstract layered data structure 13
3.2 Definitions used in LOLCAST 14
3.3 Tree structure of LOLCAST 15
3.4 Recovery method from node failure 16

3.4.1 Multi-path layer distribution 16
3.4.2 Congestion avoidance 17

4 Design of LOLCAST 19
4.1 Tree Parameters . 19
4.2 Node Parameters . 20

4.2.1 Fundamental Parameters 20
4.2.2 Source node specific parameters 21

i

CONTENTS

4.2.3 Relay node specific parameters 22
4.2.4 Node Initialization . 22

4.3 Node State . 24
4.4 Messages . 25

4.4.1 Join Request Message 25
4.4.2 Join Accept Message 29
4.4.3 Notify New Parent Message 30
4.4.4 Notify Accepted Message 30

4.5 Join Procedure . 31
4.5.1 Message passing in Join Procedure 31
4.5.2 Example of Join Procedure 31

4.6 Leave Procedure . 34
4.6.1 Message passing in Leave Procedure 34
4.6.2 Example of Leave Procedure 34

5 Implementation of LOLCAST 37
5.1 Implementation Environment 37
5.2 Implementation Overview . 38
5.3 Protocol Processing Module 39

5.3.1 Data Structure . 40
5.3.2 Message Format and Message Handling Methods . . . 42
5.3.3 Tree Handling Methods 45

5.4 Application Module . 50
5.5 Network Module . 51
5.6 Simulation Module . 51
5.7 User Interface . 51

5.7.1 Application Mode . 52
5.7.2 Simulator Mode . 52

6 Evaluation 54
6.1 Verification of Protocol Process 54

6.1.1 Experimental Setup . 55
6.1.2 Experiment Result . 57

6.2 Functional Comparison . 60
6.3 Performance of protocol process 62

6.3.1 Environment for performance evaluation 62
6.3.2 Parameters for performance evaluation 63
6.3.3 Measurement procedure 63
6.3.4 Measurement Result for Join Procedure 63
6.3.5 Measurement Result for Leave Procedure 64

6.4 Summary . 66

ii

CONTENTS

7 Conclusion and Future Work 68
7.1 Conclusion . 68
7.2 Future Work . 69

iii

List of Figures

1.1 Quality control in existing streaming service 3

2.1 Example of server-client model 5
2.2 Problems in IP Multicast . 6
2.3 Difference between Overlay Multicast and IP Multicast 6
2.4 Control and Data Topology 7
2.5 Comparison between multiple version and multiple layer ap-

proach . 9
2.6 Redundant path in control topology 10

3.1 Layered structure in LOLCAST 13
3.2 Multicast tree in LOLCAST 15
3.3 Multi-path layer distribution 16
3.4 Congestion control . 17

4.1 lowerLayerNodes() . 21
4.2 minDepthNode() . 22
4.3 linkUp() . 23
4.4 linkDown() . 23
4.5 State diagram for node . 24
4.6 State diagram for node in tree structure 24
4.7 extractPCS() . 25
4.8 JoinRequest() . 27
4.9 JoinAccept() . 29
4.10 NotifyNewParent() . 30
4.11 NotifyAccepted() . 30
4.12 Message passing in Join Procedure 31
4.13 Join Procedure 1 . 32
4.14 Join Procedure 2 . 33
4.15 Join Procedure 3 . 33
4.16 Message passing in Leave Procedure 34

iv

LIST OF FIGURES

4.17 Leave Procedure 1 . 35
4.18 Leave Procedure 2 . 35

5.1 LOLCAST Application Modules 38
5.2 nodeInfo Structure . 40
5.3 treeNodeInfo Structure . 40
5.4 layerInfo Structure . 41
5.5 Data structure maintained by source node 41
5.6 Data structure maintained by relay node 42
5.7 Message Format . 43
5.8 Message Handling Methods 44
5.9 Tree Handling Methods . 45
5.10 generatePCS() . 47
5.11 generatePCSRejoin() . 49
5.12 Sample telnet commands in source node 50
5.13 Sample telnet commands in relay node 50
5.14 Running lolcast app in Application Mode 52
5.15 Prompt for asking number of layers to request 53
5.16 Running lolcast app in Simulation Mode 53

6.1 Network Topology of the experiment 56
6.2 Experimental Data . 57
6.3 Generated LOLCAST Tree . 58
6.4 Screenshot at Relay Node A 59
6.5 Join Redirect message received at relay node E 59
6.6 Process time for Join Procedure (4 layers/random layer/ran-

dom leave) . 65
6.7 Process time for Leave Procedure (4 layers/random layer/ran-

dom leave) . 66

v

List of Tables

5.1 Environment for implementation 37

6.1 Environment for experiment 55
6.2 Parameters set for experiment 57
6.3 Functional comparison of Overlay Multicast Protocols 60
6.4 Hardware and software environment 62
6.5 Parameters set for performance evaluation 63
6.6 Average process time for Join Procedure 64
6.7 Average process time for Leave Procedure 67

vi

Chapter 1

Introduction

1.1 Background

The Internet has became a social infrastructure, and millions of peoples are
working on this new infrastructure. These peoples are performing various
creative activities such as self-produced art, music, movies, etc. due to the
rich environment at end user on creating high-quality multimedia contents.
In this research we state an individual or a group formed by their interest
and performing creative activities on the Internet as Internet Community.

Internet Communities are using the Internet as a place to present their
creation. These creations are made in various media type: text media such as
novel and diary, audio media such as music and radio program, video media
such as movie and comedy show. In addition, in the future it is unsurprising
that there will be an creative activity using a new media type such as three-
dimensional videos [1].

1.2 Objectives

As stated in Section 1.1, members of a Internet Community has an rich envi-
ronment for creating high-quality multimedia contents. However, members
of a Internet Community are still not free to go for enjoying neither broad-
cast self-produced real-time comedy show nor videoconferencing with large
group of peoples which is a group communication using an real-time stream-
ing contents. This problems difficulty lies in that both sender and receiver
of the community member is just only an end user.

These user has three major characteristics to consider for realizing such
communication. First is that user has no special equipment or financial
support for sending the contents. Second is that user has a limitation in

1

CHAPTER 1. INTRODUCTION

computation and network resource for sending and receiving the contents.
Last is each user has a heterogeneous resource environment for receiving the
contents. In this paper we state such kind of user as ordinary user.

Our research objective is to support creative activity of the Internet Com-
munity, distributing real-time streaming contents to large group of peoples.

This research proposes an adaptive overlay multicast protocol in a het-
erogeneous environment for group communication such as real-time video
streaming, LOLCAST (Abstract Layered OverLay multiCAST) to solve these
issues. LOLCAST, assumes the multicast group size as several hundreds.
LOLCAST uses layered coding and abstract layered data structure to adapt
end nodes heterogeneity. In addition, this paper introduces fast recovery
method from multicast tree partition and congestion control method using
the characteristic of abstract layered data structure.

1.3 Fundamental Propositions

To achieve the goal stated in Section 1.2, there are three fundamental propo-
sitions to satisfy. In this section, each of the proposition will be described
briefly.

1. User could send and receive contents with ordinary resource
environment
Even if the content sender is an ordinary user, network for the content
delivery can be constructed and maintained with a ordinary resource
environment. Resource environment includes network and computing
resource. Further out, there should not be a limitation for the receiver
to receive the content. This should be concerned from the reason that
ordinary users has a limited resource for sending and receiving contents.

2. User could freely select media type or quality of the content
on demand
Every receiver can freely select media type or quality of the content
within the bounds of their resource environment. Receivers request
for the quality or media type of the content is various. This request
frequently changes from users resource environment or interest level to
the content.

For example Figure 1.1 illustrates a function of existing streaming ser-
vices to select content quality. A website for streaming movie trailers [2]
is offering three different quality for one content, “Mid”, “High” and
“Fiber”, which is abstracting the network line of the user. In compari-
son, an Internet radio streaming service is offering “24kbps”, “56kbps”

2

CHAPTER 1. INTRODUCTION

Figure 1.1: Quality control in existing streaming service

and “96kbps” of audio stream data, which shows the bandwidth of the
content. As described above, it is fundamental for the content sender to
serve multiple quality or multiple media type for adapting to receivers
resource environment or interest level, and receiver should be able to
freely select this.

3. Seamless content delivery
User can receive the content from the sender seamlessly. Streaming
media is a time-series data, which have a large affect on discontinuity
of the data. For the reason of the discontinuity, disconnection of the
sender or network congestion is thinkable.

1.4 Organization of This Paper

The remaining of the paper is organized as below. In Chapter2, issues of re-
cent group communication methods are described in detail. Chapter3 covers
overview of proposed new Overlay Multicast protocol LOLCAST, along with
each distinctive functions to satisfy the fundamental propositions stated in
Section 1.3. In Chapter4, protocol design of LOLCAST is described in de-
tail, continuing on with each important procedure done in LOLCAST. The
results through simulation analysis is shown in Chapter6, followed by the
conclusion and future work in Chapter7.

3

Chapter 2

Current Group Communication
Models and Issues

This section represents brief interpretation of existing models for group com-
munication. Server-client model, CDN, IP Multicast and Overlay Multicast
is discussed. For each method, issues to meet our research objective stated
in Section 1.2 is mentioned.

2.1 Server-client model

Simple approach to realize group communication on the Internet is the server-
client model. Server-client model does not require particular delivering method
and therefore it is adopted in many real-time video streaming services.

Figure 2.1 shows that the data flow in server-client model is consist of
multiple unicast streams sent from sender to each receiver. In such model,
network bandwidth in a single link will be burdened. From this reason,
server-client model has a difficulty for supporting ordinary user which has
limited resource environment. In Figure 2.1, sender node is delivering data
to receiver node A, B and C. Senders network resource is already exhausted
by delivering to these three nodes. In this case, a new receiver node D is
unable to retrieve the data.

As above, streaming service using a server-client model requires network
bandwidth proportional to the group size. Consequently, streaming service
using server-client model provided by an ordinary user is in very small size
or using very limited quality of data.

4

CHAPTER 2. CURRENT GROUP COMMUNICATION MODELS AND
ISSUES

Sender

Reciever A

Bandwidth FULL

Internet

Reciever B Reciever C Reciever D

Can Not Join

Figure 2.1: Example of server-client model

2.2 CDN

CDN (Contents Distribution Network) is realized by distributing the sender
of Server-client model in multiple location described in Section 2.1. By dis-
tributing the sender into multiple location, which is the bottle neck, load for
the sender decreases. In detail, the content is cached to the servers located
in each Internet service provider, and sender reports to the receiver which
server to join. However, there is no CDN service which ordinary user could
use freely. In addition, it is assumed that every Internet service provider is
joining to the CDN, and which could not support widespread users which is
concerned.

2.3 IP Multicast

IP Multicast is the traditional method for group communication over the
Internet. Though long time has elapsed since IP Multicast was initially
proposed [3], IP Multicast still has both technical and policy issues such
as inter-domain routing, diffusion of multicast capable routers, multicast

5

CHAPTER 2. CURRENT GROUP COMMUNICATION MODELS AND
ISSUES

Sender

Reciever A

Reciever B

IP Multicast
incompatible

IP Multicast
compatible

IP Multicast
compatible

IP Multicast
compatible

Interdomain
Routing Problem

Reciever C

Reciever D
Reciever E

Reciever F

AS 1 AS 2

Figure 2.2: Problems in IP Multicast

address allocation, etc. to solve for wide area deployment [4].
Figure 2.2 shows an example of sender delivering the data to A, B, C,

D and E using IP Multicast. In this case, receiver C and D are impossible
to receive the data, because both receivers are connected to a IP Multicast
incapable router. Furthermore, receiver D and F also could not retrieve the
data due to the policy issues between AS1 and AS2.

Therefore, ordinary user could not use IP Multicast as a method for group
communication due to the widespread and distributed receivers. Presently
use of IP Multicast is limited only in a sparse domain.

2.4 Overlay Multicast

Overlay Multicast IP Multicast

Data flow
Logical Link
Physical Link

Data flow
Physical Link

Figure 2.3: Difference between Overlay Multicast and IP Multicast

6

CHAPTER 2. CURRENT GROUP COMMUNICATION MODELS AND
ISSUES

Recently, Overlay Multicast, a substitute technology for IP Multicast
has become a hot topic for researchers. The basic idea of Overlay Multi-
cast is to delegate multicast functionality such as, data replication, group
management, multicast routing from IP layer to upper layer, mostly the
application layer. Overlay Multicast constructs a logical network over the
underlying IP network and use it as a infrastructure for multicasting. In
Overlay Multicast, multicast is done by unicast between the nodes join-
ing to the multicast group. Figure 2.3 illustrates how each method bear
the function of data replication, which is routers in IP Multicast and end
nodes in Overlay Multicast. Since the idea of Overlay Multicast first ap-
peared [5], number of Overlay Multicast routing protocols has been pro-
posed [6, 7, 5, 8, 9, 10,11,12,13,14,15,16,17,18,19,20].

2.4.1 Topology classification in Overlay Multicast

Control topology Data topology

Source Node Source Node

Figure 2.4: Control and Data Topology

Topology constructed by Overlay Multicast Protocol is categorized into
two kinds, control topology and data topology [21]. Figure2.4 illustrates
an example of each topology. Control topology is used to manage node
state and node information used in the protocol. Informations maintained
by control topology is used in such as to run join and leave procedure or
recovering multicast tree partition. Data topology is usually a subset of
control topology. Over the control topology, data topology set the actual
data flow between each node.

2.4.2 Summary

Overlay Multicast is realized by constructing a overlay network over the IP
network formed by end nodes. Data is relayed between each end nodes and
sender should send only at least one stream to distribute the content to
large group of users. This satisfies the first fundamental proposition stated
in Section 1.3 which is “User could send and receive contents with ordinary
resource environment”.

7

CHAPTER 2. CURRENT GROUP COMMUNICATION MODELS AND
ISSUES

2.5 Issues in Overlay Multicast

By delegating the multicast functionality to application layer, Overlay Mul-
ticast network relies on end nodes. This means every end node joining to
the multicast group constructs and maintains the multicast tree to deliver
the data. In such environment, Overlay Multicast research has two major
issues to consider, end node heterogeneity and end node instability. These
two issues are corresponding to the left two fundamental propositions stated
in Section 1.3.

