
Academic Year 2007 DISSERTATION

Routing Architecture for the
Dependable Internet

Yasuhiro Ohara

Graduate School of Media and Governance
Keio University

5322 Endo Fujisawa, Kanagawa, JAPAN 252-8520

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Copyright c© 2007 by Yasuhiro Ohara

February 13, 2008

Abstract

Routing technologies are discussed in this dissertation with the goal of improving the net-
work availability. The “highly available Internet” is defined as the Internet with functions
to forecast and control the network availability. An implementation strategy to approach
to the highly available Internet and to the Dependable Internet is described. This disser-
tation provides a routing simulator called SimRouting to calculate the network availability,
an example of oscillation-tolerant OSPF routing protocol, a family of new multipath route
calculation algorithms called MARA, and a newmultipath routing architecture called Drout-
ing.

The reliability of communication network depends on various components, for example,
the reliability of hardware communication devices, the stability of communication protocols
and software systems, the availability of sufficient capacity of network resources, and the
reliability of network operators. Current research focuses on a specific one of these relia-
bility components. For example, research on fault-tolerant systems targets the reliability of
individual communication devices, circuits, and systems. Research on communication pro-
tocols targets their stability. Traffic engineering research focuses on the utilization of the
network bandwidth capacity. The current Internet is built upon the combinations of these
individual reliability research technologies.

Combining the existing research on reliability of specific components does not improve
the practical reliability of the entire communication network for two reasons: 1) Current
research does not cover all reliability components. For example, studies on technologies
to prevent software bugs, hardware bugs, and mis-configurations by network operators,
are not adequate. 2) For many reliability components, no fallback plan is provided when
the responsible technologies fail. If a fault-tolerant system or a stabilizing technology for
a communication protocol fails, the communication network may cease to function until
it is manually repaired. Consequently, the reliability of overall communication network
is not sufficient, and the reliability of the Internet is not high enough for mission-critical
communication.

Focusing on the routing technologies, this research improves the availability of the entire
communication system, as the first step of the reliability research for the Internet. Since
the routing technology decides the network path that determines the reliability and the

ii

ABSTRACT iii

performance of the communication, it is the most important entity for a communication
network. Through the aggressive and proactive utilization of multipaths, this dissertation
provides a method to bypass trouble spots, even unpredictable ones. This research focuses
on the intra-domain routing system.

This research contributes to improving the availability of the IP network through the
proposals of 1) a method to estimate the availability of the communication network system
considering its routing system, 2) a method to stabilize a routing system, 3) a new routing al-
gorithm to calculate maximum alternative routes in a hop-by-hop network, 4) a new routing
architecture to improve the availability of the network via the use of alternative routes, and
5) a method to implement traffic engineering on the new routing architecture. This research
as a whole constructs a routing architecture and its peripheral functions that are required
for the highly available Internet.

First, this dissertation gives a strategy for improving the availability of the Internet. The
highly available Internet is defined to be the Internet with functions required to forecast and
control the availability of the network. The highly available Internet is the first and foremost
step that must be achieved to approach to the Dependable Internet. Then issues surrounding
the availability of the Internet are discussed, focusing on the routing technologies.

This research proposes a method, embodied in a simulation tool, to forecast the avail-
ability of communication network systems, taking the routing system into account. A new
simulation tool called SimRouting is developed for this purpose. SimRouting can also con-
tribute to the evaluation of routing systems, by providing a way to compare the routing
systems in many network configurations. Evaluating routing systems is necessary to im-
prove the performance of the communication network, and hence to improve the reliability
of the Internet.

Next, as an example of improving the availability of an individual network element,
a technique found in BGP Flap Damping is applied to IPv6 OSPF. It is evaluated in an
experimental network and exhibits a significant improvement on the stability.

The Internet was originally constructed to enable utilization of alternative routes. How-
ever, there are many problems where one cannot use alternative routes. This research pro-
poses a routing architecture where the network holds multiple routes and the users or the
end hosts can utilize one of those multiple routes for recovery from most problems. A fam-
ily of new multipath route computation algorithms required to implement this architecture,
called Maximum Alternative Routing Algorithm (MARA), is developed in order to calculate
maximum alternative routes in a hop-by-hop network. Then, a new routing architecture,
called the “Drouting architecture”, is proposed to employ the MARA routing algorithms.
Drouting utilizes a packet tag forwarding method to choose a communication path ran-
domly from many possible routes. Using inferred topologies of real networks, the advantage
in terms of failure recovery in the Drouting architecture is shown in simulations.

ABSTRACT iv

Traffic engineering is imperative and one of the most important issues in current large
scale networks. A traffic engineering method is illustrated to show the feasibility of traf-
fic engineering on the Drouting architecture. A method to preserve both failure recovery
property and traffic engineering capability is presented as well.

For almost 30 years the routing system in the Internet has focused on the use of the
single shortest path routing. With consideration of feasibility, this dissertation introduces a
new concept of using maximum alternative paths. The new routing architecture enables the
improvement of the network availability, while allowing network optimization at the same
time, without adding any new, complex concepts. The routing architecture is anticipated
to be extended further to enable additional feature, such as routing based on the quality
of service (QoS). A fundamental routing architecture for the next generation Internet is
proposed.

Thesis Committee:

Supervisor:
Prof. Jun Murai, Keio University

Co-Adviser:
Prof. Osamu Nakamura, Keio University
Prof. Takeshi Kawazoe, Keio University
Assoc. Prof. Akira Kato, The University of Tokyo

Acknowledgments

First of all I appreciate my supervisor and co-advisors. My supervisor Prof. Jun Murai di-
rected me for more than ten years, and gave me the opportunity to choose an arbitrary re-
search theme. Without his generous treatment I could not have tackled this research theme
in the first place. My co-advisor, Prof. Osamu Nakamura regularly and constantly gave me
caustic remarks, hence taught me to have high-targeted perspective and how to grasp and
describe the essentials. My co-advisors, Assoc. Prof. Akira Kato and Prof. Takeshi Kawazoe
supervised my work in terms of routing technologies and mathematics, respectively.

Mr. Kunihiro Ishiguro provided me with the opportunity to develop a part of a software
called GNU Zebra, from which I gained valuable experience on the routing technologies and
the implementation. He introduced me to the ways to implement ideas in program codes,
how to maintain the quality of a software project, and how to make improvements actually.
It was truly an essential for my improvement of my research.

Algorithmic part of this work was produced together with Dr. Shinji Imahori. Discussion
and work with him were absolutely necessary to construct the basic technology of this
dissertation. Dr. Rodney Van Meter kindly exhibited his enthusiasm for correction of wrong,
mistaken, and vague part in technical aspect and even in English expressions.

