Infrastructure Requirement for Internet Video Conference using Broadband Networks

Kazunori Sugiura

Communication Research Laboratory(CRL)

Keio University uhyo@sfc.wide.ad.jp

This presentation consists of 46 Pages

Before I Start with my presentation:-)

• My PPT Files are available at(during the session):

ftp site: 192.168.0.40 username: dv password: ieee1394

- Available in above ftp servers during session:
 - Full Source code patch for IEEE1394 Interface
 - sender and receiver application(Binaries Only)
 - IPv6, RTP, Multicast, packet discard, packet monitoring
 - sample sources for DV driver application.

Outline

- Why am I talking about the Video Communication Tools using Internet?
 - Motivation and **NEEDS**.
- Development of Internet Video Communication tool using DV(Digital Video) and IEEE1394.
 - Broadband Network Availability(LAN and WAN).
 - Digital Output Video Interface(a.k.a IEEE1394)
- Some experiment using DV Over IP.
- Broadband Network Killer Applications.
 - May be a good application for bandwidth brokers :-)

Motivations

- To establish a Real-time Video Conferencing system with...
 - High Quality Video and Audio
 - NTSC Quality Video
 - >CD Quality Audio
 - Broadband(High Speed) Network Availability
 - Target:
 - LAN Based Conference
 - 100Base-T Ethernet or more....
 - Multicast Communications
 - Availability via WAN.
 - Good killer application for broadband network as ...
 - testing queuing algorithm
 - Testing operating system overhead
 - Benchmarks and Interoperability test for switches, routers, etc...

Needs

- I am now working(?) at CRL
 - Communication Research Laboratory
 - Communication System Division, High Speed Network Lab.
- Also....
 - Keio University SFC Student.
 - I am (still) fighting for my Doctor's Degree
- And some extras... (May be a waste of precious time?!:-)
 - WIDE Project Primary (and active :-)) NOC maintenance staff.
 - J-GBN... etc.

ALL IN DIFFERENT LOCATIONS!!!

I will need a good Remote Video Conference System(s)!!

Next: Remote Accessibility

Location Accessibility

• If I go from CRL to IXP and then back to SFC... 600+700+700+1250=3250 Yen...

I will need to waste more than **3** Hours for transportation

I cannot afford that much money and time all the time!!!... Next: Plus more

Plus more...

• I Have a collection of...

- DVD movies(Nearly 300 titles and growing :-)
 - 50% of which are not even opened.
- Laser discs and Collection Box.(Nearly 400 titles and growing :-)
 - 80% of which are not even opened.
- Estimation of time to see all the unopened titles:
 - { $(300 \times 50\%) \times 120$ } + { $(400 \times 80\%) \times 120 \times 5$ } minutes

= about **146 Full Days**....

I would like to see my Video anywhere, at anytime!! Next: Post phone

What we can use for Location transparency?

- What can we use for remote conference?
 - Telephone Conference system:
 - Lack of Video Availability
 - How about Interaction?
 - Consumer Video Conference System:
 - Expensive, Lack of performance(ISDN Based...) mobility...
 - Network Video Conferencing system:
 - Lack of Realtime interactions:
 - RealVideo
 - Performance, obsolete applications:
 - Vic, Vat
 - Lack of Multicast implementations:
 - Net Meeting

Network Conference System is a good answer.

Next: Network Bandwidth

HELP

Network Bandwidth in Internet

is expanding

Video communication System: Network Bandwidth

Amoun	t of networ	k bandwidt	h(Byte)			
100M —						
10M —						
1M —						
100K —						
10K —						
	RealVideo	Netmeeting	DV/IP Next:1	DI/IP fortunate: O <u>ur N</u>	H1-V(D3)/ Network Infrastr	1P uctu

Our Network Infrastructure

Next: Current Video Comm tools.

Current Internet Video Broadcasting System

- Limitation in Network Bandwidth
 - Video/Sound encoding cost is enormous.
 - Based on Software Video format encoding.
 - Major Video Capture Interface:
 - PCI Bt848A based encoder board
 - Bi-directional support for Sound
- Consumer application: some are **NOT FREE**...
- Quality: Massive compression of Video/Audio
- Real time Teleconferencing System
 - High cost equipment is required.
 - Realtime MPEG2 Encoder.

Next: Characteristic of Internet

Characteristics of Internet

- best effort basis network
- Network Characteristics...
 - Weakness in Stream media(Stream packet)
 - Jitter
 - Network Packet losses
 - Congestion Control

Next: Requirements

Summary:Requirements

- High Quality Picture
 - NTSC Quality Video
- High Quality Sound
 - > CD Quality Audio
- Transfer without delay
- Mid range bandwidth(10Mbps and higher)
- low cost solution
 - minimum equipment, maximum performance

Using DV would be a good solution.

Next: Characteristics of DV

Characteristics of DV

- DV Format:
 - 720 x 480 Pixel
- requires bandwidth over 30Mbps
- when using NTSC Output video(525i)
 - 525 lines
 - 29.97 frames per second
- 525p(Progressive will be available)

DV Frame rate and Bandwidth

Mode	Frame rate	Required Bandwidth
		(over IEEE1394)
525/60	29.97 Hz	29.5 Mbps
625/50	25 Hz	29.5 Mbps
1125/60	30 Hz	59.0 Mbps
1250/50	25 Hz	59.0 Mbps

Next: System Design

Our system Design

- Ease of Availability
 - Consumer DV products
 - Simple IEEE1394 to IP encapsulation
- Network conservation technique
 - Frame discarding method
- packet loss, delay and jitter adaptation
 - Simple buffering/discarding technique

System Requirements

• Standard Pentium, Pentium II based PC

- requires >200MHz Pentium
- Intel SE440BX-2 Motherboard
- NO ASUS P2B-F!!!
- FreeBSD 3.2