Each end node joining the multicast tree has a heterogeneous resource
environment such as link bandwidth and computing resource. Each node will
request different quality or media-type of contents to satisfy their resource
constraint. Multicast method should handle this request flexibly. At the
same time, multicast method should not limit the node to join by its resource
constraint.

Unstableness at an end node also should be considered for constructing
stable multicast tree. A node failure will cause multicast tree partition,
which stops the data transmission. From this reason, fast recovery method
of multicast tree is required for reliable multicast tree.

This section illustrates recent approaches in both adapting end node het-
erogeneity and end node instability. Example of approaches taken in recent
Overlay Multicast protocol is discussed briefly. In addition, remaining issues
to meet our research objective is stated.

2.5.1 Approaches to adapt end node heterogeneity

There are mainly two approaches proposed to solve this difficulty. Primary
method is multiple version approach and the secondary method is multiple
layer approach. Figure 2.5 illustrates comparison between data structure
used in both approaches. Example of data structure supports four different
qualities of data.

Multiple version approach

In multiple version approach, multiple video data containing different quality
and bit-rate for a single content (from low quality to very high quality in
Figure 2.5) is sent by the source node. Receiver node selects the stream
which suits their resource environment, especially the network bandwidth.
This approach is taken by End System Multicast [5].

8

CHAPTER 2. CURRENT GROUP COMMUNICATION MODELS AND
ISSUES Enhanced 1Enhanced 2Enhanced 3BaseLow QualityMid QualityHigh QualityVery HighQualityMultiple versionapproach Multiple layer approachQuality
Figure 2.5: Comparison between multiple version and multiple layer approach

Multiple layer approach

In multiple layer approach, layered video coding is the key technology. In
layered coding, video data is divided into multiple layers, as illustrated in
Figure 2.5. Data included in each layer are non-overlapping each other.
Layers are categorized into base layer and enhancement layer. Base layer
provides the minimum quality of original video data, and it is fundamental for
decoding the other layers. Enhancement layer provides additional data which
improves video quality. Each layer has a dependency with layer directly below
for decoding. Several layered coding method have been proposed, including
MPEG-2 scalable profile [22], MPEG-4 scalable profile [23], H.263+ [24],
MDC (Multiple-Description Coding) [25].

Multiple layer approach uses layered encoded data to adapt to hetero-
geneity. Source node sends the segmentalized video data with full layers,
and receiver node acquires number of layers to sustain their resource envi-
ronment. This approach is taken by Okada’s work [14], Koguchi’s work [26],
LION [18], PALS [19] and our previous work [17].

9

CHAPTER 2. CURRENT GROUP COMMUNICATION MODELS AND
ISSUES

Advantages and drawbacks

As referred as above, multiple layer approach uses data structure consist-
ing of multiple layer which quality improves by increasing the number of
layer. Multiple layer approach has an advantage in network bandwidth uti-
lization compared to multiple version approach. Compared to multiple layer
approach, multiple version approach needs a separate and overlapping data
to support each quality, which burden the network bandwidth. Another ad-
vantage for multiple layer approach is that it could handle wide-range of
requests for quality very flexibly by just increasing the number of layer. One
drawback for multiple layer approach is that layered coding uses complicated
encoding method which requires some computing resource.

2.5.2 Approaches to adapt end node instability

Proposed approaches for adapting instability of end node can be classified
in to two types [27]: reactive approach and proactive approach. Reactive
approach start tree restoration process after the node detects parent node
failure. Mainly this approach runs join procedure from the beginning, there-
fore it takes long time to rejoin to the tree. This approach is taken by
Narada [5, 8], Koguchi’s work [26], LION [18] and PALS [19]. In contrast
proactive approach deal with the node failure before it happens. This ap-
proach is taken by Okada’s work [14], HostCast [15], Yang’s work [27] and
PRM [20]. Each of the function by proactive approach is illustrated briefly.

Redundant control path in HostCast

A

B C

D E F

Multicast Source

(Parent Node)

(Grandparent Node)

(Uncle Node)

A

B C

D E F

Secondary Root Path
Primary Root Path

Secondary Root Path

G G

Figure 2.6: Redundant path in control topology

Idea of HostCast is to accurately measure the overlay path condition and
help the group member to find a new parent node quickly when its original
parent node is lost. Figure 2.6 illustrates the idea of HostCast to construct

10

CHAPTER 2. CURRENT GROUP COMMUNICATION MODELS AND
ISSUES

a redundant path in control topology. The example shows how node E
recovers from multicast tree partition. In normal state, path A − B − E is
used to deliver the data to node E. At the same time, node E maintains
secondary parents in the control topology, grandparent node A and uncle
node C. These links are called secondary root path. If parent node B leaves
from the multicast tree, tree will be partitioned between B − E. Soon as
node E detects node B leaved, it sends join request message to random
secondary parents using the control path connected previously. By joining
to another parent node, node E recovers to the multicast tree. By preparing
the redundant path in advance in the control topology, node could find new
parent node in advance. However, it still requires process time for switching
the control topology and also to request new parent for the data by only
setting paths on control topology.

Parent candidate list backup in Okada’s work

Another method for adapting instability of end node is proposed in Okada’s
work [14]. Idea of Okada’s work is to backup the list of parent candidates
received in the join phase to find the new parent quickly. The node does
not have to run the full join procedure but only has to send join request to
the node in parent candidate list. However the saved parent candidates is
possible for becoming invalid, due to the leave of parent candidate node. In
addition it requires process time until the node start receiving the data due
to the same reason in HostCast.

Pre-computing backup nodes in Yang’s work

Yang’s work [27] focuses on this issue and studied it for the main feature
of proposed protocol. Main idea is that nodes primary parent pre-computes
the parent candidate for each of its children. In case of node failure, node
rejoins to pre-computed parent node immediately. Node should send only
one message is required to rejoin to the data topology and start receiving the
data. Nevertheless, it still has a time for data lost until it adds a path on
the control topology.

Randomized data forwarding in PRM

PRM [20] also takes proactive approach, but it differ from other proactive
approaches by it uses data topology for realizing the function. PRM uses a
randomized forwarding method which every node chooses a number of other
node uniformly at random. Every chosen nodes forwards the data to the
node with a low probability. The recovery time for this method is very small

11

CHAPTER 2. CURRENT GROUP COMMUNICATION MODELS AND
ISSUES

by redundantly receiving the data from number of parent nodes. However,
the traffic for sending overlapping data can be very large in a case such as
live video streaming which is our target application.

2.6 Summary

This chapter illustrated the current group communication models and issues.
There are several models proposed for group communication such as server-
client model, CDN, IP Multicast and Overlay Multicast. Server-client model,
CDN and IP Multicast has a both technical and policy issues left to satisfy
the first fundamental proposition, “User could send and receive contents with
ordinary resource environment”. Recently Overlay Multicast has been pro-
posed for the substitute technology with IP Multicast. Overlay Multicast
technology satisfies the first fundamental proposition by constructing a logi-
cal network over the underlying IP network and use it as a infrastructure for
multicasting. However, Overlay Multicast has two major issues to satisfy the
left two fundamental propositions: function to adapt end node heterogeneity
and functions to adapt end node instability.

12

Chapter 3

Overview of LOLCAST

In order to solve the issues illustrated in Chapter 2, this paper proposes a
novel Overlay Multicast protocol LOLCAST. First overview of the protocol
is illustrated. Next, describes the data structure and definitions used in
LOLCAST. Next, example of tree structure constructed by LOLCAST is
illustrated. Last, this section describes recovery method from node failure
and congestion avoidance.

3.1 Abstract layered data structure

The basic idea of layered data structure is similar to multiple layer approach,
which data consists of multiple layers to support wide-range of information
amount. Layered data structure used in LOLCAST basically inherits mul-
tiple layer approach but can support not only layered coded data but also
combined data from various type of data abstractly. Base layer and enhance-
ment layer will be used for the term to describe each layer in LOLCAST.2/4 Frame3/4 Frame1/4 Frame AudioVideo 1Text Full Frame Video 2.Frame-rate control A BC Text dataAudio dataLow quality videoHigh quality videoContent type control

Figure 3.1: Layered structure in LOLCAST

Several usage of layered data structure can be conceivable which is illus-
trated in Figure 3.1. Left figure illustrates a structure for controlling the

13

CHAPTER 3. OVERVIEW OF LOLCAST

frame-rate of video stream. Each layer carries each frame of video stream in
such as DV format. Base layer offers 1/4 frame of full-frame video stream,
and by increasing the layer, frame-rate increases. Data with full layer offers
full-frame of video data. Right figure illustrate a structure for streaming
various type of content format. Base layer offers text data, and each en-
hancement layer increases the amount of information using audio and video
data.

3.2 Definitions used in LOLCAST

In this section, we introduce the following definitions used in LOLCAST.
These definitions will be used for explaining the functions of LOLCAST.

• Layer encoded data {l0, l1, l2... ln}
This definition stands for each layered coded data. l0 is the base layer
and the rest are enhancement layer. ln is the top layer which original
data carries, sent by source node.

• Nodes {N0, N1, N2... Nn}
This definition stands for the node which joining to the multicast tree.
N0 is the source node. n is the total number of nodes joining to the
multicast tree.

• Number of layer {L0, L1, L2... Ln}
Number of layer is the layers which source node maintains or certain
node requests. L0 is the maximum number of layer which the data
carries sent by source node. For example, if source node carries layered
coded data with 5 layer, L0 = 5, and N0 has layer l0 through l5.

• Number of child nodes {C0, C1, C2... Cn}
This definition stand for the number of children nodes, which receiving
the stream from certain node. Each node sets a maximum number
of children nodes to support, according to its own network bandwidth
represented as cmax. In addition, source node should set a minimum
number of children nodes for every node joining to multicast tree, which
will be represented as cmin. cmin should be larger than one to construct
a tree and node should set cmax larger than cmin.

• Depth {D0, D1, D2... Dn}
Depth shows the nodes position in the multicast tree. Source node
N0 is the top node in multicast tree, therefore D0 = 0. If Nj has two
ancestor nodes between the path to source node, Dj = 2.

14

CHAPTER 3. OVERVIEW OF LOLCAST

3.3 Tree structure of LOLCAST

Characteristic of layered coding used in multiple layer approach makes a
restriction in the method for delivering the data. The point is that there
are dependencies between each layer. First enhancement layer l1 requires the
base layer l0 for decoding. Second enhancement layer l2 needs both primal
enhancement layer l1 and the base layer l0 for decoding, and so on. This
means each layer could not be sent apart to decode the data.Global variable

Figure 3.2: Multicast tree in LOLCAST

Therefore, LOLCAST uses number of layers which each node requests as
the metric to construct the multicast tree. Target group size of LOLCAST
is several hundreds at maximum.

There are three types of nodes in LOLCAST, source node, relay node
and leaf node. In LOLCAST, source node maintains the entire multicast
tree structure and serves the original data transmitted over the multicast
tree. Relay and leaf node requests source node for the proper parent node to

15

CHAPTER 3. OVERVIEW OF LOLCAST

join, and receives the data it requests. Leaf node only receives the data and
does not have any child node.

Example of multicast tree constructed by LOLCAST is illustrated in Fig-
ure 3.2. This tree has minimum children nodes for two (cmin = 2) and maxi-
mum number of layer for ten L0 = 10). For simplicity, cmax for every node is
set to 2. For example, node N4 is receiving data consist of six layers (l0...l5)
from its parent node N1. In this case, node N4 could serve any child node
requesting not more than six layers, which is node N7 and N8 in Figure 3.2.
Node N6 and N8 are leaf nodes requesting one or two layers. Leaf node N6

and N8 can be expected as a node with very small resource environment,
such as wireless devices.

3.4 Recovery method from node failure

Overlay Multicast relies on unstable infrastructure, compared to IP Multi-
cast. From this reason, researchers have large attention in the method for
handling instability of end node. Especially, video streaming requires fast re-
covery to avoid information lost, which is our target. This section introduces
functions to handle this issue. First is multi-path layer distribution method
and second is congestion avoidance method.

3.4.1 Multi-path layer distributionReceiving data Receiving dataRedundant dataMain data
Figure 3.3: Multi-path layer distribution

16

CHAPTER 3. OVERVIEW OF LOLCAST

This section describes multi-path layer distribution method for fast recov-
ery in case of node failure. There are several methods for fast recovery from
multicast tree partition. HostCast [15] uses redundant path from source node
in control topology to shorten the time after detecting the node departure
and to restart sending data. However this approach requires time to con-
verge the multicast tree before recovery. LOLCAST uses data topology to
construct a redundant data delivery path compared to HostCast. By directly
sending redundant data from multiple parent nodes, recovery time shortens
compared with other methods.

Figure 3.3 illustrates how node N3 recovers when parent node N1 failed.
In normal state, path N0-N1-N3 is used to deliver data from source node
N0 to node N3. At the same time node N3 is redundantly receiving base
layer from node N0 and N2. In addition, all nodes has the option to request
number of layers for redundant data, alternative for using base layer. When
node N1 fails from the multicast tree, path N0-N1-N3 becomes unavailable.
As soon as node N3 detects his parent node N1 has failed, node N3 switch
to the redundant data receiving from N0 or N2 to reduce the information
lost. While receiving the redundant data from N0 or N2, N3 recovers into
multicast tree by finding a new parent node N0 and starts receiving data
with the requesting quality.

3.4.2 Congestion avoidance1. Receiving 8 layers 4. Drop to 5 layers2. Congestionoccurs 3. Drop RequestNormal state Recovery phase5. Receiving 5 layers
Figure 3.4: Congestion control

Figure 3.4 illustrates an example of this function when congestion occurs
in path between N1 and N4. In this multicast tree, each node is requesting

17

CHAPTER 3. OVERVIEW OF LOLCAST

number of layer in a range (ex. L1 = 8 to 10). In normal state, each node
receives the data with highest requested quality. In this case N4 receives 8
layers from N1. When N4 detects that path between N1 and N4 has con-
gestion, N4 drops the receiving layer the from the top, one by one to avoid
the congestion. For detecting the congestion between nodes, existing method
can be used [28].

Not only for avoiding congestion, by setting a range for requesting data, it
could handle a various request for quality flexibly. By setting the requesting
quality range narrow, it has guarantee in quality but has more possibility of
switching nodes in multicast tree. By setting the requesting quality range
wide, it has less chance of switch in multicast tree and offers stable service
but the receiving quality may change often.

