
ROOK: Multi-Session based Network Security Event Detector

Masayoshi Mizutani, Shin Shirahata, Masaki Minami
Keio University

Graduate School of Media and Governance
Endo 5322, Fujisawa-shi

Kanagawa 252-8520, Japan
{mizutani,true,minami}@sfc.wide.ad.jp

Jun Murai
Keio University

Faculty of Environmental Information
Endo 5322, Fujisawa-shi

Kanagawa 252-8520, Japan
jun@wide.ad.jp

Abstract

We have implemented Multi-Session based Network Se-
curity Event Detector: ROOK to detect botnet activity
and P2P file sharing traffic and our results show that our
method is less false positives than existing network security
event detectors (e.g. IDS). We proposed a network secu-
rity event detection method by analyzing correlation among
multiple sessions. Our method can recognize hosts behav-
iors by rules that describe multi-session correlations: a rule
includes the order of starting sessions and information ex-
change between sessions. By this method, ROOK detected
DNS and IRC activities of bots in the experiment.

1 Introduction

Network security operators need to take measures to re-
spond to incidents by malware (e.g. computer viruses, spy-
ware and bots) and need to detect policy violations (e.g. us-
ing file sharing programs). Network security event monitor-
ing and detection is an effective method for early incident
detection and response. Network-based Security Event De-
tectors (SED, e.g. IDSes) are deployed in many networks
for incident response.

However, the competition between malware authors and
system defenders is fierce and continuous; since SED have
become widely deployed, malware authors have attempted
to evade detection using two methods. The first method is
disguising malware traffic as innocent traffic. This method
is adopted by malwares. Many malware activities[1] are
similar to those of non-malicious software, so huge num-
bers of false positives are generated when trying to detect
the malware traffic. The second method is using encryp-
tion. The software encrypts not only the contents but also
the protocol headers to avoid detection.

A new method of security events detection is needed be-
cause it is difficult to detect security events of the software

by existing SED. Existing SED’s methods mostly use fea-
tures of a single session and a single packet as detection
triggers. Some SED systems operate differently. However
the methods have problems distinguishing between mal-
wares and P2P file sharing programs. For example, anomaly
detection[2, 3] is able to detect malware activities. How-
ever, this method is less accurate and needs hand tuning.
Traffic classification[4, 5, 6] is an effective method for clas-
sification of software category because its original goal is
traffic engineering. However it difficultly specifies software
details (e.g. software name). Less-accurate SED’s methods
increase network security operators’ cost by creating many
false positives. Correlation analysis[7, 8] is able to detect
security events by flexible and complex rules. Therefore
most Security Events Manager(SEM)[9, 10] that is imple-
mentation of correlation analysis needs huge logs of secu-
rity events. As a result, huge amounts of storage are needed
to operate SEM.

The goal of our research is development of a system
to detect network security events in disguised traffic and
encrypted traffic. We propose a multi-session based SED
approach[11] to resolve this problem. A Session is defined a
communication for one purpose in this paper. (e.g. a HTTP
session, a pair of DNS query/response, a pair of ICMP re-
quest/response) Existing methods difficulty figure out soft-
ware’s behavior because of focusing on only contents of a
single packet and a single session. This approach focuses
on correlation of the multiple sessions. We define correla-
tion of a multi-session as the order of the session appear-
ances and cross-reference of sessions’ contents. We de-
signed and implemented multi-session based SED: ROOK
and did an experiment using this implementation on a live
network. The experiment shows decreasing false positives
by the multi-session based approach.



2 Multi-Session based Detection

We propose multi-session based SED’s method for de-
tecting security events by disguised traffic and encrypted
traffic. A concept of this method is enhanced signature-
based IDSes that focuses on correlations of multiple ses-
sions. It is hoped that our methods can accurately detect
variant and complex security events by focusing on correla-
tions of multiple sessions,

2.1 Requirements

We evaluate our system based on now well it meets four
requirements. Evaluation of our system is on going; perfor-
mance has not yet been measured.

• Accuracy: Security events that are detected by our
method should be kept at the minimum false positives
and false negatives.

• Flexibility: Detection method must be enough flexible
to detect various security events. Malwares keep rais-
ing and attack type is diversified into various kinds.

• Scalability: This means implementation performance.
The implementation monitors live network traffic.
Therefore high speed traffic decoding and detecting
function and handling huge sessions are necessary.

• Memory Usage: This requirement is similar to scal-
ability. The implementation must operate using mini-
mal memory because computer resources are limited.