I also thank to those who gave me precious comments and advices in the Murai Lab.;
Assoc. Prof. Hiroyuki Kusumoto, Dr. Noriyuki Shigechika, Dr. Kazunori Sugiura, Dr. Ryuji
Wakikawa, Dr. Achmad Husni Thamrin, and Mr. Masaki Minami. I also appreciate those
who helped me personally to study both technical and practical things; Mr. Manav Bha-
tia, Dr. Ken’ichi Nagami, Dr. Hideaki Imaizumi, Mr. Seiji Ariga, Mr. Ayumu Yasuda, and
Mr. Shunsuke Fujieda. A number of senior researchers in WIDE Project gave me advices
in broader perspective, especially: Dr. Yoichi Shinoda, Dr. Hiroshi Esaki, Dr. Kenjiro Cho,
Dr. Kensuke Fukuda, and Dr. Yuji Sekiya. During the days I have tried to receive the degree,
I was encouraged much by my colleagues; Dr. Akiko Orita, Ms. Yoko Murakami, Mr. Yusuke
Kawakita, and Ms. Shoko Mikawa. I would like to thank also to the administration staffs
of Murai Lab.; especially Dr. Keiko Okawa, Ms. Yasue Watanabe, and Ms. Rieko Hori. Col-
leagues working in the same room with me have kept me from tasks other than the re-
search and have kindly let me concentrate on this work; Mr. Masayoshi Mizutani, Mr. Yohei
Kuga, Mr. Yusuke Okumura, Mr. Takeshi Matsuya, Mr. Takaaki Ozaki, Mr. Ryu Sato, and

v

ACKNOWLEDGMENTS vi

Mr. Toshiaki Hatano. I appreciate all the members in Murai Lab. for making the place lively
and comfortable to work; especially Dr. Keisuke Uehara, Dr. Jin Mitsugi, Dr. Hisakazu Hada,
Dr. Jin Nakazawa, Dr. Kenji Saito, Dr. Yasuo Tsuchimoto, Dr. Hideaki Yoshifuji, Dr. Hitoshi
Asaeda, Mr. Masafumi Nakane, Mr. Sato Masaaki, Mr. Shigeya Suzuki, Mr. Tatsuya Inaba,
Mr. Ryo Kaizaki, Mr. Takaaki Ishida, Mr. Kotaro Kataoka, Mr. Keijirou Ehara, Mr. Tomo-
hiro Ishihara, Mr. Koshiro Mitsuya, Mr. Koji Okada, Mr. Yoshihiko Suko, Mr. Shin Shira-
hata, Mr. Katsuhiro Horiba, Mr. Tsuyoshi Hisamatsu, Mr. Shinta Sugimoto, Mr. Kazuhiro
Mishima, Mr. Noriatsu Kudo, Mr. Yuki Oyabu, Mr. Akira Kanai, and Ms. Yuri Nagai.

My English was greatly supported by the online dictionary web site created by SPACE
ALC Inc. I could neither discuss nor write papers in English without the help of the page. I
also thank those who gave me peace of mind with music, The Rolling Stones, Led Zeppelin,
Yes, and Pink Floyd. The fonts in this dissertation are by the Libertine Open Fonts Project.

Finally I greatly thank my parents and brother, Tomomi Ohara, Rieko Ohara, and Noriaki
Ohara, for their patience and supports for long years. Any of my success is also theirs.

Contents

Abstract ii

Acknowledgments v

Contents vii

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Overview . 1
1.2 Contributions of This Work . 4
1.3 Interpretation of This Work . 5
1.4 Organization of This Dissertation . 8

2 Highly Available Internet 9
2.1 Terminologies and Definitions . 9
2.2 Illustration of Network Availability . 10
2.3 Definition of the Highly Available Internet 11
2.4 Problem Statement . 12
2.5 Objective of This Dissertation . 13
2.6 Basic Principle of the Approach . 14

2.6.1 Multipath Provisioning . 14
2.6.2 Multipath Retry . 15

2.7 Perspective . 16
2.7.1 Network Planning . 17
2.7.2 Availability Calculation . 18
2.7.3 Maintenance of Network Elements 18
2.7.4 Problem Detection . 19
2.7.5 Recovery from Problem . 20

vii

CONTENTS viii

2.7.6 Traffic Engineering . 20
2.7.7 Service Protection . 21

2.8 Strategy . 22
2.9 Summary . 24

3 The Current Internet Routing 26
3.1 The Internet Topology . 26
3.2 Intra-domain Routing Protocols . 28

3.2.1 RIP . 28
3.2.2 OSPF and IS-IS . 29
3.2.3 EIGRP . 30

3.3 Inter-domain Routing and BGP . 31
3.4 Network Failures . 32
3.5 Failure Recovery Methods . 33
3.6 Network Administration . 33
3.7 Traffic Engineering . 34

3.7.1 Routing Metric Optimization . 34
3.7.2 Circuit-based Traffic Engineering 35

4 SimRouting: A Tool for Availability Calculation and Routing Evaluation 36
4.1 Overview . 36
4.2 Need for Routing Simulation . 38
4.3 Requirements for the Simulation Tool . 39
4.4 Existing Simulation Tools . 40
4.5 Design and Implementation of SimRouting 42

4.5.1 Command Line Invocation and Scenario Files 43
4.5.2 Network Graph Definition . 43
4.5.3 Routing Metric Definition . 45
4.5.4 Routing Algorithm and Routes . 46
4.5.5 Traffic Definition . 49
4.5.6 Network State . 49

4.6 Example Simulation . 50
4.7 Availability Calculation . 50
4.8 Evaluation . 59

4.8.1 Number of Methods to Construct Network Graphs 59
4.8.2 Achievement of Required Features 59

4.9 Summary . 61

CONTENTS ix

5 OSPF Flap Damping 62
5.1 Overview . 62
5.2 Effects of Route Flaps . 63

5.2.1 Network Configuration . 63
5.2.2 OSPF Behavior . 64
5.2.3 Experiment Result . 67

5.3 Application of Flap Damping to OSPF . 68
5.3.1 Flap Damping Algorithm . 68
5.3.2 Experiment Result . 69

5.4 Summary . 70

6 MARA: Maximum Alternative Routing Algorithm 72
6.1 Overview . 72
6.2 Related Work . 75
6.3 Problem Definitions . 76

6.3.1 All-to-one Maximum Connectivity Routing Problem 76
6.3.2 All-to-one Max-flow Routing Problem 77
6.3.3 All-to-one Maximum Shortest Path Alternatives Problem 78

6.4 Algorithms . 79
6.4.1 MA Ordering . 79
6.4.2 MARA-MC . 79
6.4.3 MARA-MMMF . 82
6.4.4 MARA-SPE . 82

6.5 Evaluation . 83
6.5.1 Number and Length of Paths . 84
6.5.2 Computational Complexity . 85
6.5.3 Computation Time . 87

6.6 Summary . 87

7 Drouting Architecture: A Multipath Routing Architecture 92
7.1 Overview . 92
7.2 Related Work . 93
7.3 Deflection Architecture . 94
7.4 Drouting Architecture . 95

7.4.1 Overview of Drouting Architecture 95
7.4.2 Multipath Route Calculation . 97
7.4.3 Tag Forwarding . 98
7.4.4 Differences from Deflection . 99

7.5 Evaluation . 100

CONTENTS x

7.5.1 Failure Recovery Simulation Method 101
7.5.2 Interpretation of path comparison 101
7.5.3 Simulation and Analysis on Telstra (AS1221) 102

7.6 Observations . 108
7.7 Summary . 108

8 Traffic Engineering on Drouting Architecture 110
8.1 Overview . 110
8.2 Linear Programming Model . 111
8.3 An Example of Traffic Engineering . 113
8.4 Challenge to Equalize Split Ratio . 119
8.5 Summary . 123

9 Conclusion 124

10 Future Prospects 126
10.1 Failure Detection . 126
10.2 Simultaneous Redundant Packet Transmission 127
10.3 Issues in Traffic Engineering Method . 127
10.4 Relation with MPLS Technology . 127
10.5 Network Operation and Debugging . 128
10.6 Migration and Transition Issues . 129
10.7 Inter-domain Routing . 130
10.8 Improving the Routing Algorithm . 130
10.9 The Distributed Routing Protocol . 130