18

Chapter 4

Design of LOLCAST

This chapter illustrates the protocol design of LOLCAST in detail. First
protocol parameters maintained by each node is discussed. Next, each of the
message used in LOLCAST is illustrated in detail. Next, each step for Join
Procedure and Leave Procedure is discussed. Last, design of our proposed
Multi-path layer distribution method and congestion avoidance method is
illustrated.

4.1 Tree Parameters

Multicast tree constructed by LOLCAST has four basic parameters. This
tree is maintained by the source node, and each of the parameters are shown
below.

Lmax : Maximum Number of Layers
Maximum number of layers included in the data sent by source node.
Value takes between 0 and Lmax.

Dmax : Maximum Tree Depth
Maximum tree depth in the multicast tree. Leaf node with the highest
depth will have Dmax.

B : Bandwidth of Layer
Bandwidth of each layer included in the data. If the data has i layers,
sum of the bandwidth through layer 0 to i is

∑i−1
i=0 Bi. The bandwidth

of the original data sent by the source is
∑Lmax

i=0 Bi.

PCSmax : Maximum Number of Entry in PCS
Maximum number of entries included in the Parent Candidate Set sent
by the source node. This value is used when generating PCS.

19

CHAPTER 4. DESIGN OF LOLCAST

4.2 Node Parameters

Nodes joining to the multicast tree has two categories: source node N0 which
will be the root in the multicast tree and others, as relay node Ni (i > 0). In
this section, parameters used in LOLCAST is discussed. First fundamental
parameters for every node is illustrated. Next source and relay node specific
parameters are discussed.

4.2.1 Fundamental Parameters

This section shows the fundamental parameters for every node. It is assumed
that every node has allocated unique node identifier. Each parameter is
referenced with such as N s.field.

id : Node Identifier
Unique node identifier allocated for each node. Value is set by default.

ly : Requesting Layer
Number of layers the node is requesting. Value is set by default. Value
for the source node is always set to Lmax.

bw : Bandwidth Left
Bandwidth left for sending data used in LOLCAST. If there is multiple
network interface, the value will take the sum of it. Value is given by
the user in initial process and set by default.

state : Node State
This parameter shows the state of the node. There are six types of state,
INIT , RUNNING, JOINING, ACCEPTED, ESTABLISHED
and LEAV ING. Initial value is set to INIT .

parent : Parent Node Identifier
Node identifier of the parent node. Initial value is set to N0.parent =
0, Ni.parent = −1.

C : Set of Child Nodes
Set of the child nodes which the node maintains (Ni.C = {x|x ∈ N, x! =
Ni}). Initial value is set to Ni.C = φ. Information included for each
entry is shown below.

id : Node Identifier
Node Identifier of the child node.

20

CHAPTER 4. DESIGN OF LOLCAST

ly : Requesting Layer
Number of layer requested by the child node.

state : Node State
There are five types of state for child nodes. DOWN , JOINING,
ACCEPTED, LEAV ING and CONGESTED.

4.2.2 Source node specific parameters

Source node N0 maintains set of the node state joined to the multicast tree T .
Every node Ni joining to the tree can referenced as Ti. Initial value for T is a
set with only the source node T0 included, and the parameters are T0.id = 0,
T0.dp = 0, T0.ly = Lmax , T0.bw = N0.bw, T0.state = ESTABLISH. Each
entry included in T carries the information below.

id : Node Identifier
Unique node identifier of the node.

dp : Depth
Depth of the node in multicast tree. Value takes between 0 and Dmax.

ly : Number of Layer
Number of layers the node requests for parent node or it maintains.
Value takes between 1 and Lmax.

bw : Bandwidth
Bandwidth left for sending data used in LOLCAST.

state : Node State
State of the node. Value takes ESTABLISH, JOINING and LEAV ING.

p : Node Identifier of Parent Node
Node identifier of its parent node.

For operating T , there are two functions defined in LOLCAST, lowerLayerNodes()
and minDepthNode(). Process of each functions is described.

¶ ³
1: lowerLayerNodes (T, l) { /* T=Tree information, l=# of layer */
2: return {x.id | x ∈ T, x.ly ≥ l};
3: }µ ´

Figure 4.1: lowerLayerNodes()

21

CHAPTER 4. DESIGN OF LOLCAST

lowerLayerNodes() is a function to obtain set of node identifiers which
has number of layer greater than specified value. Process of lowerLayerNodes()
is illustrated briefly.

1: lowerLayerNodes() takes two variables, set of node identifiers which
node is included in the multicast tree T and requesting number of
layers l.

2: Each node identifer (x.id) is taken out from T which node is included in
T (x ∈ T,) and number of layer is greater or equal than the request l
(x.ly ≥ l).

¶ ³
1: minDepthNode (T, P) { /* T=Tree information, P=set of node id */
2: return i s.t. Mini∈P (Ti.dp);
3: }µ ´

Figure 4.2: minDepthNode()

Correspondingly, minDepthNode() is a function to obtain a set of node
identifier which has smallest depth inside certain set of node identifiers. Pro-
cess of minDepthNode() is illustrated briefly.

1: minDepthNode() takes two variables, set of node identifiers which node
is included in the multicast tree T and certain set of node identifiers
P .

2: A node identifier of a node i which has minimum depth inside set P is
taken out (Mini∈P (Ti.dp)) and returned.

4.2.3 Relay node specific parameters

Relay node has one node specific parameter.

P : Parent Candidate Set
Set of node identifier of parent candidate nodes obtained from source
node. Initial value is set to P = φ.

4.2.4 Node Initialization

Every node joining the tree has a initializing phase before the protocol process
starts. In this section, two functions LinkUp() and LinkDown() is discussed.

22

CHAPTER 4. DESIGN OF LOLCAST

¶ ³
1: LinkUp (i) { /* i=node id */
2: if (i = 0) {
3: N0.state ← RUNNING; / ∗ INIT → RUNNING ∗ /
4: } else {
5: Ni.state ← JOINING; / ∗ INIT → JOINING ∗ /
6: send JoinRequest(0, i, Ni.ly,Ni.bw);
7: }
8: }µ ´

Figure 4.3: linkUp()

linkUp() is called when the nodes link is up. linkUp() sets the initial
state and starts the process to join.

1: linkUp() require one variable, node identifier i.

2-3: If the node is source node, state is set to RUNNING from INIT .

4-6: If the node is relay node, state is set to JOINING from INIT .
sendJoinRequest() is called with the variables required for Join Pro-
cedure.

¶ ³
1: LinkDown (i) { /* i=node id */
2: Ni.state ← INIT ; / ∗ ∗ → INIT ∗ /
3: initialize all data in Ni.;
4: }µ ´

Figure 4.4: linkDown()

linkDown() is called when protocol process finishes and the link got down.

1: linkDown() require one variable, node identifier i.

2: Node state is set to INIT .

3: All parameters maintained by the node is initalized.

23

CHAPTER 4. DESIGN OF LOLCAST

4.3 Node State

For the multicast tree consistency state for the node is maintained in three
different part as stated in Section 4.1 and 4.2. Figure 4.5 illustrates the state
diagram for each node. Figure 4.6 illustrates the state diagram of nodes
which maintained in the tree structure. I N I TJ O I N I N G

L E A V I N GE S T A B L I S H E DA C C E P T E D
R U N N I N GL i n k U p (i)i ! = 0 L i n k U p (i)i = 0L i n k D o w n (i)i = 0r e c v J o i n A c c e p t () s e n d L e a v e C o m p l e t e ()s e n d L e a v e P r o g r e s s ()

r e c v J o i n R e j e c t ()
s t a r t r e c e i v i n g d a t a

L i n k D o w n (i)i = 0
t i m e o u t

Figure 4.5: State diagram for nodeD O W NJ O I N I N G L E A V I N GE S T A B L I S H E D
r e c v J o i n R e q u e s t ()

r e c v N o t i f y N e w P a r e n t () r e c v L e a v e P r o g r e s s ()
r e c v L e a v e C o m p l e t e ()

Figure 4.6: State diagram for node in tree structure

24

CHAPTER 4. DESIGN OF LOLCAST

4.4 Messages

LOLCAST constructs and maintains the multicast tree by message passing
between other nodes. This section represents each of the messages defined in
LOCAST.

4.4.1 Join Request Message

Join Request message is a message for a node which joining to the tree to
request the source node for which parent node to join to. This message is
only sent by relay node and received only by source node. In the process
of Join Request, function for generating the set of candidate parent nodes,
extractPCS() is called. First the function extractPCS() is discussed and
next, process of JoinRequest() is shown.

¶ ³
1: extractPCS (i, l, S) { /* i=request node, l=# of layers */
2: S ← φ;
3: A ← lowerLayerNodes(T, l);
4: for (|A| > 0 ()) {
5: j ← minDepthNode(T,A);
6: A ← A − {j}
7: if (

∑l−1
k←0 Bk < Tj .bw and Tj .id 6= i)

8: S ← S ∪ j;
9: if (|S| >= PCSmax)

10: return;
11: }
12: }µ ´

Figure 4.7: extractPCS()

extractPCS() evaluates the node with four conditions taken out from T
maintained by the source node. extractPCS() is called only by the source
node. The conditions are: node has larger number of layers than the request,
node has enough to send requesting data, node is not the node requesting
for PCS, and the node has minimal depth inside above all. Figure 4.4.1
illustrates the process.

25

CHAPTER 4. DESIGN OF LOLCAST

1: extractPCS() takes three arguments. Node identifer of the node re-
questing for PCS i, requesting number of layers l and PCS S.

2: Set the extracting PCS to φ.

3: Set of node identifiers of nodes with number of layer greater than l is
taken out by lowerLayerNodes(T, l) from T into a new set A.

4-6: Until A is unavailable, node j which has the minimal depth inside A
is taken out by minDepthNode(T,A). Next, j is cleared from A.

7-8: Two conditions,
∑l−1

k←0 Bk < Tj.bw and Tj.id! = i are evaluated. First
is total bandwidth of the data with l layers (

∑l−1
k←0 Bk) is smaller than

the bandwidth left for j (Tj.bw). Second is node identifier for j (Tj.id)
is not equal to the node identifier of node called extractPCS, i. If both
meets conditions, j is added to the generated PCS S.

9-10: Number of entries in PCS S is evaluated. If number of entries are
greater or equal to PCSmax, parameter in tree structure, extracted S
is returned. If not, another node j is taken out from A in line 5.

26

CHAPTER 4. DESIGN OF LOLCAST

¶ ³
1: recvJoinRequest (i, j, l, b) { /* i,j=nodeid, l=# of layer, b=bandwidth */
2: if (i = 0) {
3: Tj .id ← j;
4: Tj .dp ← 0; / ∗ initialized value ∗ /
5: Tj .ly ← l;
6: Tj .bw ← b;
7: Tj .p ← −1;
8: Tj .C ← φ;
9: if (

∑l−1
k←0 Bk < N0.T0.bw) {

10: send JoinAccept(j, i);
11: Tj .state ← JOINING; / ∗ INIT → JOINING ∗ /
12: N i.C ← N i.C ∪ {(j, l, JOINING)}; / ∗ add new child ∗ /

13: N0.bw = N0.bw −
∑l−1

k←0 Bk;
14: / ∗ set timeout in Tout for node j ∗ /
15: } else {
16: PCS ← extractPCS(l);
17: if (|PCS| = 0) {
18: send JoinReject(j, i);
19: Tj .state ← INIT ; / ∗ INIT → INIT ∗ /
20: } else {
21: send JoinRedirect(j, i, PCS);
22: Tj .state ← JOINING; / ∗ INIT → JOINING ∗ /
23: / ∗ set timeout in Tout for node j ∗ /
24: }
25: } else {
26: if (Ni.state = ESTABLISHED and

∑l−1
k←0 Bk ≤ Ni.bw and Ni.ly ≥ l)

{
27: send JoinAccept(j, i);
28: Ni.bw = Ni.bw −

∑l−1
k←0 Bk;

29: / ∗ set timeout in Tout for node j ∗ /
30: N i.C ← N i.C ∪ {(j, l, JOINING)}; / ∗ add new child ∗ /
31: } else {
32: send JoinReject(j, i);
33: }
34: }
35: }µ ´

Figure 4.8: JoinRequest()

27

CHAPTER 4. DESIGN OF LOLCAST

1: JoinRequest() takes four variables, node identifier of source node i, node
identifier of requesting node j, requesting number of layer l, bandwidth
left b.

2: If the node received Join Request message is N0, which is the source
node, goes to line 4. Else if the node is other relay nodes, goes to line
20.

3-8: Parameters of Tj is set to be prepared for joining to the tree. Depth
of Tj is set to 0 which is only for an initial value.

9-10: Checks if the source node can be a parent. If bandwidth left for
source node (N0.T0.bw) is greater than the total bandwidth of re-
questing data from j (

∑l−1
k←0 Bk), a message to acknowledge the join

sendJoinAccept(j, i) is called and goto next line.

11: State of Tj in the tree structure is set to JOINING from INIT to
lock from changes.

12: Child node is added to source node. In detail, information of Nj is
inserted to set of child nodes of the source node N0.C. Node identifier
j, requesting layer l and the state JOINING is included.

13: Bandwidth left for N0 is reduced. Total data bandwidth calculated
from requesting layer l (

∑l−1
k←0 Bk) is subtracted.

14: Timeout timer Tout is started for node Nj.

15-16: If condition in line 9 is not satisfied, extractPCS(j, l, PCS) is called
to find other candidate parent nodes to join.

17-18: If generated PCS in line 13 does not have any entry, sendJoinReject(j, i)
is called to report that there are no nodes satisfy the request.

19: State of Tj in the tree structure is switched back to INIT .

20-21: If generated PCS in line 13 have more than one entry, sendJoinRedirect(j, i, PCS)
is called to redirect the node Nj to another parent node.

22: State of Tj in the tree structure is set to JOINING from INIT to
lock from changes.

23: Timeout timer Tout is started for node Nj.

28

CHAPTER 4. DESIGN OF LOLCAST

25-27: If the node received Join Request message is relay node, following
conditions are evaluated. If state of Ni is ESTABLISHED, band-
width left for Ni is larger than the requesting data and layer main-
tained by Ni is larger than the requesting layer l. If all meet condition,
sendJoinAccept() is called and else goes to line 31.