2.2 Approach

Our approach attempts to follow the network behavior
of software that uses disguised traffic and encrypted traf-
fic. Existing SED methods can recognize only a fraction
of the illicit activity on the network because they handle
only a single packet and a single session in their detection
procedures. Both malware and P2P file sharing programs
typically communicate with a number of different hosts us-
ing multiple sessions. The multiple sessions are often re-
lated. The software communicates according to pre-defined
algorithms, based on results from prior communication (e.g.
DNS requests). Each program exhibits a unique signature
in the pattern of communication sessions it follows. There-
fore, it is possible to identify which software is present by
monitoring the features of multiple sessions appearing on
the network.

We defined that multi-session correlation is two rela-
tions: order of session appearances and information ex-
change between sessions. Order of session appearances

Figure 1. Detectable Event1: A Bot Activity
Example

Figure 2. Detectable Event2: P2P File Sharing
Program

means sequences and repeats of multiple session appear-
ances. Information exchange between sessions means us-
ing contents of other sessions for detection some sessions.
Our method detects security events using multi-session cor-
relations and existing IDS’s functions: pattern matching
and checking protocol header and so on. Multi-session
means not only multiple sessions between a pair of hosts but
also point-to-multipoint sessions. Section 2.3 describes two
kinds of relations by effective cases at using our method.

2.3 Effective Cases

Figure 1 shows communications example of bot activi-
ties. In the figure, an infected host (Bot Host) learns Com-
mand and Control (C&C) server’s IP address via DNS, con-
nects IRC session to the C&C server, receives a command
to probe an other hosts and starts to probe. It is difficult
to determine bot activities when inspecting each individual-
session, because there sessions are often seen in typical net-



Figure 3. ROOK Design Overview

work traffic. However the order of sessions appearances
and protocols (DNS → IRC → Probing) shows a behavior
of bots. In addition, there are correlations in the contents of
each session. The bot gets IP address of C&C IRC server
from DNS response and a trigger of probing by IRC mes-
sage. The features can be used for detection of bots.

Figure 2 shows an example of P2P file sharing program’s
communications. Most P2P file sharing program quickly
establish many sessions. In figure 2, A P2P file sharing pro-
gram on Host 1 connects to Host 2,3,4 in quick succession.
This software sends Hello and receives Peer List in each
session. It is often the case that protocol of session initia-
tion (e.g. [12]). Therefore P2P file sharing program activi-
ties are detectable by counting sessions of the same protocol
(e.g. order of packet size and packet direction) even if the
traffic is encrypted.

3 Design

ROOK monitors network traffic on the fly and detects
security events using its rule base. Figure 3 shows ROOK
design overview. First, ROOK decodes packets from live
network traffic or a file to determine whether the packet is
TCP or UDP, reassembles fragments, sorts by hosts, and
maps to sessions. reassemble fragments and segments. De-
coding results are compared with predefined rules. Figure
3 shows one example rule at the center of the figure. Rules
describe traffic features of each sessions, multi-session cor-
relations and actions when detected security events.

Rules of ROOK are divided by each session. Multiple
sessions that are used for security events detection are not
synchronized with each other. Therefore, rules of ROOK
consists of some session rules that are independent of other
session rules for keeping asynchronous. In the figure, ses-
sion rules for HTTP, IRC, TCP and IPv4 are defined. When
a packet that consists of IPv6, TCP and IRC is incoming,
ROOK test the packet with TCP and IRC rules.

Synchronizing session and cross-reference of other ses-
sions’ contents are achieved by Parameters. Multiple pa-
rameters can be used in each rule. Figure 3 shows parame-
ters that are used by multiple session rules. Parameters are

Figure 4. ROOK Implementation

very flexible and can be used for varied purposes. For ex-
ample, they can be used as a flag for recognizing order of
sessions, a counter for the appearance of sessions, memory
for saving strings, IP address and so on. Session rules and
parameters achieve expression of session appearance order
and information exchange between sessions.

4 Implementation

ROOK is implemented in C with libpcap[13] (ver. 0.9.5,
rev. 1), libxml[14] (ver. 2.6.30) and libpcre[15] (ver. 7.4)
on Linux 2.6.18 and MacOSX 10.4. The ROOK imple-
mentation philosophy is high expand-ability and flexibility.
Therefore, components and modules of ROOK have high
independence. Figure 4 shows overview of ROOK imple-
mentation. ROOK consists of three components:

• Input Component: ROOK can capture live network
traffic and read tcpdump[16] files by libpcap. This
component supports packet queuing for sudden high
processing load of Decoding/Detection Component. It
can read multiple tcpdump files and capture multiple
network interfaces.