A Theory of Reliability 132
A.1 Systems of components . 132
A.2 Coherent system . 133
A.3 Paths and cuts . 134
A.4 System reliability . 134
A.5 Sum of disjoint products approach . 136

B Simulations and analysis on other topologies 139

Bibliography 146

Research History 155

List of Figures

1.1 Past Internet. 6
1.2 New Internet. 6
1.3 Interpretation of this work. 7

2.1 Notion of network availability and failure probabilities. 11
2.2 Relations of dependability, Dependable Internet, and highly available Internet. 12
2.3 Multipath provisioning. 15
2.4 Relations of issues and strategy to the highly available Internet. 22

3.1 The hierarchical routing structure of autonomous systems (ASes). 27

4.1 SimRouting architecture. 43
4.2 SimRouting interactive shell. 44
4.3 SimRouting command-line invocation. 44
4.4 SimRouting graph importation. 45
4.5 SimRouting exportation to GraphViz. 46
4.6 SimRouting routing metric specification. 47
4.7 SimRouting route calculations. 48
4.8 SimRouting importation of routing sub-graph. 48
4.9 SimRouting definition of traffic demands. 49
4.10 SimRouting calculation of network state. 50
4.11 SimRouting sample BRITE generated file. 51
4.12 SimRouting sample BRITE generated file (continued). 52
4.13 SimRouting example scenario. 53
4.14 SimRouting example network graph. 54
4.15 SimRouting example traffic demands. 56
4.16 s-t reliability calculation in the WIDE Project’s network. 57
4.17 SimRouting availability calculation scenario. 58

5.1 Network configuration for the route flap experiment. 63

xi

LIST OF FIGURES xii

5.2 RTT, OSPF send/receive events during the flapping of 2 seconds cycle (1
second for Up, 1 second for Down). 65

5.3 The first raised portion of Figure 5.2. 66
5.4 RTT, OSPF send/receive events during the flapping of 7 seconds cycle (Up

immediately followed by Down and remains Down for 7 seconds). 67
5.5 RTT, OSPF send/receive events during the flapping of 7 seconds cycle (Up

immediately followed by Down and remains Down for 7 seconds) with flap
damping. 69

5.6 penalty transition during the flapping of 7 seconds cycle (Up immediately
followed by Down and remains Down for 7 seconds) with flap damping. . . 70

6.1 Example of routes calculated by SPT and by MARA. 74
6.2 The relation between v, V ′, v′, V ′′, X and t in Lemma 6.4.1. 81
6.3 The optimality proof of MARA-MC. 82
6.4 Comparison on distributions on the number, the average, and the maximum

length of paths for AS1221 and AS1755. 89
6.5 Comparison on distributions on the number, the average, and the maximum

length of paths for AS3257 and AS3967. 90
6.6 Computation time of algorithms. 91

7.1 Overview of the Drouting architecture. 97
7.2 A network graph, the shortest path tree (SPT) as it would be calculated

today, and the DAG that includes all links. 98
7.3 The Telestra’s network topology. 103
7.4 The fraction of failure cases, successfully recovered by different systems on

the Telstra topology. 103
7.5 The fraction of 10 failures cases, successfully recovered by different systems

on the Telstra topology. 104
7.6 The fraction of source-destination pairs on the Telstra topology, having

more than x nexthops. 104
7.7 The fraction of source-destination pairs on the Telstra topology, having

more than x paths. 105
7.8 The fraction of source-destination pairs on the Telstra topology, having

more than x paths, focused version in the range below 100 paths. 106
7.9 The fraction of source-destination pairs on the Telstra topology, having path

length more than x in average. 107
7.10 The fraction of source-destination pairs on the Telstra topology, having path

length more than x in maximum. 107

LIST OF FIGURES xiii

8.1 BRITE configuration file for traffic engineering example. 113
8.2 Network graph structure for traffic engineering example. 114
8.3 Dijkstra’s and MARA-MC’s routing graph for destination node 0. 114
8.4 Traffic demands for traffic engineering example. 114
8.5 AMPL model file for traffic engineering example. 116
8.6 AMPL model file for traffic engineering example (continue). 117
8.7 AMPL data file for traffic engineering example. 118
8.8 Addition to AMPL model file for equalization of split ratios. 121

A.1 A series structure. 132
A.2 A parallel structure. 133
A.3 An example of reliability computation by minimal path sets. 135

B.1 The Sprint’s network topology. 139
B.2 The Ebone’s network topology. 140
B.3 The Tiscali’s network topology. 140
B.4 The Exodus’s network topology. 140
B.5 The Abovenet’s network topology. 141
B.6 The fraction of failures, successfully recovered by different systems on the

Sprint topology for 1 failure (left) and 10 failures (right). 141
B.7 The fraction of failures, successfully recovered by different systems on the

Ebone topology for 1 failure (left) and 10 failures (right). 142
B.8 The fraction of source-destination pairs on the Ebone topology, having more

than x nexthops and paths. 142
B.9 The fraction of source-destination pairs on the Ebone topology, having path

length more than x in average and in maximum. 142
B.10 The fraction of failures, successfully recovered by different systems on the

Tiscali topology for 1 failure (left) and 10 failures (right). 143
B.11 The fraction of source-destination pairs on the Tiscali topology, having more

than x nexthops and paths. 143
B.12 The fraction of source-destination pairs on the Tiscali topology, having path

length more than x in average and in maximum. 143
B.13 The fraction of failures, successfully recovered by different systems on the

Exodus topology for 1 failure (left) and 10 failures (right). 144
B.14 The fraction of source-destination pairs on the Exodus topology, having

more than x nexthops and paths. 144
B.15 The fraction of source-destination pairs on the Exodus topology, having

path length more than x in average and in maximum. 144

LIST OF FIGURES xiv

B.16 The fraction of failures, successfully recovered by different systems on the
Abovenet topology for 1 failure (left) and 10 failures (right). 145

B.17 The fraction of source-destination pairs on the Abovenet topology, having
more than x nexthops and paths. 145

B.18 The fraction of source-destination pairs on the Abovenet topology, having
path length more than x in average and in maximum. 145

List of Tables

3.1 Growth in number of ASes and IP prefixes. 27
3.2 Number of routers and links in Splintlink, Verio, and AT&T. “BB” refers to

backbone. 28

4.1 Results of example simulation in SimRouting. 55
4.2 Results of the s-t reliability calculation in SimRouting. 57
4.3 Supported methods in SimRouting. 59
4.4 Comparison of features with other simulation tools. 60

6.1 Average and standard deviation of the number, the average length, and the
maximum length of paths. The average length increases with multipath
algorithms due to the active use of secondary, longer paths. 84

6.2 Computational complexities of routing algorithms. l denotes the number of
neighboring nodes for a node, m the number of edges in the graph, and n
the number of nodes. 85

7.1 The network graphs for simulations of Drouting architecture. 100

8.1 Link utilizations routed by Dijkstra. 115
8.2 Link utilizations routed by MARA-MC. 115
8.3 Link utilizations comparison after solving LP. 119
8.4 Split ratio calculated by LP. 120
8.5 Link utilizations comparison of modified LP problem. 122
8.6 Split ratio calculated by modified LP problem. 122

xv

Chapter 1

Introduction

1.1 Overview

The Internet is a packet switched communication network constructed of many sub-networks,
which connect a huge variety of devices and media. The communication protocol for the
Internet, Internet Protocol (IP) [77], is specified so that it can exchange data on any datalink
technologies. Thus the Internet utilizes an almost unlimited array of types of media such
as coaxial cables, twisted-pair copper cables, optical fiber cables, and many types of radio
transmissions including satellite. The Internet is incorporating and replacing many existing
networks, such as Public Switched Telephone Network (PSTN) and television broadcasting
network as well as many originally-service-dedicated data networks.