28: Bandwidth left for Ni is reduced. Total data bandwidth calculated
from requesting layer l (

∑l−1
k←0 Bk) is subtracted.

29: Timeout timer Tout is started for node Nj.

30: Child node is added to node Nj. In detail, information of Nj is in-
serted to set of child nodes of the source node Ni.C. Node identifier j,
requesting layer l and the state JOINING is included.

31-32: If condition in line 26 is not satisfied, sendJoinReject() is called
for the node to report that join request failed.

4.4.2 Join Accept Message

Join Accept message is a message for candidate parent node (including the
source node) to reply Join Request message that the request is accepted.
This message is sent by source node and relay node and received only by
relay node.¶ ³

1: recv JoinAccept (i, j) { /* i=nodeid(i 6= 0),j=parent-nodeid */
2: Ni.parent ← j;
3: Ni.state ← ACCEPTED; / ∗ JOINING → ACCEPTED ∗ /
4: send NotifyNewParent(0, i, j);
5: }µ ´

Figure 4.9: JoinAccept()

1: recvJoinAccept() takes two variables. Node identifier of new relay node
i and node identifier of parent node j.

2: New node Ni, sets its parent node id to j (ni.parent ← j).

3: State of Ni is set to ACCEPTED from JOINING.

4: sendNotifyNewParent(0, i, j) is called for new relay node Ni to notify
the source node that join to a parent node is completed.

29

CHAPTER 4. DESIGN OF LOLCAST

4.4.3 Notify New Parent Message

Notify New Parent Message is a message for new relay node to notify the
source node that node is joined to a parent node. Notify Parent Message
operates the tree structure and add the connection between new relay node
and the parent node. This message is sent only by the relay node and received
only by the source node.¶ ³

1: recv NotifyNewParent (i, j, k) { /* i,j=nodeid(i=0),k=parent-nodeid */
2: Tj .parent ← k;
3: Tj .state ← ESTABLISHED; / ∗ JOINING → ESTABLISHED ∗ /
4: sendNotifyAccepted(i, j, k);
5: }µ ´

Figure 4.10: NotifyNewParent()

1: NotifyNewParent() takes tree variables. Node identifier of source node
i, new relay node j and new parent node k.

2: State of Nj is set to ESTABLISHED from JOINING.

3: sendNotifyAccepted(i, j, k) is called to notify the new relay node that
operation done to the tree finished correctly.

4.4.4 Notify Accepted Message

Notify Accepted message is a message for source node to notify the relay
node that operation to the tree is finished correctly. New relay node finishes
join procedure by receiving this message. This message is only sent by relay
node and received by source node.¶ ³

1: recvNotifyAccepted (j, k) { /* i=0,j=child,k=parent-nodeid */
2: Nj .parent ← k;
3: sendNotifyAck(0, j);
4: }µ ´

Figure 4.11: NotifyAccepted()

1: recvNotifyAccepted() takes two variables. Node identifier of new relay
node j and node identifier of parent node k.

30

CHAPTER 4. DESIGN OF LOLCAST

2: Node Nj sets it parent node to k.

3: Node Nj sends back to source node N0 acknowledge message sendNotifyAck(0, j)
is called.

4.5 Join Procedure

In this section, protocol process for Join Procedure is illustrated. First outline
for the Join Procedure is shown by the message passing diagram. Next
example of a new relay node joining to the tree is discussed step by step.

4.5.1 Message passing in Join ProcedureNew Node Source Node Potential Parent Node1.Join Request2.Join Redirect(or Join Reject, Join Accept)2.Join Request 3.Join Accept(or Join Reject)4.Notify Parent New5.Notify Accepted extractPCS()Join Reject->goto 1Join Accept->goto 4Join Reject->go to 2 Add new childAdd new child to treeAdd new parent
Figure 4.12: Message passing in Join Procedure

4.5.2 Example of Join Procedure

Figure 4.13,4.14,4.15 illustrates a case when N4 joins to the multicast tree.
Solid line stands for data path and dotted line stands for message path. This
tree has two parameters, L0 = 10 and cmin = 2. For simplicity, cmax for
every node is set to 2. Join Procedure is done by messaging between nodes.

31

CHAPTER 4. DESIGN OF LOLCASTData pathMessage path 1.RendezvousRequest2.RendezvousAccept 3.Parent ListRequest5.Parent ListData-Allocated new node id-Node info of N0-Nodeinfo of N4 -List of parent nodes(Node N2, Node N3)-Request Layer = 54. Generates parent list
Figure 4.13: Join Procedure 1

For the first step, we assume that new relay node N4 can acquire source
node N0s address and max number of layer, L0 which source could offer.
N4 sends Rendezvous Request to N0 including its own node information.
Source node generates a unique node identifier and sends back to N4 using
Rendezvous Accept message illustrated in Figure 4.13. Next, N4 sends Parent
List Request to N0 including the requesting number of layer (L4 = 5).

Parent list is a list of node which is capable to be parent node, gener-
ated by source node. Source node generates parent node list from several
parameters using tree structure, which is sorted by depth. There are mainly
two conditions to suffuse for adding to parent node list. (a) Node has open
slot in number of children (cmin ≤ Ci < cmax). (b) Node has enough layers
suffuse the request of new relay node (Li ≥ Lnew). (c) Node is not in the
leave node list (nodes which are trying to leave from the tree are added). N0

sends back the generated parent list including N2 and N3 to N4 by Parent
List Data message.

32

CHAPTER 4. DESIGN OF LOLCASTData pathMessage path 6.JoinRequest 8.JoinAccept-Node info of N2-Nodeinfo of N4 9.Data StartRequest7.Add N4 to child node 8.Add N2 to parent node10.Receive data
Figure 4.14: Join Procedure 2

N4 node picks N2 from parent list and sends Join Request including node
information of N4 as illustrated in Figure 4.14. N2 rechecks the parameters
if it can sustain the request, and becomes parent node for N4. N2 adds the
N4s node identifier, address, and other node information as children node.
Next, N2 sends Join Accept message to N4. N4 adds node information of N2

to its data structure as parent node. Finally N4 sends Data Start Request
to N2, and data transmission starts.Data pathMessage path 11.Notify Join Complete-Nodeinfo of N4(child) and N2(parent) 12.Update tree structure

Figure 4.15: Join Procedure 3

After N4 joined to the multicast tree, N4 sends Notify Join Complete mes-
sage to N0 for updating the tree structure which it maintains, as illustrated
in Figure 4.15.

33

CHAPTER 4. DESIGN OF LOLCAST

4.6 Leave Procedure

In this section, protocol process for Leave Procedure is illustrated. First
outline for the Leave Procedure is shown by the message passing diagram.
Next example of a relay node leaving from the tree is discussed step by step.

4.6.1 Message passing in Leave ProcedureLeave Node Source NodeParent Node set state to LEAVINGPrune child nodefrom child listChild Node 2.Leave Requestruns Join Procedure 1.Notify Leave Progress5. Prune Request6. Prune Complete 7.Notify Leave Complete3.Leave Complete set state to INITremove leave nodefrom treeStop dataif child node num == 0 4. Data Stop Request
Figure 4.16: Message passing in Leave Procedure

4.6.2 Example of Leave Procedure

Figure 4.17,4.18 illustrates a case when N4 leaves from the multicast tree.
Parameters are same as in Join Procedure. For simplicity, cmax for every
node is set to two. In Leave Procedure, it is desired for the leaving node not
to make an effect to the data streaming of other nodes.

First, leaving node N4 sends Notify Leave Progress message to the source
node N0 as illustrated in Figure 4.17. This message notifies the source node
that its state must be locked, such as not to include the node to the parent
list. N0 adds N4 to the leave node list to lock the node from modification.
Next, N4 sends Leave Request to the child node N5 to notify that N4 is
leaving.

When N5 receives Leave Request, it runs Join Procedure to find other
parent node. N5 rejoins to the new parent N1, and start receiving the data
from it. In this period, N5 is receiving two data stream redundantly from N4

and N1. After switching the data stream from N4 to N1, N5 sends Data Stop
Request message to N4 and N4 stops sending data to N5. Next, N5 sends

34

CHAPTER 4. DESIGN OF LOLCASTData pathMessage path 1.Notify LeaveProgress3.Leave Request 7.Notify ParentChanged 5.Data Stop Request6.Leave Complete-Node info of N4-Node info of N4 -Node info of N5-Node info of N1 and N52.Add N4 to lock list 4.Rejoined to N1 8.Update tree structure
Figure 4.17: Leave Procedure 1

Leave Complete message to N4 to notify N4 that N5 has found a new parent
node and receiving data properly. Finally N5 sends Notify Parent Changed
message including the node information of both N5 and N4 to request the
source node N0 to update the multicast tree. N0 updates the multicast tree
to the current state. 10.PruneComplete9.PruneRequest11.Notify Leave CompleteData pathMessage path -Node info of N4-Node info of N4 12.Update tree structure

Figure 4.18: Leave Procedure 2

After N4 confirms that it has no children nodes, N4 sends Prune Request
message to its parent node N2. N2 deletes node information of N4 from
its data structure and sends back Prune Complete to N4. Finally N4 sends

35

CHAPTER 4. DESIGN OF LOLCAST

Notify Leave Complete to N0 and N0 deletes node information of N4 from
multicast tree structure.

36

Chapter 5

Implementation of LOLCAST

This chapter represents the implementation of streaming application using
LOLCAST protocol. Implemented application serves data with multiple
media-type (text data, audio data, low quality video data and high qual-
ity video data) with four layers by using abstract data structure. First en-
vironment of the implementation is illustrated. Next, system overview of
the application is shown. Next, each of the functional modules to construct
the system are described. Last, user interface for using the application is
illustrated.

5.1 Implementation Environment

LOLCAST application is implemented as a content streaming streaming ap-
plication. Table 5.1 shows the implementation environment. The operating
system used in the implementation is MacOSX 10.4.8. C++ is used for the
programming language, and Standard Template Library is used for imple-
menting the data structure.

Table 5.1: Environment for implementation

CPU Intel Core Duo 1.66Ghz
Memory 2GB

OS MacOSX 10.4.8
Language C++
Library C++ Standard Template Library

Compiler 4.0.0 20041026 (Apple Computer, Inc. build 4061)

37

CHAPTER 5. IMPLEMENTATION OF LOLCAST

5.2 Implementation Overview

In this section, overview of the LOLCAST application is illustrated. LOL-
CAST application is consist of four modules. Protocol Processing Module,
Application Module, Network Module and Simulator Module. Figure 5.1 il-
lustrates the relationship between each modules. Each of the modules are
used to run the application in two modes: Application Mode and Simula-
tor Mode. Application Mode runs the actual content streaming application
by sending messages to other nodes. Simulator Mode runs as stand alone
application to generate virtual nodes inside, and messaging between them
to simulate the protocol. In Application Mode, Protocol Processing Mod-
ule, Application Module and Network Module are used to run. In Simulator
Mode, only the Protocol Processing Module and Simulator Module are used.
Functions of each of the module is illustrated below.

A p p l i c a t i o n M o d u l e P r o t o c o l P r o c e s s i n g M o d u l e
N e t w o r k M o d u l e S i m u l a t o r M o d u l e

S e n d / R e c v m e s s a g e st o / f r o m n e t w o r k

C o n t r o l m e s s a g e t os t a r t / s t o p d a t a s e n d / r e c v

S e n d / R e c vd a t a t o / f r o m n e t w o r k
S e n d / R e c vm e s s a g e s S e n d / R e c vm e s s a g e sh a n d l e C o n t r o l M e s s a g e ()s e n d C o n t r o l M e s s a g e ()s t a r t D a t a S o u r c e ()s t o p D a t a S o u r c e ()

s e n d N e t w o r k l M e s s a g e ()r e c v N e t w o r k l M e s s a g e ()
h a n d l e C o n t r o l M e s s a g e ()s e n d C o n t r o l M e s s a g e ()

Figure 5.1: LOLCAST Application Modules

38

CHAPTER 5. IMPLEMENTATION OF LOLCAST

• Protocol Processing Module
Main function of Protocol Processing Module is to run the protocol
process of LOLCAST to maintain control topology. Protocol processes
are triggered by the received messages from Network Module or Simu-
lator Module. It operates the data structure in LOLCAST and sends
back messages if necessary. In addition, it controls the Application
Module to send and receive content data.

• Application Module
Application Module maintains the data topology in LOLCAST appli-
cation. Application modules send or receive the content data by the
request from Protocol Processing Module. In addition, Application
Module has a function to view the content in appropriate method for
certain media type.

• Network Module
Network Module maintains connection between nodes to maintain the
control topology and send or receive message packets from network.
Messages received from the Protocol Processing Module are packetized
and send to the destination node. Messages received from the network
are taken out from the packet and given to the Protocol Processing
Module.

• Simulator Module
Simulator Module generates virtual nodes to simulate the protocol pro-
cess. Protocol process is done by messaging between virtual nodes
communicating with Protocol Processing Module.

5.3 Protocol Processing Module

Protocol Processing Module maintains the tree structure and control topol-
ogy in LOLCAST. This tree structure and control topology is constructed
and maintained by messaging between nodes. Protocol Processing Module
is the core module which runs the actual LOLCAST protocol process to
establish a service infrastructure.

In this section, implementation of Protocol Processing Module is illus-
trated. First, data structure maintained by both source and relay node is
described. Next, message format and methods which operates the data struc-
ture are illustrated. After that, methods to construct the multicast tree by
handling the tree structure is illustrated particularly.