• Decoding Component: This component includes
several protocol modules. Protocols that the cur-
rent ROOK implementation supports are Ethernet,
802.1Q, ARP, IPv4, IPv6, TCP, UDP, ICMP, HTTP,
DNS, TFTP and IRC. These modules manage ses-
sions and entities. In order to determine the presen-
tation layer protocol without TCP/UDP port numbers,
this component is implemented using payload-based
classification[6]. Since most bot’s communications to
C&C servers are IRC with a non-standard port[17], a
function to determine the protocol without relying on
the TCP/UDP ports is necessary.

• Detection Component: This component reads rules
that are written in XML and detect security events. The



Figure 5. ROOK Running Environment Exam-
ple

Figure 6. Session and Entity Management

rule format is described in Section 5. This component
compares decoding results of traffic and conditions of
triggers. Conditions of triggers are included predefined
values and parameter values. Management of parame-
ters is described in Section 4.2.

ROOK monitors network traffic similar to the way ma-
jor SED implementations. Figure 5 shows an example of a
network environment that consists of an external network,
an user segment and a service segment. The user segment
includes end-users’ hosts and the service segments includes
servers of Web, Mail, DNS and so on. In the figure, ROOK
monitors mirroring traffic among the external network and
the user segment and the service segment. In the case of
divided internal segments, ROOK can detect more security
events by monitoring traffic between internal segments.

4.1 Session and Entity Management

ROOK manages information and status of sessions and
hosts for storing parameters and keeping each protocol in-
formation. In the implementation, Session means unit of
communication between two hosts by each protocol: a pair
of source and destination IP address on IPv4/IPv6, a pair of
source and destination port numbers on UDP/TCP, a pair of
request and response on ICMP, one transaction ID on DNS
and so on. Entity means one identity of hosts on each pro-

tocol: IP address on IPv4/IPv6 and MAC Address on eth-
ernet. Each protocol information is used by decoding traf-
fic. Sequence numbers, request statuses, transaction IDs,
buffering data and so on are stored like existing IDSes. Pa-
rameters can be stored to arbitrary sessions and entities for
multi-session correlations. Targets of storing parameters are
described in rules. Section 5 describes its rules formats and
details.

ROOK is implemented multiple session tables and entity
tables as patricia tree by each protocol for isolation of mod-
ules. Session tables are implemented as an optional func-
tion for modules because that some modules don’t have ses-
sions. For example, it is difficulty at ARP module to handle
a pair of identities because that ARP request is broadcast
and reply is unicast on ethernet. In addition, it is not al-
ways true that one IPv4 session is over one Ethernet session
(a pair of src/dst MAC address) because of asymmetric IP
routing. Therefore, session tables are divided by each pro-
tocol for that modules use sessions. Entity tables are imple-
mented on only Ethernet, IPv4 and IPv6 modules and they
are devided by each protocol as session tables. Because,
there is a possibility of key collision by adding new mod-
ules at future.

Figure 6 shows a structure of sessions and entities. The
figure shows session tables of IPv4, UDP, TCP, DNS and
HTTP and an entity table of IPv4. A patricia tree key of
session table is different by each protocol. Foe example, the
session table of IPv4 use a byte sequence that is combined
source and destination IPv4 address. The key length is 64
bit (32bit + 32bit). In the figure, there are one IPv4 sessions
(203.178.xx.yy ↔ 133.27.zz.yy), two TCP sessions (port
numbers are 32413 and 80; 8313 and 223), one UDP ses-
sion (port numbers are 4345 and 53), one HTTP session and
one DNS session. ROOK figure out 2 hosts 203.178.xx.yy
and 133.27.zz.yy and there are two hosts entry in the entity
table of IPv4. Patricia tree keys of entity tables are IPv4 ad-
dress (32bit) on IPv4 module, IPv6 address (128bit) on IPv6
module and MAC addresses (48bit) on Ethernet module.

Sessions and Entities create Parameter Unit for storing
parameters on demand. In the figure, a TCP session (Key:
32413 ↔ 80) and an entity (Key: 133.27.zz.yy) have pa-
rameter units. Functions of parameter units are descirbed in
Section 4.2.