• PCI based IEEE1394 interface card

- Adaptec PCI IEEE1394 Card
- Texas Instruments Chipset(PhotoDV,MotoDV)
- 100BaseT PCI Ethernet NIC
- Consumer DV Camcorder with DV Output
- Cables

Next: Software Design

Software Design

- Kernel patch for IEEE1394 device driver
 - character device Lynx,ilink
- DV sender application(dvsend)
- DV receiver application(dvrecv)

Usage : ./dvse	end [options] [host/port/ttl]	Usage : ./dvre	ecv options
<options></options>		<options></options>	
-V	: show version number	-V	: show version number
-h host	: sendto host "hostname"	-m mod	: mod (magic number)
-f rate	: send full frame by 1/rate	-f frac	: frac (magic number)
-r rate	: drop packets in random pattern	-I ifname	: the interface to use
-I interface	: use interface "interface"	-b frames	: number of frame buffer
-b size	: set SO_SNDBUF to "size"	-r size	: value for SO RCVBUF
-n	: do not always send audio data	-j group	: Join to Multicast group
-m	: do not send packet with same data	-M ifname	: Multicast output interface
-M interface	: use "interface" for sending multicast packets	-c ch	: send to 1394 channel "ch"
-t ttl	: TTL for multicast	-s ipaddr	: recv from src ipaddr
-c ch	: recv from 1394 channel "ch"	-S number	: recv packet with specific RTP payload number
-p number	: send with RTP payload type "number"	-P port	: use UDP port "port"
-P port	: use UDP port "port"	-z sync	: sync
		-	

Next: DV software mechanism

Packet Format

Next: DV Packet Stream Control

DV Packet Stream Control

- Controlling the Packet flow of DV stream.
 - To conserve network bandwidth utilization...
 - cost for compression needs to be short
 - Complicated compression will require processing cost
- For Video Communications...
 - Full frame rate Video is not required
 - Full quality Audio is required
 - But...
 - continuous transmission is required
 - loss of audio packet is innegligible.

Frame Discarding

. .

- Full rate digital video stream
- Half rate digital video stream

• 1/3 rate digital video stream

. .

• •

•

Next: Frame rate and bandwidth

Frame rate and required Bandwidth

Video Packet Next: Receiver implementation

Receiver Implementation

- ability to adapt to jitters and packet drops

 simply uses previous data when packet drops
 ability to use multiple buffers for video frames
- Receiver consists of two Unix processes
 - UDP packet receiving process
 - IEEE1394 packet sending process

I know most of people are worrying about the next session :-)

My time is UP? Sorry.... Still some slides to go...

Infrastructure we have tested....

Network Structure(1999/07/19)

Lab in CRL.

Next: Otemachi

Looking at a view of Otemachi at CRL.

DV Over IP Demonstration from Orlando Florida To Keio SFC

Traffic Used at SC98

Green:OrlandoJapanBlue Line:JapanOrlando

Inbound, Outbound Traffic

Uplink Ethernet Port

	Absolute	Cumulative	Average/sec	Min/sec	Max/sec	Last/sec
InOctets	512072326	457348551	543815.16	478570.33	631705	549793.90
OutOctets	3116854827	642193440	763606.94	664971.67	790398.92	782110.60
InUcastPkts	28953975	2551167	3033.49	2643.83	3267	3054.30
OutUcastPkts	46037629	2850988	3390.00	2910.33	3525.92	3449.30
InMulticastPkts	62962	947	1.13	0.67	1.20	0.90
OutMulticastPkts	20088	1586	1.89	0.15	22.31	0.20
InBroadcastPkts	53084	853	1.01	0.17	1.30	0.80
OutBroadcastPkts	0	0	0	0	0	0
InDiscards	5351	0	0	0	0	0
InErrors	928374	125496	149.22	130.60	161	153.30
InUnknownProtos	0	0	0	0	0	0
NumStateTransition	1	0	0	0	0	0
≽ <u>Lı</u> 🕭 🖽 Port 3/1	Poll Interval: 1	0s 💌 (0h 14n	n 1s)			

Internet Broadcasting Experiment

Internet Live Broad and Multi-cast System

PC Monitor

Keyboard

DV Video recorder

Sender PC

Receiver PC NTSC PAL SECAM RGB Scan Converter

Main Power Supply

Wireless Mic. Audio Selector

Video Input Monitor, Antenna DV Video Recorder Video Selector

Main Power Supply

Rack 1

Rack 2

Internet Connection in ICWES(19990727)

Presentation in ICWES '99

Inbound and outbound packets

input		(Total)	output			
packets	errs	bytes	packets	errs	bytes colls	
8059	0	3782898	8112	0	4091648	0
8081	0	3794338	8085	0	4069112	0
8083	0	3794858	8084	0	4069112	0
8082	0	3794358	8085	0	4069646	0

DV Conference System Network Traffic

海馬

• Hardware Support:

- stability on Sony Vaio notebook iLink IEEE1394 Interface
 - Sony Notebook PC Plug and Pray(Play) architecture implementation.

- Sender and Receiver in One Machine.
 - Device Driver Optimizaion
 - XXX Features.... Bus reset during session... XXX
- Operating System Support:
 - Implementation to RTMach
 - Realtime stream congestion control
- Application Support:
 - X Window based applications
- Media Conversion Support
 - Stream compression support for Thin networks.

Conclusion: For More Informations...

You can get the latest ppt files, sources, results, meeting logs, etc. at:

http://www.sfc.wide.ad.jp/~uhyo/STREAM/stream.html

I would like to apologize that some of the contents are written in 伝統的日本語(Traditional Japanese) :-) English pages are also available.