39

CHAPTER 5. IMPLEMENTATION OF LOLCAST

5.3.1 Data Structure

This section illustrates the implementation of data structure maintained by
nodes. First elemental structure used in both source and relay node is de-
scribed. Next, data structure maintained by each node are illustrated.

struct nodeInfo {
node id t nodeId ;
add r e s s t address ;
int l a y e r ;

} ;

typedef l i s t <nodeInfo ∗> nodeInfoSeq ;

Figure 5.2: nodeInfo Structure

Figure 5.2 represents structure of nodeInfo. nodeInfo is used to main-
tain child nodes and parent node information by both source and relay node.
nodeInfo includes, node identifier, network address and requesting layer of
the node. In addition, list of nodeInfo is defined as nodeInfoSeq.

struct t reeNodeInfo {
node id t nodeId ;
int nodeState ;
add r e s s t address ;
int l a y e r ;
bandwidth t bandwidthLeft ;
int depth ;
LCNode : : t reeNodeInfoSeq nodeInfoChi ld ;

} ;

typedef map<node id t , t reeNodeInfo ∗> treeNodeInfoMap ;
typedef l i s t <t reeNodeInfo ∗> treeNodeInfoSeq ;
typedef l i s t <treeNodeInfo> t reeNodeIn fo Ins tanceSeq ;

Figure 5.3: treeNodeInfo Structure

Figure 5.3 represents structure of treeNodeInfo. treeNodeInfo is used
to maintain the multicast tree structure and only used by the source node.
treeNodeInfo includes fundamental variables to maintain the tree. The
data included are, unique node identifier, state of the node, network address,
requesting layer, bandwidth left and depth inside the tree. These parameters
are used to select the optimal parent node inside the tree. In addition,
list of treeNodeInfo, which maintains the information for its child node
is included as nodeInfoChild. Map of node identifier and treeNodeInfo
is defined as treeNodeInfoMap and list of treeNodeInfo is defined as
treeNodeInfoSeq.

40

CHAPTER 5. IMPLEMENTATION OF LOLCAST

struct l a y e r I n f o {
int dataType ;
bandwidth t dataBandwidth ;
double dataSendRate ;
char dataName [1 0 0] ;

} ;

typedef l i s t <l a y e r I n f o ∗> l a y e r In f oSeq ;

Figure 5.4: layerInfo Structure

Figure 5.4 represents structure of layerInfo. layerInfo is used to main-
tain information of each layer in the content first maintained by the source
node and reported to other relay nodes afterward. First entry of layerInfo
includes the type of the data included in the layer, for example, text data,
audio data, video data and layered coded video data. In addition, bandwidth
used for the layer, and name of the layer is included. List of layerInfo is
defined as layerInfoSeq.

Source Node

class LCNode {
private :

/∗ node informat ion ∗/
int nodeType = LCNODE SOURCE;
int nodeState ;
node id t nodeId = NODEID SOURCE;
add r e s s t address ;
bandwidth t bandwidthSend ;
bandwidth t bandwidthLeft ;
int l a y e r ;
nodeInfoSeq nodeInfoChi ld ; // c h i l d node informat ion
l a y e r In f oSeq dataIn fo ; // data informat ion

/∗ source s p e c i f i c in format ion ∗/
double rateOutbound ; // ra te f o r sending data
node id t nodeIdCurrent ; // current node i d e n t i f i e r
treeNodeInfoMap t r e e I n f o ; // mu l t i c a s t t r e e s t r u c t u r e

/∗ abbr ∗/
.

} ;

Figure 5.5: Data structure maintained by source node

Figure 5.5 represents data maintained by the source node. As illustrated
in Section 4.2.2, source node maintains the multicast tree structure. This tree
is implemented as a map of treeNodeInfo, which is treeInfo. Information
for the streaming content is implemented as a list of layerInfo, which is

41

CHAPTER 5. IMPLEMENTATION OF LOLCAST

dataInfo. Parameter rateOutbound is added for making a constraint in
receiving number of layers. This parameter is for not having a node only
receive and not relaying the data, which will cause the multicast tree not
join-able. rateOutbound takes value greater than 1.0, which multiplied
by the receiving data bandwidth to show total data bandwidth to send. In
addition parameter nodeIdCurrent saves the current unique node identifier.

Relay Node

class LCNode {
private :

/∗ node informat ion ∗/
int nodeType = LCNODE RELAY;
int nodeState ;
node id t nodeId ;
add r e s s t address ;
bandwidth t bandwidthSend ;
bandwidth t bandwidthLeft ;
int l a y e r ;
nodeInfoSeq nodeInfoChi ld ; // c h i l d node informat ion
l a y e r In f oSeq dataIn fo ; // data informat ion

/∗ r e l a y s p e c i f i c in format ion ∗/
bandwidth t bandwidthRecv ;
double rateBackup ; // backup ra te
nodeInfo ∗nodeInfoSource ; // source node informat ion
nodeInfo ∗nodeInfoParent ; // parent node informat ion
nodeInfoSeq ∗ nodeIn foPotent ia lParent ; // parent candidate l i s t

/∗ abbr ∗/
.

} ;

Figure 5.6: Data structure maintained by relay node

Figure 5.6 represents data maintained by the relay node. As illustrated in
Section 4.2.3, relay node maintains list of parent candidate list received from
the source node in Join Request. Parent candidate list is implemented as list
of nodeInfo. Parameter rateBackup is added to declare the percentage
of receiving bandwidth used for receiving the backup data. This parameter
takes value from 0.1 to 0.9. Relay node also maintains node information of
source node and parent node by nodeInfo.

5.3.2 Message Format and Message Handling Methods

In this section, messages format and methods used in LOLCAST application
is illustrated briefly.

42

CHAPTER 5. IMPLEMENTATION OF LOLCAST

Message Format M e s s a g e L e n g t hM e s s a g e T y p eS e n d N o d e I D U n u s e dS e n d A d d r e s sD e s t N o d e I D U n u s e dD e s t A d d r e s sN u m b e r o f L a y e r N o d e S t a t eB a n d w i d t h L e f t
O c t e t 1 O c t e t 2 O c t e t 3 O c t e t 4

P r o t o c o l D a t a L e n g t hP r o t o c o l D a t a
M e s s a g eH e a d e rS e n d e rN o d e i n f oP r o t o c o lD a t a

M e s s a g eH e a d e r
Figure 5.7: Message Format

Message format used in LOLCAST is generally divided into three parts
as illustrated in Figure 5.7. Message Header, Sender Nodeinfo and Protocol
Data. Message Header includes the fundamental information to send the
message. Node identifier and address of both sender and destination node is
included. Sender nodeinfo includes the relay nodes information for joining to
the multicast tree. These fields are used for source node to find appropriate
parent node for it. Protocol data includes other data such as information of
streaming data and parent candidate list.

Message Methods

Figure 5.8 represents the methods called when receive or send messages. Send
and receive method are defined for each message. All messages received from
Network Module or Simulator Module is given to handleControlMessage().
handleControlMessage() switches the message by its message type to each of
the message receive method. In case of sending a message, sendControlMessage()
is called to pass the message to Network Module or Simulator Module.

43

CHAPTER 5. IMPLEMENTATION OF LOLCAST

/∗ message top handle func t i ons ∗/
void handleControlMessage (LCMessage ∗ lcmsg) ;
void sendControlMessage (LCMessage ∗ lcmsg) ;

/∗ message hand l ing func t i ons ∗/
void setControlMessageHeader (LCMessage ∗ lcmsg , add r e s s t destaddr) ;
void recvTree in foRequest (LCMessage ∗ lcmsg) ;
void recvTree in foRep ly (LCMessage ∗ lcmsg) ;
void recvJoinRequest (LCMessage ∗ lcmsg) ;
void recvJoinAccept (LCMessage ∗ lcmsg) ;
void r e cvJo inRe j e c t (LCMessage ∗ lcmsg) ;
void r e cvJo inRed i r e c t (LCMessage ∗ lcmsg) ;
void recvNotifyParentNew (LCMessage ∗ lcmsg) ;
void recvNot i fyParentAccept (LCMessage ∗ lcmsg) ;
void r ecvNot i fyParentRe jec t (LCMessage ∗ lcmsg) ;
void recvNot i fyStateUpkeep (LCMessage ∗ lcmsg) ;
void recvNot i fyStateAccept (LCMessage ∗ lcmsg) ;
void r e cvNot i f yS ta t eRe j e c t (LCMessage ∗ lcmsg) ;
void recvDataRequest (LCMessage ∗ lcmsg) ;
void sendTree in foRequest (void) ;
void sendTree infoReply (add r e s s t addr) ;
void sendJoinRequest (add r e s s t addr) ;
void sendJoinAccept (add r e s s t addr , node id t id) ;
void sendJo inReject (add r e s s t addr) ;
void sendJo inRed i rec t (add r e s s t addr , nodeInfoSeq ∗pcs , node id t id) ;
void sendNotifyParentNew (add r e s s t addr) ;
void sendNoti fyParentAccept (add r e s s t addr) ;
void sendNot i fyParentReject (add r e s s t addr) ;
void sendNoti fyStateUpkeep (void) ;
void sendNot i fyStateAccept (add r e s s t addr) ;
void s endNot i fySta teRe j ec t (add r e s s t addr) ;
void sendDataRequest (add r e s s t addr) ;

Figure 5.8: Message Handling Methods

For example in case of receiving Join Request message in Join Procedure,
first handleControlMessage() is called. handleControlMessage() passes
the message to correct receive method which is recvJoinRequest(). After
running the protocol process triggered by the message, sendJoinAccept() is
called and given to sendControlMessage().

For implementing a application using LOLCAST protocol, four imple-
mentation specific messages are added. Treeinfo Request, Treeinfo Reply,
Data Request and Data Stop Request. Treeinfo Request is a message for
new relay node to request the source node for service information, which is
the information of the streaming data and outbound rate. This information
is send by Treeinfo Reply message. After a new relay node finished joining
to the multicast tree, Data Request message is send to its parent node to
request the data. As soon as parent node receives this message, parent node
starts sending the data with requested number of layer. Data Stop Request
message is called when relay node requests its parent to stop the stream.

44

CHAPTER 5. IMPLEMENTATION OF LOLCAST

5.3.3 Tree Handling Methods

In this section, tree handling methods implemented is illustrated. Tree han-
dling methods operates the tree structure to manipulate the control topology,
which is called only by the source node. First some of small utility methods
are illustrated. Next, search method to find appropriate parent node in the
multicast tree: generatePCS() and generatePCSRejoin() is illustrated. As
above, core part which will dictate the quality of the multicast tree are done
in these methods.

/∗ t r e e hand l ing func t i ons ∗/
node id t generateNodeId (void) ;
void s e tS t a t e (int s t a t e) ;
void generatePCS (nodeInfoSeq ∗ pcs , node id t id) ;
void generatePCSRejoin (nodeInfoSeq ∗ pcs , node id t id) ;
void addSubTree (t reeNodeInfo ∗ p , node id t id , int c ly ,

bandwidth t bw, t reeNodeIn fo Ins tanceSeq ∗tmp) ;
void cutNode (treeNodeInfo ∗p , node id t id) ;
void setDepth (treeNodeInfo ∗p , int depth) ;

Figure 5.9: Tree Handling Methods

Figure 5.9 represents the methods called when modification to the multi-
cast tree is needed. cutNode() is called when Leave Procedure is completed
to cut off the leaving node from the multicast tree. setDepth() is called when
recalculation for depth is required in case of parent node switch. setDepth()
runs inside the tree structure recursively from the given node to set new
depth for subtree under it.

Parent Node Selection

In LOLCAST, source node maintains the tree structure including all nodes
joining to the multicast group. Parent node selection done by the source node
consequently determines the quality of the multicast tree. This section illus-
trates how the two core methods for selecting parent nodes: generatePCS()
and generatePCSRejoin() are implemented.

45

CHAPTER 5. IMPLEMENTATION OF LOLCAST

generatePCS()

generatePCS() is called when source node received Join Request message
from the relay node. Process of generatePCS() is illustrated in Figure 5.10.
generatePCS() takes two arguments: generating parent candidate list and
the joining nodes identifier.

1-6: Node information for the joining node is searched from the tree struc-
ture treeInfo and requesting layer and total bandwidth for the data is
calculated.

12-28: Each treeNodeInfo entry in the tree structure are searched until
temporary PCS size is greater than the defined PCS SIZE. For each
entry, following four condition are evaluated.

1. Node has enough layer for the request

2. Node has enough bandwidth for sending requesting layer

3. Node is not the requesting node

4. State of the node is STABLE

This loop is executed from the node which has equal layer for request to
the node which has higher layer. It is necessary to search from the node
which has equal layer for the request for not to burden the bandwidth
for the node requesting higher layer.

31: The generated temporary PCS is sorted by the sort() method using
the overloaded operator in line 44-50. Each node is compared by three
conditions. Priority is higher from the node which has smaller layer,
to the node which has smaller depth, and to the node which has larger
bandwidth.

34-41: Finally the sorted PCS is inserted to the generated PCS.

46

CHAPTER 5. IMPLEMENTATION OF LOLCAST

1 void
2 LCNode : : generatePCS (nodeInfoSeq ∗ pcs , node id t id){
3 /∗ f i nd node in f o and ge t r e que s t i n g l a y e r & data bandwidth ∗/
4 treeNodeInfoMap : : i t e r a t o r i t r = t r e e I n f o . f i nd (id) ;
5 int l y = i t r −>second−>l a y e r ;
6 bandwidth t bw = getDataBandwidth (ly) ;
7
8 t reeNodeIn fo Ins tanceSeq tmp ;
9 int c l y ; // current l a y e r

10
11 /∗ generate temporary PCS ∗/
12 for (c l y = ly ; (unsigned int) c l y <= dataIn fo . s i z e () &&
13 tmp . s i z e () <= PCS SIZE ; c l y++){
14 // add to pcs from node with equa l l a y e r to up
15 i t r = t r e e I n f o . begin () ;
16 for (; i t r != t r e e I n f o . end () ; ++i t r){
17 // add to pcs i f . . .
18 // 1 . has enough l ay e r r e que s t i n g
19 // 2 . has enough bandwidth f o r sending r e que s t i n g l a y e r
20 // 3 . node i s not the sender
21 // 4 . s t a t e i s s t a b l e
22 i f (i t r −>second−>l a y e r == c ly && i t r −>second−>bandwidthLeft >= bw &&
23 i t r −>second−>nodeId != id && i t r −>second−>nodeState == STATE STABLE){
24 treeNodeInfo a = ∗(i t r −>second) ;
25 tmp . i n s e r t (tmp . end () , a) ;
26 }
27 }
28 }
29
30 /∗ s o r t tmporary PCS by layer , depth and bandwidth ∗/
31 tmp . s o r t () ;
32
33 /∗ i n s e r t sor t ed PCS ∗/
34 treeNodeIn fo Ins tanceSeq : : i t e r a t o r s i t r = tmp . begin () ;
35 for (; s i t r != tmp . end () && pcs−>s i z e () <= PCS SIZE ; ++s i t r){
36 nodeInfo ∗p = New(nodeInfo) ;
37 p−>nodeId = (∗ s i t r) . nodeId ;
38 p−>address = (∗ s i t r) . address ;
39 p−>l a y e r = (∗ s i t r) . l a y e r ;
40 pcs−>i n s e r t (pcs−>end () , p) ;
41 }
42 }
43
44 bool operator< (const t reeNodeInfo &lhs , const t reeNodeInfo &rhs)
45 {
46 return (l h s . l a y e r < rhs . l a y e r)
47 | | (l h s . l a y e r == rhs . l a y e r && lh s . depth < rhs . depth)
48 | | (l h s . l a y e r == rhs . l a y e r && lh s . depth == rhs . depth
49 && lh s . bandwidthLeft > rhs . bandwidthLeft) ;
50 }

Figure 5.10: generatePCS()

47

CHAPTER 5. IMPLEMENTATION OF LOLCAST

generatePCSRejoin()

generatePCSRejoin() is called in the Leave Procedure when child node of
a leaving node received Leave Request message. Child node asks the source
node which node to rejoin to recover to the multicast tree. Source node calls
generatePCSRejoin() when received it request. Process of generatePCSRejoin()
is illustrated in Figure 5.11. generatePCSRejoin() takes two arguments:
generating parent candidate list and the joining nodes identifier. Basic pro-
cess in generatePCSRejoin() is similar to generatePCS(). The difference
is that requesting nodes underlying subtree is ignored from the parent can-
didate list to prevent tree to loop.