4.2 Parameter Management

Parameter management is a very important function for
multi-session based detection. Parameters work as counters,
flags and so on. The number of parameters and the situation
are defined by rules that are written by network security op-
erators. Therefore, parameter implementation must be scal-
able and high-speed in which they are used. A parameter
can be accessed to read or write at high-speed even if huge



Figure 7. Parameter Management

parameters are saved.
In ROOK, parameter table is implemented as a patricia

tree for memory usage and high-speed access. Parameter
table is a part of parameter unit. Figure 7 shows parame-
ter management structure. All parameters have parameter
ID (param ID). Param ID are sequentially assigned unique
numbers at start-up ROOK. A key of patricia tree is a param
ID (32bit). Size of a patirica tree node is 24 byte and size of
a parameter structure is 28 byte. Therefore, memory usage
is increased about 48 + 28 + L byte by adding one param-
eter. (L is saved data length) For example, a parameter of
IPv4 address wastes about 84 byte.

All parameters are based a Prototype that are written
in rules and bound Operations. Right side of Figure 7
shows relations of parameter, prototypes, operations, trig-
gers. There are three operations: Set, Eval, Unset that
are written with triggers. When conditions of a trigger are
matched, operations in the trigger is executed. Parameters
are generated from a prototype when the Set operation is
executed. The parameter type (Int, Bool, Addr, String, and
Raw) is defined in its prototype. If the same parameter
(same rule ID and param ID) is existing in a parameter unit,
ROOK refers to Mode that means overwriting modes: al-
low, deny and stack. Parameter can be overwritten in allow
mode. In deny mode. parameter can’t be set other value
until it is unset or timeout. In stack mode, all values that are
set are saved.

5 Experiment

We experimented monitoring by ROOK on two data set
with one rule (Figure 8) for showing effectiveness of our
method. The first data set (N1) is traffic from our research
network. This network consists of some user segments and
a server segment. Both segments are filtered most incoming
connection by firewall. The second data set (N2) is network
traffic for a conference. This network is a temporary dur-
ing four days. User’s PCs and servers are in same segment
that is not filtered. Table 1 shows the dimensions of our

¶ ³
<rule name="Bot IRC Activities ">
<param name="irc_server" type="addr" mode="stack"

label="P1"/>

<session proto="dns" label="G1">
<trigger label="T1">
<sig dns.answer_query="botcc1.example.com:A" />
<sig dns.answer_query="botcc2.example.com:A" />
<!-- ...snip... -->
<sig dns.answer_query="botcc.example.ua:A" />
<set scope="dst" name="irc_server"

filter="dns.answer_res_data"
key=":A" timeout="120" />

</trigger>
</session>

<session proto="irc" label="G2">
<trigger label="T2">
<sig tcp.dir="to_server">
<eval scope="src" filter="ipv4.dst_addr"

name="irc_server" stat="eq" />
</sig>
<unset scope="src" name="irc_server" />
<act type="msg" arg="Detect Bot Node Activity"/>

</trigger>
</session>

</rule>µ ´
Figure 8. Bot Activities Rule

data set. The experimental results are described in follow-
ing sections.

Figure 8 shows a rule that is applied in this experiment.
This rule describes bot activities as a multi-session rule.

• P1: The parameter that is named “irc server” is saved
some value as IP address and a stackable parameter. It
is defined in <param> tag. This parameter means an
IP address of C&C IRC server.

• G1: The upper session rule (G1) is described a trig-
ger (T1) that means DNS response of suspicious do-
main names based on [18] and traffic data from our
honeypot. A <trigger> consists of four type tags:
<sig>, <set>, <unset> and <act>. T1 has
multiple <sig> tags and one <set> tag. Multiple
<sig> tags in a trigger means concurrent conditions.
dns.answer_query="botcc-ex1.com:A" of
<sig>’s attribute means that answer records of a DNS
response packet included botcc-ex1.com and the an-



Table 1. Dimensions of our Data Set
Set Start Duration Packets Bytes IP Sessions Ave. bps Ave. pps
N1 2007-11-13 21:00 48 hour 76.77M 38.06G 811.37K 1.76M 444.32
N2 2007-09-12 10:00 12 hour 163.86M 77.15G 692.94K 14.28M 3.79K