The Internet has become huge and is still growing explosively. ISC Internet Domain
Survey [43] estimated an Internet host count; in January 1995 it was 5,846,000 (adjusted
statistics), and had grown to 433,193,199 by January 2007. According to CIDR Report [38],
the number of autonomously administrated networks (the number of ASes) was approxi-
mately 25,000 and the number of IP sub-networks (i.e., routes) was approximately 230,000
in June 2007. According to the estimation of Internet World Stats [44], there were 719
million users on the Internet in 2004 and 1093 million in 2006.

The Internet has become an essential communication infrastructure for daily life. Many
human activities conducted by various people for various purposes now use the Internet.
The list of applications that use the Internet includes: communications, media content
streaming, commerce, and health and safety. All these applications indicate the importance
of the reliability of the Internet.

Communication applications include e-mail, chat, instant message, blog, bulletin board,
commercial advertisement, newspaper, magazine, and press release. Communications are
used by people very frequently, and hence they are desired to be performable without any
stress. Streaming applications, which include IP phone, live television broadcast, and watch-

1

CHAPTER 1. INTRODUCTION 2

ing movies require a significant amount of bandwidth and stability on packet jitter, and
some of them prefer small communication delay. In commerce applications including Inter-
net shopping, exchange of money, and online trades of stocks, we handle our money and
property, and hence loss or alteration of transaction data is not permissible. Health and
safety applications such as remote medical care, telesurgery, and emergency phone calls,
relate to human health and life, and thus require no loss, no errors, and very small delays in
communication, and may require significant amounts of bandwidth as well as privacy and
security.

As an infrastructure that supports these diverse applications, and because some of them
are very important for our life, the reliability of the Internet is really important. However,
the reliability of the Internet is still insufficient in order to serve as an integrated commu-
nication infrastructure that can support mission critical services. Communication in the
Internet can be, and actually is, disrupted for various reasons.

First, routers and links are made down due to network faults such as optical fiber cuts
and router failures, and network maintenance such as router software upgrades. Past studies
showed that such faults could last an hour or two [50, 49, 40, 39, 56]. Second, router software
bugs can result in the complete meltdown of the entire network, as seen in the AT&T frame
relay outage in 1998 [64]. Third, even if it is carefully designed, a distributed algorithm may
have a defect that arises only on rare incidents such as bit-drops in a router’s memory. Such
defect can result in the complete meltdown of the entire network, as seen in the ARPANET in
1980 [84]. Fourth, a mistake in network design or network administration can halt the entire
network, such as seen in NTT-East in Japan in 2007 [26, 66]. Last, the network connection
may be manually shutdown, for example due to a disagreement on the connection between
two Internet Service Providers (ISPs), as seen in U.S. in 2005 [20]. In such an event, some
customers of the ISPs suffered from reachability problems for particular destinations.

The Internet is going to be used for various applications including mission critical ser-
vices such as emergency phone calls. Although emergency phone calls are the most impor-
tant communication that we desire to be reliable, the current Internet is not reliable enough
to support them. There is no assurance, estimation and/or expectation for a emergency
phone call to be successfully established and continuable for a desired duration. While there
are other requirements to implement emergency calls such as call traceback, first and fore-
most the reliability of the Internet must be improved.

The reliability of a communication network is affected by various factors, such as the
reliability of hardware communication devices, the stability of communication protocols
and software systems, the availability of sufficient capacity of network resources, and the
reliability of network operators. Most of the current research focuses only on a specific one
of these reliability components. For example, research on fault tolerant systems targets the
reliability of individual communication devices, circuits, and software systems. Research on

CHAPTER 1. INTRODUCTION 3

communication protocols targets on their stability. Traffic engineering research focuses only
on the usage of network bandwidth capacity. Today’s Internet is built upon the combinations
of these research technologies that each targets its specific reliability.

Combining the existing research technologies for a specific reliability component does
not improve the practical reliability of the entire communication network. This is because
of two reasons: 1) Current research does not cover all reliability components. For example,
studies on technologies to prevent software bugs, hardware bugs, and mis-configurations
by network operators are not adequate. 2) For many reliability components, no fallback
plan is provided when the responsible technologies fail. If a fault tolerant mechanism or
a stabilizing technology for a communication protocol fails, the communication network
may cease to function until it is manually repaired. Consequently the reliability of overall
communication network is not sufficient, and the Internet cannot yet serve as a safety-
critical infrastructure.

As the first step of approach to the improved reliability of the Internet, this work fo-
cuses on the availability of the network. The availability is always required, and the most
important attribute of the Dependable Internet. Improvements in the network availability
certainly contributes to approaching the Dependable Internet. This dissertation provides, as
its results, the minimal routing technologies to forecast and control the network availability
in the Internet, i.e., the routing technologies required in the highly available Internet.

Definitions of the Dependable Internet, the highly available Internet, and the network
availability, the relations between them, a strategy to implement the highly available Inter-
net, and a strategy to approach to the Dependable Internet are described in Chapter 2. This
work proposes realistic steps toward the highly available Internet. The strategy, the scope
of this work, and the forecasts for the other areas that are outside the scope of this work are
given.

This work focuses on the routing technology. When considering the network availabil-
ity, the routing technology is the most important topic, because the routing system decides
which devices and circuits the communication traverses, hence it also decides how the suc-
cess probability (i.e., the network availability) of the communication will be. This thesis
focuses on intra-domain routing system as the first step.

A method to calculate the network availability, a method to stabilize a routing proto-
col, and a novel routing architecture are proposed in this work in order to contribute to
the improvement of the availability of the overall communication network system. A rout-
ing simulation tool, SimRouting, has been developed to provide a method to calculate the
network availability on various network configurations. SimRouting contributes to the com-
parative evaluation of new routing systems, and thus is expected to contribute to improving
the routing systems. Then, a method to stabilize a routing system is presented, as an example
of increasing the robustness of individual network elements. Next, a novel multipath rout-

CHAPTER 1. INTRODUCTION 4

ing architecture, Drouting, is proposed. The Drouting architecture consists of three parts:
routing algorithms that calculate multipath routes, a packet tag forwarding system, and the
traffic engineering on it.

Focusing on the routing technology, this research improves the availability of entire
communication system, through the strategy of utilizing an alternative route in the face of
troubles caused by various sources.

This work proposes basic functions that are required to realize the highly available Inter-
net. The basic functions provide practical solution to the reliability problem. With consider-
ations to the future issues, this work proposes a basic strategy to improve the availability of
the Internet.

1.2 Contributions of This Work

The contributions of this work are as follows.

1. The development of a new simulation tool to calculate network availability and to
evaluate routing systems is described.

The simulation tool, SimRouting, can be used to calculate the network availability, to
predict which events can affect availability by causing, and to help determine where
investment in new infrastructure is most needed. Hence, SimRouting is anticipated
to help network planning. SimRouting also can evaluate a routing method on various
network graphs, traffic demands, and settings of the routing metrics. The ability to
verify a routing system on various network configurations and the ability to compare
two different routing systems on the same network configuration help to evaluate and
improve the routing systems. Hence, the tool can also be used by routing researchers
to compare and evaluate proposed routing systems with existing ones, to improve
them. The SimRouting routing simulation tool was used to evaluate the new routing
system proposed later in this work.