1-6: Node information for the joining node is searched from the tree struc-
ture treeInfo and requesting layer and total bandwidth for the data is
calculated.

12-16: Each treeNodeInfo entry in the tree structure are searched from
the source node until temporary PCS size is greater than the defined
PCS SIZE. generatePCSRejoin() calls recursive function addSubTree()
to search inside the tree defined line 32-55. For each entry, same condi-
tions as generatePCS() are evaluated for adding to PCS. In case the
entry equals the requesting node, entire underlying subtree is skipped
from searching parent candidate node. As same as generatePCS()
loop is executed from the node which has equal layer for request to the
node which has higher layer.

19: The generated temporary PCS is sorted by the sort() method using
the overloaded operator same as in generatePCS().

22-29: Finally the sorted PCS is inserted to the generated PCS.

48

CHAPTER 5. IMPLEMENTATION OF LOLCAST

1 void
2 LCNode : : generatePCSRejoin (nodeInfoSeq ∗ pcs , node id t id) {
3 /∗ f i nd node in f o and ge t r e que s t i n g l a y e r & data bandwidth ∗/
4 treeNodeInfoMap : : i t e r a t o r i t r = t r e e I n f o . f i nd (id) ;
5 int l y = i t r −>second−>l a y e r ;
6 bandwidth t bw = getDataBandwidth (ly) ;
7
8 t reeNodeIn fo Ins tanceSeq tmp ;
9 int c l y ; // current l a y e r

10
11 /∗ generate temporary PCS ∗/
12 for (c l y = ly ; (unsigned int) c l y <= dataIn fo . s i z e () &&
13 tmp . s i z e () <= PCS SIZE ; c l y++){
14 i t r = t r e e I n f o . f i nd (NODEID SOURCE) ;
15 addSubTree (i t r −>second , id , c ly , bw, &tmp) ;
16 }
17
18 /∗ s o r t tmporary PCS by layer , depth and bandwidth ∗/
19 tmp . s o r t () ;
20
21 /∗ generate temporary PCS ∗/
22 treeNodeIn fo Ins tanceSeq : : i t e r a t o r s i t r = tmp . begin () ;
23 for (; s i t r != tmp . end () && pcs−>s i z e () <= PCS SIZE ; ++s i t r){
24 nodeInfo ∗p = New(nodeInfo) ;
25 p−>nodeId = (∗ s i t r) . nodeId ;
26 p−>address = (∗ s i t r) . address ;
27 p−>l a y e r = (∗ s i t r) . l a y e r ;
28 pcs−>i n s e r t (pcs−>end () , p) ;
29 }
30 }
31
32 void
33 LCNode : : addSubTree (t reeNodeInfo ∗p , node id t id , int c ly ,
34 bandwidth t bw, t reeNodeIn fo Ins tanceSeq ∗tmp) {
35 // add to pcs i f . . .
36 // 1 . has enough l ay e r r e que s t i n g
37 // 2 . has enough bandwidth f o r sending r e que s t i n g l a y e r
38 // 3 . node i s not the sender
39 // 4 . s t a t e i s s t a b l e
40 i f (p−>l a y e r == c ly && p−>bandwidthLeft >= bw &&
41 p−>nodeId != id && p−>nodeState == STATE STABLE){
42 treeNodeInfo a = ∗p ;
43 tmp−>i n s e r t (tmp−>end () , a) ;
44 }
45 LCNode : : t reeNodeInfoSeq : : i t e r a t o r i t r = p−>nodeInfoChi ld . begin () ;
46 for (; i t r != p−>nodeInfoChi ld . end () ; ++i t r){
47 // i f nodeId equa l s r e que s t i n g node , s k i p i t s under ly ing sub t r ee
48 i f ((∗ i t r)−>nodeId == id){
49 return ;
50 } else {
51 // run r e c u r s i v e l y
52 addSubTree ((∗ i t r) , id , c ly , bw, tmp) ;
53 }
54 }
55 }

Figure 5.11: generatePCSRejoin()

49

CHAPTER 5. IMPLEMENTATION OF LOLCAST

5.4 Application Module

In this section, implementation of Application Module is illustrated. Appli-
cation Module is implemented as a interface to Video Lan Client [?] which
used for the viewer and constructing the data topology. Applicatoin Module
communicates with VLC by telnet interface from the request received from
the Protocol Processing Module. There are four functions implemented in to
run the request: sendDataSource(), stopDataSource(), startDataRelay()
and stopDataRelay().

¶ ³
% new layer1 broadcast enabled
% setup layer1 input file:///home/koh39/layer1.mpg
% setup layer1 output #duplicate{dst=standard

{access=http,mux=ts,dst=192.168.0.1:9002,name=LAYER1}}
% setup layer1 loop
% control layer1 play

µ ´
Figure 5.12: Sample telnet commands in source node

Figure 5.12 represents sample telnet commands for source node used in
Application Module. In first line new broadcast channel “layer1” is created.
Next input file for channel “layer1” is set. For output HTTP streaming
channel is opened with port 9002. Last, channel ”layer1” starts to play and
start servicing the stream.

¶ ³
% new layer1 broadcast enabled
% setup layer1 input http://192.168.0.1:9002
% setup layer1 output #duplicate{dst=display,dst=standard

{access=http,mux=ts,dst=192.168.0.2:9002,name=LAYER1}}
% setup layer1 loop
% control layer1 play

µ ´
Figure 5.13: Sample telnet commands in relay node

Figure 5.13 represents sample telnet commands for relay node. In this
case relay node run commands to receive the stream channel ”layer1”, created
in Figure 5.12 from source node and relay it to other nodes. For the channel
input, address of the source node and port is set. Next, for the channel output
not only start servicing the channel ”layer1”, it views the stream by setting

50

CHAPTER 5. IMPLEMENTATION OF LOLCAST

”dst=display”. Last, channel ”layer1” starts to play and also servicing the
stream.

As described above, each of the layer in LOLCAST is implemented as a
channel in VLC. Application Module creates and maintains multiple channel
to send layered data to nodes.

5.5 Network Module

In this section, implementation of Network Module is illustrated. Network
Module has four major functions: sendNetworkMessage(), recvNetworkMessage(),
serializeLCMessage() and deserializeLCMessage(). sendNetworkMessage()
and recvNetworkMessage() are used to send or receive the message to the
network given from the Protocol Processing Module. serializeLCMessage()
and deserializeLCMessage() is used to packetize or unpacketize the pro-
tocol message. For example, when a node received a message from net-
work, data is given to recvNetworkMessage(). recvNetworkMessage()
calls deserializeLCMessage() to convert packetized message to protocol
message. Retrieved message is handed to handleControlMessage() inside
Protocol Processing Module to run the protocol process.

5.6 Simulation Module

Simulation Module works with the Protocol Processing Module to simulate
the protocol process. Virtual nodes are created in Simulation Module with
certain parameters. Simulation Module communicates with Protocol Pro-
cessing Module by handleControlMessage() and sendControlMessage().
Messages handed from Protocol Processing Module by sendControlMessage()
is switched to a virtual destination node. Virtual node runs the protocol pro-
cess and sends back message by handleControlMessage() to other virtual
nodes.

5.7 User Interface

This section illustrates the user interface of LOLCAST application. LOL-
CAST application is implemented as a command line application. LOLCAST
application takes two modes: Application Mode and Simulation Mode. User
interface in each mode is described briefly.

51

CHAPTER 5. IMPLEMENTATION OF LOLCAST

5.7.1 Application Mode

Figure 5.7.1 illustrates the user interface for lolcast app in Application Mode.
In Application Mode, lolcast app has source mode and relay mode to run. In
source mode, it takes two arguments. Outbound bandwidth and outbound
rate for the multicast tree. By executing in source mode, application waits
for the Join Request message from new relay node.

¶ ³
% ./lolcast_app
Usage: lolcast_app [option]
Server example: lolcast_app -s -o 100 -r 1.5
Client example: lolcast_app -j serveraddress -o 100 -i 100 -b 0.2

-s: server mode
-i #: inbound bandwidth
-o #: outbound bandwidth
-b [0.1-0.9]: backup rate
-r [1 <]: outbound rate
-j [address]: source address
-a [address]: self address

µ ´
Figure 5.14: Running lolcast app in Application Mode

In relay mode, it takes four arguments. Source nodes address, outbound
bandwidth, inbound bandwidth and backup rate. By executing in relay
mode, it start join to the source node by sending Join Request message to
the source node address.

When receiving Treeinfo Reply message from source node, prompt illus-
trated in Figure 5.15 will be shown. By the data information retrieved from
source node, maximum number of layer which can be retrieved is determined
by its receiving bandwidth. Prompt request user to input how many layers
to request with showing the information of the stream.

5.7.2 Simulator Mode

Figure 5.7.1 illustrates the user interface for lolcast app in Simulation Mode.
In Simulation Mode, it takes one fundamental argument and two optional
arguments to run. Number of nodes joins to the tree is fundamental for run-
ning in simulator mode. Other arguments are optional to set the parameter.
”-r” option sets the request for number of layer to random. ”-l” option sets
to run the Leave Procedure in random order.

52

CHAPTER 5. IMPLEMENTATION OF LOLCAST

¶ ³
.
.

dataInfoMsg.size: 4
layerInfoMsg.0: dataType= 3, dataBandwidth= 10
layerInfoMsg.1: dataType= 3, dataBandwidth= 10
layerInfoMsg.2: dataType= 3, dataBandwidth= 10
layerInfoMsg.3: dataType= 3, dataBandwidth= 10
potentialParentMsg.size: 0

--INPUT LAYERNUM... MAXNUM IS 4 : ___

µ ´
Figure 5.15: Prompt for asking number of layers to request

¶ ³
%./lolcast_app
Usage: lolcast_app [option]
Example: lolcast_app -n 100 -s 5 -l -r

-n: number of nodes
-s: number of layers
-r: random layers
-l: random leave

µ ´
Figure 5.16: Running lolcast app in Simulation Mode

53

Chapter 6

Evaluation

This chapter illustrates the evaluation on proposed Overlay Multicast proto-
col LOLCAST. LOLCAST is evaluated in both qualitative and quantitative
approach. For qualitative approach, verification of the protocol process and
functional comparison with other proposed Overlay Multicast protocols are
done. For quantitative approach, performance evaluation for the protocol
process is done.

The objective of the evaluation is to prove that LOLCAST satisfied all
three fundamental propositions stated in Section 1.3. First proposition “User
could send and receive contents with ordinary resource environment” is eval-
uated by verification of the protocol process and performance evaluation for
protocol process. Second proposition “User could freely select media type
or quality of the content on demand” is evaluated by verification of protocol
process and functional comparison. Third proposition, “Seamless content
delivery” is evaluated by functional comparison.

First verification of LOLCAST protocol process is done by an experiment
using the implemented LOLCAST application described in Chapter 5. Next
functional comparison of the protocol with other proposed Overlay Multicast
protocols is done using the fundamental propositions as the metrics. Next,
performance of protocol process is evaluated by measuring the performance
of Join Procedure and Leave Procedure. Last, result of the evaluation is
illustrated.

6.1 Verification of Protocol Process

This section represents the verification of protocol process in LOLCAST.
Verification of the protocol process is done by an experiment using LOLCAST
application. This experiment assumes a case of streaming a live dance party

54

CHAPTER 6. EVALUATION

event. First setup for the experiment is illustrated. This includes the network
configuration, data served by the source and parameters set to each node.
Next, experiment is done and the results are shown.

6.1.1 Experimental Setup

This section illustrates the setup for the experiment. First network configu-
ration for the experiment is illustrated. Next, hardware and software specifi-
cation of nodes joining to the multicast tree is shown. Next, abstract layered
data provided from the source node is described briefly. Last, parameters
used in LOLCAST for each node is illustrated.

Network Configuration

Figure 6.1 illustrates the network configuration for the experiment. There
are five relay nodes joining to the tree. Relay node A, B and C are connected
to the wired network. In comparison, relay node D and E are connected to
wireless network.

Hardware and Software Specification

Table 6.1: Environment for experiment

Node CPU Memory OS
Source Intel Core Duo 1.66Ghz 2GB MacOSX 10.4.8
Relay A PowerPC 1.42Ghz 1GB MacOSX 10.4.8
Relay B Intel Core Duo 1.66Ghz 2GB MacOSX 10.4.8
Relay C PowerPC 1.42Ghz 4GB MacOSX 10.4.8
Relay D PowerPC 1.67Ghz 512MB MacOSX 10.4.8
Relay E PowerPC 1.67Ghz 1GB MacOSX 10.4.8

Hardware and software specification for the nodes are illustrated in Table
6.1. Relay node D and E are laptop computers and connected to the network
by Wi-Fi.