Table 2. Results of the Experiment
Trigger Condition N1 N2

T1 S1 ∪ S2 ∪ ... ∪ S21 756 419
T2 S22 ∩ E1 0 0

Table 3. Details of the Experiment

Trig. Sig./Eval. N1 N2

T1

S1 dns.answer query=botcc1.example.com 1 17
S2 dns.answer query=botcc2.example.com 6 3
S3 dns.answer query=botcc3.example.com 2 20
S4 dns.answer query=botcc4.example.com 0 6
S5 dns.answer query=botcc5.example.com 0 5
S6 dns.answer query=botcc6.example.com 0 2
S7 dns.answer query=botcc7.example.com 0 3
S8 dns.answer query=botcc8.example.com 6 6
S9 dns.answer query=botcc9.example.com 2 3
S10 dns.answer query=botcc10.example.com 69 173
S11 dns.answer query=botcc11.example.com 0 3
S12 dns.answer query=botcc12.example.com 141 67
S13 dns.answer query=botcc13.example.com 0 6
S14 dns.answer query=botcc14.example.com 0 7
S15 dns.answer query=botcc1.example.net 54 10
S16 dns.answer query=botcc2.example.net 0 19
S17 dns.answer query=botcc3.example.net 2 9
S18 dns.answer query=botcc1.example.org 5 8
S19 dns.answer query=botcc1.example.ru 302 35
S20 dns.answer query=botcc2.example.ru 81 13
S21 dns.answer query=botcc.example.ua 85 4

T2
S22 tcp.dir=to server & tcp.seg id=1 5 23
E1 irc server=ipv4.dst addr 0 0

swer record is an A Record. When monitor traffic
matches the conditions of any one <sig>, <set>,
<unset> and <act> in same <trigger> tag are
executed. In T1, a <set> tag is executed when match-
ing conditions. This <set> tag store A record of the
DNS packet in a parameter unit of destination host as
a parameter that is named irc server. Timeout of this
parameter is after 120 seconds from storing parameter.

• G2: The lower session rule means an IRC con-
nection. There are <sig> and <eval> tags
in T2. tcp.dir=to_server shows a con-
dition of a packet direction: to server and

tcp.seg_id=1 shows a condition of TCP seg-
ment data packet ID. They mean first packet with
data segment after established TCP connection.
<eval> tag is for comparing destination IP ad-
dress (filter="ipv4.dst_addr") and parame-
ter “irc server” instead of static conditions. If destina-
tion IP address is matched with “irc server”, parame-
ter is unset and detection message is output as alert by
<act> tag.

Table 2 shows the result of this experiment and Table 3
shows detection count of each condition. In Table 3, the first
column of the table shows labels of triggers (T1,2). The sec-
ond column shows name of each condition and the third col-
umn shows conditions of <sig> and <eval>. Sn means
a <sig> tag and En means a <eval> tag. The fourth and
fifth column show detection count in data sets: N1,2. in Ta-
ble 2, the first column shows triggers and the second column
shows conditions of triggers. The third and fourth column
show detection count of each trigger in data sets.

In this experiment, no bot activities are detected by our
method. In results, there are many DNS queries of suspi-
cious domain name for purposes other than IRC connec-
tion. Reason that T1,2 count of N1 is grater than N2 is
thought of as more internal hosts on N1 than N2. Our
method monitors not only DNS response packets but also
IRC communication. T2 compares both of signatures:
tcp.dir=to_server & tcp.seg_id = 1 and a
parameter: irc_server=ipv4.dst_addr. When
destination IP address of IRC communication to server
match with the irc server parameter, ROOK determines that
monitoring communication is bot’s IRC connection. Some
IRC connections are observed in data set. However they are
not bot’s activities.

6 Discussion and Future Work

This experiment shows an accuracy of our method is
higher than existing methods. Existing methods get false
positives trying to detect suspicious domain names of DNS
query and response from these data sets. However our
method gets no false positives in the experiment. On the
other hands, we confirmed that ROOK with Figure 8 is able
to detect 27 different kinds of bot:

• 9 “Trojan horse IRC/BackDoor.SdBot” variant

• 7 “Trojan horse SHeur” variant



• 5 “Virus identified Wind32/Virut” variant

• 3 “Trojan horse BackDoor.Generic” variant

• 3 others

Their names are checking results by AVG Free Edtion[19].
The 27 samples were selected at random from 1,550 bots
that was captured by our honeypot between Apr. 2007 and
Nov. 2007. The confirmation was using network traffic that
is generated by running bot samples. Bots were running on
Windows XP SP2 over Parallels Desktop 3.0 for Mac[20]
and the bots communications traffic with DNS server, C&C
server and so on were captured by tcpdump on gateway
host. ROOK determined that 27 sample traffic are commu-
nications of bot activity. Therefore our method is effective
to detect bot activities.