2. A method to stabilize a routing system is shown.

A technique found in BGP Flap Damping [103] is utilized to stabilize an OSPF [59]
routing system. Because the same kind of approach can be applied to other distributed
software system, this work demonstrates a method to make distributed software sys-
tems tolerant to many kinds of oscillation problems.

3. A new multipath routing algorithm is proposed.

New hop-by-hop network routing problems, the all-to-one maximum connectivity
routing problem, the all-to-one max-flow routing problem, and the all-to-one maxi-
mum shortest path alternatives problem, are defined, and the optimal algorithms to

CHAPTER 1. INTRODUCTION 5

solve these problems, MARAs, are presented. These problems and the optimal algo-
rithms are new findings in Graph theory and network flows. MARAs can be used
as a general multipath route calculation algorithm, to compute many multipaths on
hop-by-hop networks.

4. A new multipath routing architecture is proposed.

A new multipath routing architecture, called Drouting architecture, is developed to
construct a highly available communication network. Although the focus in this
work is limited to the application to the IP network, the same logic can be applied
to other dedicated communication networks and/or control networks. In Drouting
architecture, a packet tag corresponds to a network path. Changing the packet tag
instructs a stochastic change the network path, although it is unknown which path
the result would be. This enables the immediate failure recovery when an application
in the end host or an intermediate router detect a failure, without waiting the routing
convergence. Since just changing the packet tag instructs the network path change,
many network entity can utilize the feature to switch to another path. This further
enables the implementation of network path evaluation function on many network
entity, depending on the specific purpose of the application or the network entity.

5. The feasibility of traffic engineering on the new routing architecture is shown.

Traffic engineering on the Drouting architecture is examined to show that both failure
recovery and network optimization can be performed. It indicates the new vision of
the future Internet where the Drouting architecture is applied.

1.3 Interpretation of This Work

Figures 1.1 and 1.2 presents the before and after this work, respectively, regarding the con-
cept of features of failure detection and route change in IP routing. In the past (Figure 1.1),
failure detection and route change are performed internal to the each IP routing protocol.
Route change function is only triggered by its own failure detection function. In the new
Internet after this work (Figure 1.2), route change function is open to other network en-
tities, with the application interface which is to change the packet tag. Since many other
network entities can utilize route change functions in intermediate IP routers, other enti-
ties such as applications and transport protocols can implement its own failure detection
for their specific purpose, and can instruct intermediate IP routing systems to change the
communication path. Although the route change is limited only to just “change” and there
is no way to specify a specific network path, this is recognized as a partial achievement of
“user control”.

CHAPTER 1. INTRODUCTION 6

Application
TCP/UDP

IP
Ethernet

Hardware

failure detection

route change

failure detection

route change

failure detection

route change

failure detection

route change

failure detection

route change

Application
TCP/UDP

IP
Ethernet

Hardware

Application
TCP/UDP

IP
Ethernet

Hardware

Application
TCP/UDP

IP
Ethernet

Hardware

failure detection

route change

failure detection

route change

failure detection

route change

failure detection

route change

failure detection

route change

failure detection

route change

failure detection

route change

failure detection

route change

failure detection

route change

failure detection

route change

Figure 1.1: Past Internet.

Application
TCP/UDP

IP
Ethernet

Hardware

failure detection

route change

failure detection

failure detection

failure detection

route change

Application
TCP/UDP

IP
Ethernet

Hardware

Application
TCP/UDP

IP
Ethernet

Hardware

Application
TCP/UDP

IP
Ethernet

Hardware

failure detection

route change

failure detection

route change

failure detection

failure detection

failure detection

route change

Figure 1.2: New Internet.

CHAPTER 1. INTRODUCTION 7

Drouting

Classical IP Routing

routing
redundancygraph

redundancy

user control

traffic
measurement

reliability

availability

efficiency

optimization
LP

QoS guaranty
delay

bandwidth

routing
control

source routing

slow recovery
dynamic routing

stability
fixed long timer

reachability
loop-free correctness

policy
enforcement

BGPCSPF
TE

fast recovery
MPLS

Drouting

Classical IP Routing

routing
redundancygraph

redundancy

user control

traffic
measurement

reliability

availability

efficiency

optimization
LP

optimization
LP

QoS guaranty
delay

bandwidth
QoS guaranty

delay

bandwidth

routing
control

source routing

routing
control

source routing

slow recovery
dynamic routing
slow recovery

dynamic routing
stability

fixed long timer
stability

fixed long timer

reachability
loop-free correctness

reachability
loop-free correctness

policy
enforcement

BGPCSPF
TE policy

enforcement
BGPCSPF

TE

fast recovery
MPLS

Figure 1.3: Interpretation of this work.

Figure 1.3 illustrates the interpretation of the contribution of this work.

Classical IP routing systems had following properties. The “stability” was preserved
by the fixed long timer in the routing protocols, along the principle of preferring stability
over the adaptability. This led to the “slow recovery” nature of the dynamic routing
protocols. Providing the stable “reachability” was achieved, as the primary purpose of
the routing systems. The “graph redundancy” was achieved by network planning ac-
tivities. The “policy enforcement” was partially achieved by Border Gateway Protocol
(BGP) [82].

Multi-Protocol Label Switching (MPLS) [83] added some features to the Internet. The
“traffic measurement” can be performed easily, when many Label Switched Paths (LSPs)
are established and the LSP statistics are recorded. The LSP enables “QoS guaranty” such
as guaranteeing delay and bandwidth requirements to a application, “policy enforcement”
such as traffic engineering (TE) and constrained shortest-path first (CSPF) calculation, and
detailed “routing control” by the source routing.

Drouting architecture developed in this dissertation adds further features to the Internet.
MARAs used in Drouting architecture achieve “routing redundancy” by multipaths, in
contrast to the single shortest-path routing performed before. Since changing the packet tag
can be performed even in the user application, “user control” is achieved partially (it is
not detailed control). Network path can be switched by the packet tag change, hence “fast
recovery” can be achieved where one can change the network path immediately after
detecting the failure. This fast recovery achieves the improvement of “availability”,
and approaches to “reliability”. Additionally, the Drouting architecture introduce the
easy way to perform “optimization” of the network, by using the Linear Programming

CHAPTER 1. INTRODUCTION 8

(LP) for traffic engineering. This improves “efficiency” of the Internet.

1.4 Organization of This Dissertation

The rest of this dissertation is organized as follows. Chapter 2 defines the highly avail-
able Internet as an objective of this research, and then provides the required functions, a
strategy toward the highly available Internet, and the scope of this research. For the is-
sues outside the scope of this research, related works and forecasts from the perspective of
this research are also given. Chapter 3 gives the current Internet routing technologies and
status of real network operations as the backgrounds of this research. In Chapter 4, the rout-
ing simulation tool, SimRouting, is developed. The example usages are described, and the
SimRouting is evaluated by comparisons of functionalities with other network simulation
tools. Chapter 5 studies to stabilize the OSPF, as an example to improve the availability
of an individual network element. It is shown that the OSPF routing system can be made
more robust in the face of an oscillating route, by using a flap dampening feature that is
originally introduced to BGP [82]. Chapter 6 exhibits new multipath routing algorithms,
MARAs, that maximize the minimum connectivity and the minimum max-flow among all
sources to a destination. The problems of maximizing the minimum connectivity and the
minimum max-flow in a hop-by-hop network are formally defined. A family of algorithms
to calculate multipath routes utilizing an existing algorithm, MA Ordering, is named Maxi-
mum Alternative Routing Algorithm (MARA). Then it is proven that MARAs calculate the
optimal solution for the problems. Chapter 7 proposes a new routing architecture, called the
Drouting architecture, that utilizes MARAs and a packet tag forwarding architecture. The
routing architecture is evaluated by simulations in terms of probability of failure recovery
(i.e., the network availability). The simulations are executed on the network topologies of
a few major Internet service providers inferred by the Rocketfuel project [92]. The com-
parison with another multipath routing called Deflection showed that Drouting architecture
improves the failure recovery property. Chapter 8 discusses methods to perform traffic en-
gineering on the Drouting architecture. A network optimization method is studied for a
given traffic demand matrix. Chapter 9 concludes this research. Chapter 10 discusses the
future works and prospects of the Drouting architecture and the availability of the Internet.
Failure detection technologies, the difference in network operation and network debugging
from the current Internet, and issues in migration and transition to the Drouting architecture
are described.