Provided Data

Abstracted layered data used in this experiment consists of multiple content
format data described in Section 3.1. Figure 6.2 shows the actual data for-
mat. This experiment assumes a case of streaming a live dance party event.

55

CHAPTER 6. EVALUATION R e l a y N o d e B2 0 3 . 1 7 8 . 1 2 8 . 9 1
S o u r c e N o d e2 0 3 . 1 7 8 . 1 4 3 . 2 1 4 R e l a y N o d e C2 0 3 . 1 7 8 . 1 2 8 . 7 9

R e l a y N o d e A2 0 3 . 1 7 8 . 1 4 3 . 1 6 8
R e l a y N o d e D2 0 3 . 1 7 8 . 1 3 9 . 1 4 7 R e l a y N o d e E2 0 3 . 1 7 8 . 1 3 9 . 2 3 6

W i r e l e s s A P
N e t w o r k L i n kW i r e l e s s L i n k

2 0 3 . 1 7 8 . 1 3 9 . 1 2 8 / 2 52 0 3 . 1 7 8 . 1 4 3 . 0 / 2 4 2 0 3 . 1 7 8 . 1 2 8 . 0 / 2 5
Figure 6.1: Network Topology of the experiment

Data served by the source node consists of four layers with different content
format. Description of each layer is described next. The base layer offers
text data supposed to be used as sending the information of the event, who
is acting and where. Bandwidth consumed for this layer is set to 1. First
enhancement layer offers audio data of the event and bandwidth is set to 5.
Second enhancement layer offers low quality video data with bandwidth of
10. Third enhancement layer offers high quality video data with bandwidth
of 25. Example of selecting four layers is shown in Figure 6.2. Base layer,
first enhancement layer and third enhancement layer are played at once. Sec-
ond enhancement layer is not played in this case because of both second and
third enhancement layer offers same content format.

Each user will select how many layers to receive from their resource en-
vironment and their interest. User using mobile devices is assumed to select

56

CHAPTER 6. EVALUATION A u d ioT e x t A BCA BCR e q u e s t i n g 4 la y e r s L o w Q u a l it y V id e oH ig h Q u a l it y V id e o R e q ue s t i ng 4la y e rs
Figure 6.2: Experimental Data

one or two layers for the service. In comparison user using devices such as
desktop computers is assumed to select three or full layers for the service.

Node Parameters

Table 6.2: Parameters set for experiment

Node Outbound BW Inbound BW Layer Outbound Rate Backup Rate
Source 50 N/A N/A 1.5 N/A
Relay A 100 100 4 N/A 0.2
Relay B 100 100 4 N/A 0.2
Relay C 100 100 3 N/A 0.2
Relay D 10 10 2 N/A 0.2
Relay E 10 10 1 N/A 0.2

Parameters for each nodes are set differently to show the disparity in
resource environment. Table 6.2 illustrates parameters set for each node. In
this experiment source node is assumed that does not have plenty of network
resource to serve streaming service such as to hundreds of nodes, which is
our targeted ordinary user. For relay nodes, we classified it into two types.
Relay node A, B and C are assumed to be a node which has a large resource
environment such as wired desktop computers. Relay node D and E are
assumed to be a node with few resource environment such as mobile devices.

6.1.2 Experiment Result

This section illustrates the result for experiment. Experiment using LOL-
CAST application is done by following procedure. First source node starts
the LOLCAST application in source mode and begins the service. Next each

57

CHAPTER 6. EVALUATION

relay node starts Join Procedure to the source node. The Join Procedure is
done in the following order: relay A, relay D, relay B, relay C and relay E.

LOLCAST Treestructure

Source
id=0 st=4
ly=4 bw=3

addr=203.178.143.214
depth=0

Relay A
id=1 st=4

ly=4 bw=43
addr=203.178.143.168

depth=1

Relay D
id=2 st=4
ly=2 bw=9

addr=203.178.139.147
depth=1

Relay B
id=3 st=4

ly=4 bw=100
addr=203.178.128.91

depth=2

Relay C
id=4 st=4

ly=3 bw=100
addr=203.178.128.79

depth=2

Relay E
id=5 st=4

ly=1 bw=10
addr=203.178.139.236

depth=2

Figure 6.3: Generated LOLCAST Tree

The generated multicast tree is illustrated in Figure6.3. Figure shows
the parameters of the node and the address. Number of path between each
node indicates the number of layer it relays. Each node is receiving the data
with their request and relaying it to other nodes. As the node receives data,
bandwidth parameter is reduced by calculating the data bandwidth.

Figure6.4 shows the screenshot of running LOLCAST application in relay
node A. Relay node A is receiving data with four layers. Video data with
high quality, audio data and text data showing the information of the event
is played all together. Information of current tree and data is offered by web
page at source node. Relay node uses this information to select number of
layers to receive. In addition, message log shows each of the message received
from other nodes.

Figure6.5 illustrates example of message log at relay node E receiving Join
Redirect message from source node. Join Redirect message includes parent
candidate list which source generated. Message shows a list with four entries
which first entry is relay node D. Relay node E joined to relay node D using
this message as illustrated in Figure 6.3.

58

CHAPTER 6. EVALUATION

Figure 6.4: Screenshot at Relay Node A

¶ ³

JOIN_REDIRECT:123
Id: 0 -> 5
Address: 203.178.143.214 -> 203.178.139.236
layer: -1
parentNodeId: -1
bandwidthLeft: -1
nodeState: -1
rateOutbound: 0
dataInfoMsg.size: 0
potentialParentMsg.size: 4
nodeInfoMsg.0: nodeId= 2, address= 203.178.139.147, layer= 2
nodeInfoMsg.1: nodeId= 4, address= 203.178.128.79, layer= 3
nodeInfoMsg.2: nodeId= 0, address= 203.178.143.214, layer= 4
nodeInfoMsg.3: nodeId= 1, address= 203.178.143.168, layer= 4

µ ´
Figure 6.5: Join Redirect message received at relay node E

59

CHAPTER 6. EVALUATION

6.2 Functional Comparison

In this section, functional comparison of LOLCAST with other Overlay Mul-
ticast protocols is done. Comparison between protocols are done by using
the fundamental propositions stated in Section 1.3. There are two metrics,
functions for adapting heterogeneity of end node and functions for adapting
instability of end nodes. Table 6.3 shows the functional comparison between
recently proposed protocols.

Functions of LOLCAST is compared with Narada [5, 8], HostCast [15],
Okada’s work [14] (A New Approach for the Construction of ALM Trees
using Layered Video Coding), Yang’s work [27] (A Proactive Approach to
Reconstructing Overlay Multicast Trees) and PRM [20] (Probabilistic Re-
silient Multicast).

Table 6.3: Functional comparison of Overlay Multicast Protocols

Protocol Node Heterogeneity Tree and Node Instability

LOLCAST [17] Abstract Layered Congestion avoidance
Data Structure Multi-path layer distribution

Narada [5, 8] Multi-version Reactive Approach
Okada’s work [14] Multi-layer Proactive Approach

(Backup parent candidates)
Koguchi’s work [26] Multi-layer Reactive Approach

LION [18] Multi-layer Reactive Approach
PALS [19] Multi-layer Reactive Approach

HostCast [15] None Proactive Approach
(Redundant data sending path)

PRM [20] None Proactive Approach
(Randomized data forwarding)

Yang’s work [27] None Proactive Approach
(Pre-calculate backup node)

Functions for adapting heterogeneity of end node

For the metric, functions for adapting heterogeneity of end node, several
protocols use multi-version or multi-layer approach. Narada [5,8] uses multi-
version approach, and Okada’s work [14], Koguchi’s work [26], LION [18] and
PALS [19] uses multi-layer approach. As illustrated in Section2.5.1 there are

60

CHAPTER 6. EVALUATION

advantages and drawbacks for both approaches. In addition, both approaches
are supporting only video data. From this reason, user could not freely select
the media type or quality of the content on demand and impossible to satisfy
the research objective. In comparison, LOLCAST used abstract layered data
to support this demand. Abstract layered data structure supports both fixed
data used in multi-version approach and layer coded data used in multi-layer
approach. In addition, combination of both approaches and other particular
kind of data can be supported as illustrated in Section.3.1.

Functions for adapting instability of end node

Proposed functions for adapting instability of end node can be classified in
to two types: reactive approach and proactive approach as stated in Section
2.5.2. Several protocols takes reactive approach: Narada [5, 8], Koguchi’s
work [26], LION [18] and PALS [19]. In contrast proactive approach is taken
by Okada’s work [14], HostCast [15], Yang’s work [27] and PRM [20].

In HostCast, multiple path from the source to the node is prepared in
advance. This backup paths to the source node runs through its primary
parents grandparent node and uncle node. In case of node failure, node
quickly changes to backup path to recover to the multicast tree. By preparing
the backup path in advance in the control topology, node could find new
parent node quickly. However, it still requires process time for switching
the control topology and also to request new parent for the data. There is
same issue in Okada’s work and Yang’s work that discontinuation of data
fundamentally occurs for only constructing the path in control topology. In
addition, Okada’s work has another issue that there is a possibility of saved
potential parent list to become invalid. PRM takes different approach by
using the randomized forwarding method to construct a redundant path in
data topology. However it has a large drawback in bandwidth utilization for
sending overlapping data in a case such as live video streaming which is our
target application.

Compared with recent approaches, LOLCAST takes two methods for
adapting end node instability using the characteristics of abstract layered
data structure illustrated in Section 3. LOLCAST proposed multi-path layer
distribution method for fast recovery from node failure and congestion avoid-
ance method in case of network congestion. In multi-path layer distribution
method, node after joining to the primary parent with requesting layer, it
constructs a backup path to other parent nodes on data topology. Specifi-
cally node receives data only with the base layer from multiple backup parent
nodes. The difference between PRM [20] is lies in the data sent form backup
nodes. By not sending the entire data redundantly, this method only sends

61

CHAPTER 6. EVALUATION

the base layer of the abstract layered data. Multi-path layer distribution
methods offers fast recovery method compared to other proposed method by
small drawback for sending base layer redundantly. Furthermore, proposed
congestion avoidance method offers a countermeasure for network congestion.
In case of network congestion, node sends a request to the parent to drop
the sending number of layers to avoid it.

6.3 Performance of protocol process

This section represents the performance evaluation for LOLCAST using im-
plemented LOLCAST application in simulation mode. In this simulation,
load at source node is simulated by measuring the performance of Join and
Leave Procedure. Objective for the simulation is to evaluate that ordinary
user which does not have large resource environment can service to large
group of people in a reasonable cost. This is one of our fundamental propo-
sition stated in Section 1.3.

First, environment for the performance evaluation is illustrated. Next
parameters set in LOLCAST application is illustrated briefly. Furthermore,
the procedure for the performance evaluation is described. Next, performance
of Join Procedure is evaluated by adding number of nodes to the multicast
tree. Last, performance of Leave Procedure is evaluated by letting the node
to leave from multicast the tree randomly.

6.3.1 Environment for performance evaluation

Hardware and software environment for the performance measurement is
illustrated in Table 6.4. LOLCAST application is compiled with option “-
O2” and run in single user mode for preventing unnecessary context switch.

Table 6.4: Hardware and software environment

CPU Intel Core Duo 1.66Ghz
Memory 2GB

OS MacOSX 10.4.8
Compiler 4.0.0 20041026 (Apple Computer, Inc. build 4061)

Compiler Option -O2

62

CHAPTER 6. EVALUATION

6.3.2 Parameters for performance evaluation

This section represents the parameters used in the performance evaluation.
Table 6.5 illustrates each of the parameter set in this evaluation. Bandwidth
of each layer stored in layered data is fixed to 10; therefore data with 4
layers will have bandwidth of 40 for full layer. Outbound rate at source
node is set to 1.5. For simplicity, backup rate at relay node is fixed to 0.2.
Simultaneously, outbound and inbound bandwidth for relay node is fixed to
100. Number of layers served by the source node is set to 4 and the request
from each node is set to random. Number of nodes joining to the tree is set
to 10000.

Table 6.5: Parameters set for performance evaluation

Parameter Value

Number of nodes 10000
Outbound rate (Source) 1.5

Backup rate (Relay) 0.2
Max number of layers 4

Requesting layer random

6.3.3 Measurement procedure

Performance evaluation for LOLCAST is done in two steps. In the first
step, nodes requesting random layers joins until it reaches the maximum
number of nodes, which is set to 10000. In this period, process time at
source node for running Join Procedure is measured for each node. After
the first step finishes, nodes begin to leave from the multicast tree running
Leave Procedure disorderly. Similarly, the process time at source node is
measured for each node. When the tree becomes only with the source node,
the evaluation finishes.

6.3.4 Measurement Result for Join Procedure

The main process done in Join Procedure is to find parent candidate list
using the tree structure at source node as illustrated in Section 4.4.1. Figure
6.6 plots the process time of Join Procedure as the relay node size increases.
In addition figure 6.6 illustrates the average process time compared with
relay node size in the tree. The parameters are set to 4 for maximum layer

63

CHAPTER 6. EVALUATION

and request for the layer is randomized. Overhead view of graph shows that
as the relay node size increases in the tree, process time for Join Procedure
gets longer. Process time for the node is forming a distinguishing sets of
four lines. This is due to the process done in generatePCS(). For not to
burden the bandwidth left for a node relaying a lot of layers, generatePCS()
searches the parent candidate from the node which relay layers close to the
request as illustrated in Section 5.3.3. Consequently the search time differs
from the requesting number of layers as illustrated in Figure 6.6. Another
mentionable point is that each line shows an periodic increase in process
time. This arises from the sort function called in generatePCS(). Detailed
description for this phenomena is done below.

In this experiment, outbound bandwidth for relay node is fixed to 100. In
consequence, node receiving four layers supports two child nodes and node
receiving one layer supports ten child nodes. Accordingly, the cycle for depth
increase is five times larger in requesting four layer than requesting one layer.
In the sort function called in generatePCS(), each of parent candidate is
compared and sorted by three conditions in the following order: number of
layer, depth in tree and bandwidth left. This means that number of times
for condition check decreases when depth gets larger. This is the explanation
of why periodical increase of process time occurs and the cycle of increase
differs between number of layers.