Experiments by rules to detect other objects (e.g. P2P
file sharing program) and study other effective cases are
needed. We did experiments only using one rule for bot IRC
activities on the two data sets record in this paper. In order
to detect most bots, not only IRC communications but also
other activities of bots should be supported by our method.
On the other hand, our method has possibilities of accuracy
increase for existing IDSes’ signatures. Therefore we need
try to detect various security events by ROOK.

We have to experiment in various environments too.
false positives/false negatives rate of SED’s methods de-
pends strongly on network traffic trends and environment.
In order to demonstrate an effectively of our method, results
of many experiment by various network traffic are needed.

We have to evaluate performance of this implementa-
tion. ROOK may be heavy more than existing IDS because
ROOK has new functions: parameter in addition to exist-
ing IDS functions: packet decoding, session management,
pattern matching and so on. Memory usage is increased
by storing parameter and number of steps is increased by
comparing parameters and network traffic. We should eval-
uate performances of ROOK to know effect of performance
decrement on detection procedure.

We designed and implemented multi-session based SED:
ROOK to detect security events by encrypted traffic and
faked traffic. In addition, we experiment ROOK with rule
of detection bot DNS and IRC activities by using two data
sets from live network traffic. The results of experiments
shows effectively of multi-session based detection method
for a part of bot activities. In the future, we have to work
more experiments and evaluations about ROOK.

7 Acknowledgments

We thank Rodney Van Meter for writing and technical
advice.

References

[1] Paul Bacher,Thorsten Holz,Markus Kotter,Georg Wicherski.
Know your enemy: Tracking botnets, May 2005. http:
//www.honeynet.org/papers/bots/.

[2] James R. Binkley. An algorithm for anomaly-based botnet
detection. SRUTI ’06, pages 43–48.

[3] Musashi Y.,Ludena R.,Dennis A.,Nagatomi H.,Matsuba
R.,Sugitani K. A DNS-based Countermeasure Technology
for Bot Worm-infected PC terminals in the Campus Net-
work. Journal for Academic Computing and Networking,
10(1):39–46, 2006.

[4] Andrew W. Moore, Denis Zuevy. Internet Traffic Classifica-
tion Using Bayesian Analysis Techniques. SIGMETRICS0́5,
2005.

[5] P-CUBE. Approaches To Controlling Peer-to-Peer Traffic:
A Technical Analysis. http://www.p-cube.com/
doc root/products/Engage/WP Approaches
Controlling P2P Traffic 31403.pdf.

[6] T. Karagiannis, D. Papagiannaki, M. Faloutsos. BLINC:
Multilevel Traffic Classification in the Dark. Tech-
nical report, http://research.microsoft.com/
∼thomkar/papers/BLINC TR.pdf, 2005.

[7] Risto Vaarandi. SEC - a Lightweight Event Correlation Tool.
Proceedings of the 2002 IEEE Workshop on IP Operations
and Management, pages 111–115, 2002.

[8] Jingmin Zhou, Mark Heckman, Brennen Reynolds, Adam
Carlson, and Matt Bishop. Modeling network intrusion de-
tection alerts for correlation. ACM Trans. Inf. Syst. Secur.,
10(1), 2007.

[9] OSSIM Open Source Security Information Management.
http://www.ossim.net/.

[10] ArcSight. http://www.arcsight.com/.
[11] Masayoshi Mizutani, Shin Shirahata, Masaki Minami, Jun

Murai. A proposal of a method to detect security events by
using correlation of multi-session. Computer Security Sym-
posium 2007, IPSJ Symposium Series, Nov 2007.

[12] Salman A. Baset and Henning G. Schulzrinne. An analysis
of the skype peer-to-peer internet telephony protocol. IEEE
Infocom, 2006.

[13] LIBPCAP. http://www.tcpdump.org/.
[14] Daniel Veillard. libxml. Sep 1999. http://xmlsoft.

org/.
[15] Philip Hazel. PCRE - Perl Compatible Regular Expressions.

sep 1997. http://www.pcre.org/.
[16] LBNL’s Network Research Group. TCPDUMP. http://

www.tcpdump.org/.
[17] Cyber-TA Research and Development Project. SRI Hon-

eynet and BotHunter Malware Analysis Automatic Summary
Analysis Table, 2005.

[18] Bleeding edge threats: blackhole.conf, Nov 2007.
http://doc.bleedingthreats.net/pub/Main/
SnortConfSamples/blackhole.conf.

[19] Grisoft. AVG Free Edition. http://free.grisoft.
com/.

[20] Parallels. Parallels desktop for mac. http://www.
parallels.com/.