Chapter 2

Highly Available Internet

This chapter defines the “highly available Internet” as the Internet with minimal functions
to forecast and control the network availability. An ideal, reliable communication infras-
tructure to which Internet should evolve is referred to as the “Dependable Internet”. The
set of functions required in the highly available Internet is a most important subset required
in the Dependable Internet. Hence, providing the functions required in the highly available
Internet is the significant advancement in approaching to the Dependable Internet. Then, a
strategy to implement the highly available Internet is explained. This chapter describes the
position and perspective of this work.

2.1 Terminologies and Definitions

Numerous research projects on reliability in the distributed systems have been done in the
past such as for operating system, Inter-Process Communication (IPC), programming, soft-
ware, and database, though little has been done for the communication network [90, 46].

Stankovic [95] described the definitions on failures, errors, faults, and reliability:

Failure is an event at which a system violates its specifications.

Error is an item of information which, when processed by the normal algo-
rithms of the system, will produce a failure.

Fault is a mechanical or algorithmic defect which may generate an error.

Reliability is the degree of tolerance against errors and faults.

Aviz̆ienis et. al. [8] summarized the concepts of dependability, availability, and reliability
(Note that reliability is redefined):

Dependability is the ability to deliver service that can justifiably be trusted,
is an integrative concept that encompasses availability, reliability, safety,

9

CHAPTER 2. HIGHLY AVAILABLE INTERNET 10

confidentiality, integrity, and maintainability, and is interpreted in a rela-
tive probabilistic sense.

Availability is the readiness for correct service.

Reliability is the continuity of correct service.

Safety is the absence of catastrophic consequences on the user(s) and the envi-
ronment.

Confidentiality is the absence of unauthorized disclosure of information.

Integrity is the absence of improper system state alterations.

Maintainability is the ability to undergo repairs and modifications.

In this research, the terms “failure” and “fault” are used interchangeably. In a layered
communication protocol, a fault in a lower layer can be deemed as a service failure from an
upper layer. Based on the above definitions, followings are defined in this research.

Network Failure is one or more losses of reachability caused by an error or a fault in the
network (assuming reachability is the specification of communication network).

Failure Recovery is recovery from network failures.

Network Availability is defined as the probability for a communication to be successfully
performed in the network (successful communication is the correct service).

Network Reliability is defined as the network availability over time.

2.2 Illustration of Network Availability

The notion of network availability is reviewed in this section.
Figure 2.1 illustrates the notion of network availability in the TCP/IP internet layer-

ing model [19]. As a communication session reaches from a source host to a destination
via routers, the communication traverses several abstract network elements, such as the
application itself at the application layer, TCP [78] instance at the transport layer, routing
protocol instances and IP forwarding process at the Internet layer, Ethernet protocol at the
network interface layer, and various hardware, such as network interface cards (NICs), cop-
per cables, switching devices, wavelength division multiplexing (WDM) devices, and optical
fibers, at the hardware layer. Each abstract network element has its own failure probability.
For example, the failure in network interface card, the routing protocol’s failure, and also
the network operator’s mistake can be considered as the failure of related network elements.
The success probability for a communication, i.e., the network availability, can be expressed

CHAPTER 2. HIGHLY AVAILABLE INTERNET 11

RouterSource Host Destination Host

Application

Transport

Internet

Network Interface

Hardware

Application’s
failure

probability

Network I/F’s
failure

probability

Routing protocol’s
failure probability

Probability of
network operators’

mistake

RouterRouterSource HostSource Host Destination HostDestination Host

Application

Transport

Internet

Network Interface

Hardware

Application

Transport

Internet

Network Interface

Hardware

Application’s
failure

probability

Network I/F’s
failure

probability

Routing protocol’s
failure probability

Probability of
network operators’

mistake

Figure 2.1: Notion of network availability and failure probabilities.

as a product of all the network elements’ success probability, when considering only a single
path through the network.

Psuccess =
∏

i∈all elements in the path

pi. (2.1)

2.3 Definition of the Highly Available Internet

As the first step of the research of reliability of the communication network, this disser-
tation focuses on the network availability, i.e., it does not consider the possibility that the
success probability changes over time, and considers the probability at a fixed time. Net-
work availability is always required, and the most fundamental, hence important, attribute
in the dependability. Increasing the network availability significantly contributes to the
dependability of the Internet.

As an indicative objective of this research, highly available Internet and Dependable
Internet are defined below.

highly available Internet is the Internet with functions to forecast and control the network
availability.

Dependable Internet is the Internet with sufficient dependability to serve mission critical
services such as emergency phone calls.

CHAPTER 2. HIGHLY AVAILABLE INTERNET 12

the Dependable Internet

Reliability

Safety

Confidentiality

Integrity

Availability

Maintainability

Development of the
highly available Internet

Deployment of the
highly available Internet

the Dependable Internet

Reliability

Safety

Confidentiality

Integrity

Availability

Maintainability

Development of the
highly available Internet

Deployment of the
highly available Internet

Figure 2.2: Relations of dependability, Dependable Internet, and highly available Internet.

Figure 2.2 shows the relationship between attributes of dependability, the Dependable
Internet, and the highly available Internet. The “Development of the highly available Inter-
net” is tackled in this research. When the highly available Internet is deployed (“Deployment
of the highly available Internet” in the figure), availability and a part of the maintainability
is supported, where maintenance of and traffic engineering in the network can be performed
preserving the high availability. Reliability is not supported, in the strict definition in Sec-
tion 2.1, since the highly available Internet does not take the time into account. The De-
pendable Internet is achieved when all attributes of dependability are satisfied for mission
critical services.

2.4 Problem Statement

The main point of the definition of the highly available Internet is that network admin-
istrators should be able to increase or decrease the availability of the network voluntarily
by adding or limiting the amount of investment in network resources, such as by adding a
number of alternative links or by increasing the available bandwidth. Technical issues for
it is that whether all the functions and technologies are provided to enable the control of
availability, or not.

In the highly available Internet, one can improve the probability of success of connec-
tion establishment between a particular source and a destination, by provisioning many
alternative paths between them, for example. Further improvement of availability may be
afforded by replacing routers and/or circuits with higher-priced, more reliable ones. Simi-

CHAPTER 2. HIGHLY AVAILABLE INTERNET 13

larly, one can save the economical cost by decreasing the availability to lower, however still
forecastable, value.

The current Internet is not the highly available Internet because there are many types of
problems that can be neither avoided nor automatically repaired, no matter how one invests
in the network resources in advance. Such kinds of problems include:

• Hardware problems. All hardware breaks down as time elapses. Hardware failures
may result in Byzantine failures [73], where detection of malfunctions cannot be ex-
pected.