Table 6.6: Average process time for Join Procedure

Relay node size Process Time (useq)

1000 249
5000 1177
10000 2411

6.3.5 Measurement Result for Leave Procedure

After Join Procedure completes protocol process, Leave Procedure is evalu-
ated using the tree formed in join phase. The parameters are set to 4 for
maximum layer and the size of relay node starts from 10000 until it reaches
1, only with the source node.

As described in Section 4.6, leave node is forced to wait for its child nodes
to rejoin to the tree for preventing discontinuation of the service. Source node
will run generatePCSRejoin() illustrated in Section5.3.3 for each child node
to find new parent node in the tree.

64

CHAPTER 6. EVALUATION

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
el

ap
se

d
(u

se
c)

Number of nodes

1 layer
2 layers
3 layers
4 layers

Figure 6.6: Process time for Join Procedure (4 layers/random layer/random
leave)

This can be learned from the graph shown in Figure 6.7. Overhead view
of the graph shows that as the relay node size decreases, process time for
Leave Procedure shortens. Performance for Leave Procedure is divided into
distinctive set of lines distinguished by the number of child nodes which leave
node maintains. This is due to the rejoin process for child nodes. Leave
node must wait for all of the child nodes to run generatePCSRejoin() and
rejoin to the new parent. Altogether, process time will be multiplied by the
number of child node it maintains. In addition, average process time for
Leave Procedure is illustrated in 6.7.

In each set of lines separated by number of child nodes, process time
differs and forming a line. The reason for this is same as in Join Procedure.
Requesting number of layer of child nodes will affect the process time of
generatePCSRejoin() for searching appropriate parent node. The line run
along with the bottom of the graph is set of nodes which has no child node.
The process for this case will only require searching the leave node from the
tree structure and erasing it. In addition, from the reason that outbound
bandwidth is fixed to 100, node with 10 child node is receiving and relaying
one layer to other nodes.

65

CHAPTER 6. EVALUATION

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 2000 4000 6000 8000 10000

T
im

e
el

ap
se

d
(u

se
c)

Number of nodes

0 node
1 node

2 nodes
3 nodes
4 nodes
6 nodes
7 nodes
8 nodes
9 nodes

10 nodes

Figure 6.7: Process time for Leave Procedure (4 layers/random layer/random
leave)

6.4 Summary

In this chapter illustrated the evaluation for LOLCAST. Evaluation for LOL-
CAST has been performed by three methods. First verification of protocol
process has been confirmed by an experiment using LOLCAST application
in a case of streaming live dance party event. The result show that source
could serve a streaming service to number of nodes in a limited resource en-
vironment. Furthermore, each relay node freely selected media type of the
content on demand by requesting the number of layer for the data.

Next, functional comparison with other proposed Overlay Multicast pro-
tocols has been done. Protocols has been compared with two metrics: func-
tions for adapting heterogeneity of end node and functions for adapting end
node instability. In the first metric, existing protocols support multi-layer or
multi-version approach to support this. However both approach has issues
left to support research objective as illustrated in Section 6.2. LOLCAST
supports abstract layered data structure for adapting to the receivers vari-
ous request for the data. In second metric, existing protocols takes reactive
approach and proactive approach to support this. However both approach

66

CHAPTER 6. EVALUATION

Table 6.7: Average process time for Leave Procedure

Relay node size Process Time (useq)

10000 7915
5000 6415
1000 4145

still need a time for reforming the control topology to receive the data. LOL-
CAST supports congestion avoidance method and multi-path layer distribu-
tion method adapting end node heterogeneity. Multi-path layer distribution
method realize fast recovery method from node failure by small drawback
in bandwidth. In addition, congestion avoidance method offers a counter-
measure for network congestion using the characteristics of abstract layered
data.

Last, performance of protocol process has been evaluated for verify that
user could maintain the multicast tree with a ordinary resource environment.
Result shows that process time for Join Procedure and Leave Procedure
linearly increases as the group size get large. However the process time
remains very low in our targeted group size, which is several hundreds.

According to the results illustrated above, LOLCAST meets the three
fundamental propositions stated in Section 1.3: “User could send and receive
contents with ordinary resource environment”,“User could freely select media
type or quality of the content on demand” and “Seamless content delivery”.

67

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This study focused on to support creative activity of ordinary Internet users
distributing real-time streaming contents to large group of peoples. In this
paper, we have introduced LOLCAST as an adaptive Overlay Multicast pro-
tocol for real-time group communication in a heterogeneous environment to
realize this objective.

Recent group communication models had issues to accomplish our ob-
jective. Server-client model, CDN, IP Multicast can not support ordinary
users from both technical and policy issues. Overlay Multicast can support
ordinary user, but still had two issues to solve: adaptation to end node het-
erogeneity and adaptation to end node instability.

To solve the issues left in Overlay Multicast, this research proposed LOL-
CAST as an adaptive Overlay Multicast protocol for real-time group com-
munication in a heterogeneous environment. Design of LOLCAST has been
done including two distinguishing characteristics. First it supports abstract
layered data structure for adapting to users heterogeneous resource environ-
ment and interest level to the content. Abstract layered data supports not
only the existing multi-version and multi-layer data, but it can also support
combined data from various media type abstractly. Number of layers in the
data is used as the primary metric to construct the multicast tree. Second,
LOLCAST has multi-path layer distribution method and congestion avoid-
ance method for the solution to end node instability using the characteristics
of abstract layered data. After the design, implementation of an streaming
application using the LOLCAST protocol has been done.

Evaluation of LOLCAST has been done by three methods. Verification
of the protocol process using the implemented application, functional com-

68

CHAPTER 7. CONCLUSION AND FUTURE WORK

parison of LOLCAST with other Overlay Multicast protocols and perfor-
mance measurement of the protocol process. Evaluation result shows that
users could send and receive contents with ordinary resource environment and
freely select media type or quality of the content on demand. Furthermore,
LOLCAST prevents discontinuation of the content delivery in case of network
congestion and multicast tree partition. Altogether, it has been confirmed
that LOLCAST solved the major issues in Overlay Multicast research.

7.2 Future Work

For the future work, integration of multi-path layer distribution method and
congestion avoidance method should be concerned to work as a complete
protocol. Furthermore refining phase of the multicast tree should be con-
sidered in case of nodes requesting low layer burden the node serving high
layer. Finally, we are planning to release the implemented application as an
sample application for using LOLCAST protocol.

69

Bibliography

[1] HITACHI. 360度どこからでも見ることができる立体映像ディスプレイ
技術. http://www.hitachi.co.jp/New/cnews/040224a.html, 2003.

[2] Bb@nifty: Bb clip. http://bb.nifty.com/clip/movie/.

[3] Stephen E. Deering and David R. Cheriton. Multicast routing in data-
gram internetworks and extended lans. ACM Trans. Comput. Syst.,
8(2):85–110, 1990.

[4] Christophe Diot and Brian Neil Levine and Bryan Lyles and Hassan
Kassem and Doug Balensiefen. Deployment issues for the ip multicast
service and architecture. In IEEE Network Vol.14, num 1, pages 78–88,
2000.

[5] Yang hua Chu, Sanjay G. Rao, and Hui Zhang. A case for end system
multicast (keynote address). In Proceedings of the 2000 ACM SIG-
METRICS international conference on Measurement and modeling of
computer systems, pages 1–12. ACM Press, 2000.

[6] P. Francis. Yoid : Extending the internet multicast architecture. In
Technical report, AT&T Center for Internet Research at ICSI (ACIRI),
April 2000.

[7] B. Zhang, S. Jamin, and L. Zhang. Host multicast: A framework for
delivering multicast to end users. In IEEE Infocom, 2002.

[8] Yang Chu, Sanjay Rao, Srinivasan Seshan, and Hui Zhang. Enabling
conferencing applications on the internet using an overlay muilticast
architecture. In Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications,
pages 55–67. ACM Press, 2001.

[9] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Schenker. A scalable content-addressable network. In Proceed-
ings of the 2001 conference on Applications, technologies, architectures,

70

BIBLIOGRAPHY

and protocols for computer communications, pages 161–172. ACM Press,
2001.

[10] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy.
Scalable application layer multicast. In Proceedings of the 2002 con-
ference on Applications, technologies, architectures, and protocols for
computer communications, pages 205–217. ACM Press, 2002.

[11] Duc A. Tran, Kien A. Hua, and Tai T. Do. Scalable media streaming
in large peer-to-peer networks. In Proceedings of the tenth ACM inter-
national conference on Multimedia, pages 247–250. ACM Press, 2002.

[12] Yatin Chawathe. Scattercast: an adaptable broadcast distribution
framework. Multimedia Syst., 9(1):104–118, 2003.

[13] John Jannotti, David K. Gifford, M. Frans Kaashoek, and James
W. O’Toole Jr. Overcast: Reliable multicasting with an overlay net-
work. In 5th Symposium on Operating System Design and Implementa-
tion (OSDI), December 2000.

[14] Yohei Okada, Masato Oguro, Jiro Katto, and Sakae Okubo. A new
approach for the construction of alm trees using layered video coding.
In P2PMMS’05: Proceedings of the ACM workshop on Advances in peer-
to-peer multimedia streaming, pages 59–68, New York, NY, USA, 2005.
ACM Press.

[15] Zhi Li and Prasant Mohapatra. Hostcast: A new overlay multicasting
protocol. In IEEE International Communications Conference (ICC),
2003.

[16] Dimitris Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvogel.
ALMI: An application level multicast infrastructure. In Proceedings
of the 3rd USNIX Symposium on Internet Technologies and Systems
(USITS ’01), pages 49–60, San Francisco, CA, USA, March 2001.

[17] Kohei Ogura, Hideaki Imaizumi, Nakamura Osamu, and Jun Murai.
Overlay multicast protocol for delivering hierarchical structured data. In
12th Workshop on Distributed Processing System (SIG-DPS), December
2004.

[18] Jin Zhao, Fan Yang, Quian Zhang, Zhensheng Zhang, and Fuyan Zhang.
Lion: Layered overlay multicast with network coding. IEEE Transac-
tions on Multimedia, 8(5):1021–1032, 2006.

71

BIBLIOGRAPHY

[19] Reza Rejaie and Antonio Ortega. Pals: Peer-to-peer adaptive layered
streaming. 2003.

[20] Suman Banerjee, Seungjoon Lee, Bobby Bhattacharjee, and Aravind
Srinivasan. Resilient multicast using overlays. SIGMETRICS Perform.
Eval. Rev., 31(1):102–113, 2003.

[21] S. Banerjee and B. Bhattacharjee. A comparative study of application
layer multicast protocols. 2002.

[22] (ISO/IEC 13818-2). Mpeg-2 generic coding of moving pictures and as-
sociated audio information. 1995.

[23] (ISO/IEC 14496-2). Mpeg-4 generic coding of moving pictures and as-
sociated audio information. 1999.

[24] Guy Cote, Berna Erol, Michael Gallant, and Faouzi Kossentini. H.263+:
Video coding at low bit rates. IEEE Transactions on circuits and sys-
tems for video technology, 8(7):849–866, Nov 1998.

[25] Mengyao Ma, Oscar C. Au, and S.-H. Garry Chan. Multiple-description
coding for error-resilient video transmission. volume 4, pages 1426–1431,
October 2005.

[26] Atushi Koguchi and Hidenori Nakazato and Hideyoshi Tominaga. A Tree
Routing Method on Multi-Tree Application Level Multicast Streaming
System. 6 2005.

[27] Mengkun Yang and Zongming Fei. A proactive approach to recon-
structing overlay multicast trees. INFOCOM 2004. Twenty-third An-
nualJoint Conference of the IEEE Computer and Communications So-
cieties , vol.4, no.pp. 2743- 2753 vol.4, March 2004.

[28] Sally Floyd, Mark Handley, Jitendra Padhye, and Joerg Widmer.
Equation-based congestion control for unicast applications. In Proceed-
ings of the conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pages 43–56. ACM Press, 2000.

72

	1 Introduction
	1.1 Background
	1.2 Objectives
	1.3 Fundamental Propositions
	1.4 Organization of This Paper

	2 Current Group Communication Models and Issues
	2.1 Server-client model
	2.2 CDN
	2.3 IP Multicast
	2.4 Overlay Multicast
	2.4.1 Topology classification in Overlay Multicast
	2.4.2 Summary

	2.5 Issues in Overlay Multicast
	2.5.1 Approaches to adapt end node heterogeneity
	2.5.2 Approaches to adapt end node instability

	2.6 Summary

	3 Overview of LOLCAST
	3.1 Abstract layered data structure
	3.2 Definitions used in LOLCAST
	3.3 Tree structure of LOLCAST
	3.4 Recovery method from node failure
	3.4.1 Multi-path layer distribution
	3.4.2 Congestion avoidance

	4 Design of LOLCAST
	4.1 Tree Parameters
	4.2 Node Parameters
	4.2.1 Fundamental Parameters
	4.2.2 Source node specific parameters
	4.2.3 Relay node specific parameters
	4.2.4 Node Initialization

	4.3 Node State
	4.4 Messages
	4.4.1 Join Request Message
	4.4.2 Join Accept Message
	4.4.3 Notify New Parent Message
	4.4.4 Notify Accepted Message

	4.5 Join Procedure
	4.5.1 Message passing in Join Procedure
	4.5.2 Example of Join Procedure

	4.6 Leave Procedure
	4.6.1 Message passing in Leave Procedure
	4.6.2 Example of Leave Procedure

	5 Implementation of LOLCAST
	5.1 Implementation Environment
	5.2 Implementation Overview
	5.3 Protocol Processing Module
	5.3.1 Data Structure
	5.3.2 Message Format and Message Handling Methods
	5.3.3 Tree Handling Methods

	5.4 Application Module
	5.5 Network Module
	5.6 Simulation Module
	5.7 User Interface
	5.7.1 Application Mode
	5.7.2 Simulator Mode

	6 Evaluation
	6.1 Verification of Protocol Process
	6.1.1 Experimental Setup
	6.1.2 Experiment Result

	6.2 Functional Comparison
	6.3 Performance of protocol process
	6.3.1 Environment for performance evaluation
	6.3.2 Parameters for performance evaluation
	6.3.3 Measurement procedure
	6.3.4 Measurement Result for Join Procedure
	6.3.5 Measurement Result for Leave Procedure

	6.4 Summary

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