• Software bugs in routers. It is very difficult to fix all software deficiencies in every
possible situations encountered in real-world operations.

• Congestion in network links or on routers. Traffic is dynamic and can change drasti-
cally for various reasons, such as topology changes caused by failures of the network
links, and even policy changes of neighboring networks. It is impossible to completely
avoid congestion.

• Mis-configurations and mistakes in network operation by the network administrators.

For example, in the current Internet, even when one provisions many alternative paths,
a router that is problematic for one of the above reasons may destroy the communication
reachability despite the existence of healthy alternative paths. Consequently, in the current
Internet, the availability of the network may not increase even after the provisioning of
alternative paths.

However, with sufficient additional routing functionality, the current Internet can be
improved to become the highly available Internet. The following sections describe the ap-
proach to improve the availability of the Internet and to achieve construction of the highly
available Internet.

2.5 Objective of This Dissertation

The objective of this dissertation is to develop and provide the minimal functions that relate
to routing technologies and that are required for the highly available Internet. More pre-
cisely, it is to provide the minimal functions for routing technologies to enable control of the
availability of the network.

The required but not yet provided functions are discussed in Section 2.7, and are sum-
marized in Section 2.9.

CHAPTER 2. HIGHLY AVAILABLE INTERNET 14

2.6 Basic Principle of the Approach

Before getting into the discussions of overall perspective on communication systems, the
basic principle of our approach to improving the network availability of a communication
network is described here. Failure recovery is the most important feature to improve the
network availability, since if failure recovery fails, the network outage continues and the
availability degrades. This research as a whole tries to make the failure recovery perform
well, along with the related other features, such as network planning and traffic engineering.
This section gives the principle of this work regarding how to improve network availability
actually and practically. The approach described in this section is achieved through the
construction of the Drouting architecture (Chapter 7).

Using a general multipath approach, network availability can be increased indefinitely
close to 1.0, which means that really highly available network can be implemented. The
approach in this dissertation to achieving this is two fold.

First, with sufficient multipaths, the probability that the network is totally divided and
disconnected can be made indefinitely lower, as is calculated in the theory of reliability. The
more multipaths, the more the probability that the network has at least one available path
(i.e., connected). The first part of the approach is to increase the number of multipaths to
satisfy the required network availability. Some examples of system reliability calculations
with multiple paths are given in Section 2.6.1.

Second, assuming that retries of communication attempts are assigned to different paths,
performing retries improves the success probability of the communication, despite the ex-
istence of failures in the network. Hence when a communication attempt is made, which
network path is assigned, and at which frequency, are considered in this research. This
multipath retry approach makes it possible to satisfy the required network availability, by
determining a number of retries. In particular, the retry approach achieves the construc-
tion of the network with 99.999% (five-nines) communication success probability, given
sufficient alternative paths and sufficient number of retries. Section 2.6.2 describes a simple
example of multipath retry model to improve the communication success probability.

2.6.1 Multipath Provisioning

In Figure 2.3, nodes such as s and t represent communication devices, and links represent
communication paths. There are three paths from s to t that their reliabilities are 0.9, 0.6,
and 0.8, respectively. Overall system reliability from s to t is calculated as the probability
that at least one of the path is functioning. Hence, the s-t reliability in Figure 2.3 is:

1− (1−0.9)(1−0.6)(1−0.8) = 0.992 (2.2)

CHAPTER 2. HIGHLY AVAILABLE INTERNET 15

s

t

0.9 0.6 0.8 0.3

s

t

0.9 0.6 0.8 0.3

Figure 2.3: Multipath provisioning.

Adding another path, even if it has low reliability such as 0.3 (right-most dashed line in
Figure 2.3), can slightly contribute to overall system reliability. After adding the path with
the reliability 0.3, overall s-t reliability becomes:

1− (1−0.9)(1−0.6)(1−0.8)(1−0.3) = 0.9944 (2.3)

The example shown here assumes disjoint multipaths. If the multipaths are overlapping
at some nodes and/or links, the complex calculation such as summarized in Appendix A is
necessary.

2.6.2 Multipath Retry

In the current Internet communication model, it is not possible to utilize multipaths effi-
ciently. TCP [78] cannot handle packets transmitted over multipaths efficiently, because
these packets may be reordered, which in turn degrades the TCP performance. SCTP [96],
a newer reliable transport protocol that is expected to be able to handle multipath sessions,
is not yet deployed. Sending copies of a packet over the multipaths simultaneously for re-
dundancy purpose is sometimes being considered and is called “1 + 1” in failure recovery
research [55], but network operators are reluctant to do it because it consumes the band-
width multiple times.

Because multipaths cannot be utilized efficiently, the routing and the forwarding system
in the Internet pins all communications for a destination to a single network path. This
fact, in turn negate the prospect in Graph theory and Reliability theory in Section 2.6.1,
that “the more multipaths and more connectivity means more system reliability”. Because a
densely constructed graph and its multipaths cannot be used efficiently, the construction of
the network graph sometimes results in a simple graph, such as a tree.

The fact that communication sessions use a single path even if multipaths are available
limits the network availability, given that each path may fail with a certain probability.

CHAPTER 2. HIGHLY AVAILABLE INTERNET 16

To use multipaths in the Internet efficiently and practically, “multipath retry” is intro-
duced in this research. The rule is simple: a communication session is assigned to a network
path randomly, so that the retries would be assigned to different paths.

Suppose that there are problems in the network, and there are n paths from a source to
a destination where m paths (out of n) are affected by the problems. Communication retries
are assigned a path that has a problem with a probability P = m/n. For example, when 1
path out of 6 paths has a problem, i.e., m = 1,n = 6, every retries fails at a rate of P = 1/6.
If an end node retries x times, the probability that all the retries fail is:

(1/6)1,(1/6)2,(1/6)3,(1/6)4, ...,Px (2.4)

This is the same discussion of the probability that rolling a dice x times results in all 1s.
Note that the probability of all four retries fail, (1/6)4, is 0.0007716, that is significantly
small probability. This means that retrying on the multipaths up to four times will make the
communication succeed in the probability more than 99.9%.

The benefits of this approach are as follows:

1. failure probability decreases drastically to a very low value when the number of retries
x grows,

2. the resulting availability is forecastable to a probability, and

3. we can control the resulting availability by changing x and n (or m/n), if m and n are
known.

The drawbacks of this approach are:

1. since the path is chosen randomly, the desired path may not be used,

2. the result such as the number of retries until success is not stable over time (i.e., the
result is stochastic),

3. there is no apparent indication to decide whether there is no available path at all.

For the method to implement this in communication network, see Chapter 7.

2.7 Perspective

The objective of this dissertation is providing the minimal functions that are required to
implement the highly available Internet. This section discusses and identifies the minimal
functions which are deficient or insufficient in the current Internet.

For improving the network availability of the Internet, the issues are divided into fol-
lowing areas.

CHAPTER 2. HIGHLY AVAILABLE INTERNET 17

1. Network Planning (Section 2.7.1)

2. Availability Calculation (Section 2.7.2)

3. Maintenance of Network Elements (Section 2.7.3)

4. Problem Detection (Section 2.7.4)

5. Recovery from Problem (Section 2.7.5)

6. Traffic Engineering (Section 2.7.6)

7. Service Protection (Section 2.7.7)

For each area, a description, function required in the area to achieve the highly available
Internet, and prospects using the approach outlined in this dissertation are given. This
section gives the scope of this research.

2.7.1 Network Planning

Designing a communication network, including tasks such as determining the entire net-
work graph structure, which type of router is employed, where the routers are located, and
which type of datalink technologies are utilized to link them, is called “network planning”.
Network planning involves many aspects. It also includes capacity planning and planning
of communication delay.

Most past network planning has been based on previously-given requirements. Exam-
ples for the previously-given requirements include the following:

• physical location of communication devices such as the locations of network operation
centers (NOCs), network access points (NAPs), and point of presences (POPs),

• the requirements derived from limitations in datalink technologies, such as length and
capacity limitations in Ethernet, synchronous optical network/synchronous digital hi-
erarchy (SONET/SDH), and WDM, and

• economical cost to provision a circuit between POPs.

Given the requirements, past network planning tended to focus on capacity planning,
and little has been considered regarding network availability [75, 48].

Since the capability to recover from failures should be primarily considered for the pur-
pose of the network availability, the design of a network graph structure with sufficient re-
dundancy is the most important prerequisites in this research. In order for communications

CHAPTER 2. HIGHLY AVAILABLE INTERNET 18

to recover from failures, alternative physical communication paths are required. Construct-
ing a network graph with sufficient redundancy is imperative. This serves as the multipath
provisioning mentioned in Section 2.6.

In Graph theory, calculation of connectivity on a graph and determination of mini-
mal additional edges required to satisfy k-edge or k-vertex connectivity have been stud-
ied [97, 62]. They can be used to construct a network graph structure that have sufficient
redundancy.

Although a network graph structure with sufficient redundancy is the prerequisite for
the purpose of the network availability in this research, methods to design network graphs
with sufficient redundancies are beyond the scope of this research, as another separate re-
search topic. This dissertation assumes that network graphs already contain minimal redun-
dancy with alternative connections for most source-destination pairs, by network construc-
tion involving either graph theoretical calculation or manual check. This assumption seems
plausible, at least in the networks of large ISPs, as shown in Rocketfuel [92].

2.7.2 Availability Calculation

In order to understand how availability is insufficient, we need a way to estimate and eval-
uate the availability of the current network. Little has been studied about the network
availability for realistic, complex network model for the Internet in operation, and its rout-
ing.

System reliability is a general probabilistic measure to consult the availability of a sys-
tem. Toward the highly available Internet, it is required to study the system reliability of
each network in the Internet.

Current research on system reliability involves changing failure probability over time
(i.e., failure probability model) for each component in the network [11]. For the first step to
study the reliability of the Internet, changes of failure probability over time are not consid-
ered in this research. This dissertation assumes the failure probabilities of all components
are given for the time in question, and the goal is to calculate the snapshot of the network
availability for the time.

A method for forecasting the network availability taking the routing method into ac-
count is required, but does not exist yet. There has been no research activities, to the best
of our knowledge, that studies forecasting of the current and future network availability, in
consideration of the routing method.

2.7.3 Maintenance of Network Elements

The network consists of many components (called Network Elements hereafter) such as a
router’s chassis, routing and switching line card modules in routers, optic fibers, connectors,

CHAPTER 2. HIGHLY AVAILABLE INTERNET 19

optical repeaters, WDM devices, the operating systems in the routers, and the software
implementing the routing protocols.

Each network element has its own failure probability. For example, according to [85],
some representative numbers of failures in 109 hours, called Failure-In-Time (FIT), are 104

for 10 km fiber, 105-106 for SONET equipment, and 103-104 for couplers and multiplexers.
Statistics from Belcore (now Telcordia) [100] shows that FIT for optical transmitters and
receivers are 10,867 and 4,311, respectively.

Network elements with high failure probability are problematic. For example when al-
most all network elements have excessively high failure probability, the network as a whole
would become unavailable, no matter how the routing architecture is performing good. In-
dividual effort to reduce the failure probability of each network element is necessary.

The tasks of making network elements robust include fixes and replacements of hard-
ware devices and upgrades of software. They are the activities that current network op-
erators are executing. Maintenance of each network element is the activity to keep the
failure probability of each network element low. These kinds of activities are still required
to maintain the highly available Internet.

2.7.4 Problem Detection

Problem detection technologies trigger routing system to recalculate the routes in the face of
node failures, link failures, congestion, and deterioration of QoS performance. It is important
for them to detect the problems quickly, because when they take a long time to detect, the
problem lasts longer duration and the network availability is decreased.

Currently problem detection is achieved by either detection in datalink protocols or
in routing protocols. Detection in datalink protocols includes Ethernet link status and
SONET/SDH link alarm. Although detection functions in datalink protocols enable quick
detection of link or node failures, they are limited to detecting adjacent datalink failures. Ex-
amples of detection functions in routing protocols are the Hello sub-protocol in OSPF [59]
and the “timeout” timer in RIP [54]. The principle of these is simple in that it recognizes a
link or node failure if messages are not heard within a duration.

There are many research directions and emerging technologies in the problem detec-
tion. For immediate detection of a failure on intermediate nodes and links, Bidirectional
Forwarding Detection (BFD) [41] can be used. For detection of congestion, available band-
width estimation techniques [45] can be used. For detection of deterioration in QoS, the
detection should be done individually for each service, because separate service tends to
have different QoS constraints. Setting thresholds to each communication parameters such
as RTT (communication delays), bandwidth, and jitters on packet arrival might serve for the
purpose. Further efficient method for problem detection is open to research.

CHAPTER 2. HIGHLY AVAILABLE INTERNET 20

2.7.5 Recovery from Problem

No matter how well all network elements are maintained, failures occur. When a failure
occurs, communication reachability may be damaged, and communication system needs to
recover from the reachability problem.

There are several technologies to recover from problems.
First, there are several failure recovery mechanisms in datalink technologies. SONET/SDH

and WDM have Self-Healing Ring (SHR) restoration mechanisms (WDM protection) [33,
85]. Spanning Tree Protocol (STP) (IEEE 802.1d) and Link Aggregation (IEEE 802.3ad) in
Ethernet technologies can also be used for this purpose, when there are redundant Ethernet
links. MPLS Fast ReRoute (FRR) techniques [72] are also deemed as the failure recovery
mechanisms in datalink technologies, from the viewpoint of this research. These technolo-
gies are for recovery from a failure of a single node or IP link, and thus do not achieve
network-wide failure recovery.

Routing protocols, such as RIP, OSPF, IS-IS, and BGP, are those responsible to detect and
recover from network-wide failures in the Internet. Failure recovery by routing protocols is
also called IP restoration, as opposed to WDM protection described above. Although they
are relatively slow, i.e., usually taking from tens of seconds to minutes, IP restoration tech-
niques can perform network-wide failure recovery. However, there are still many failures
that cannot be detected and recovered from using the current Internet routing protocols,
such as software bugs and congestion, as mentioned in Section 2.4. Consequently, failures
that cannot be detected by routing protocols must be repaired manually by network admin-
istrators. Hence the failures tend to be of long duration, such as an hour or even a day.

Another approach to recover from problems is an overlay network, such as RON [5] and
PlanetLab [74], where distant application instances construct their own virtual networks and
forward their messages based on their own routing decisions. Routing on an end application
decision has benefits such as application specific route evaluation is possible, and failure
recovery may be possible even when the routing protocols fail to recover, by specifying a
roundabout path on the overlay network. However, this approach has several problems;
1) it complicates the communication structure and tends to result in problems in terms of
extendability and efficiency, in particular, resulting in excessive amount of liveness probing
packets [63], and 2) network administrators cannot predict traffic flows and making traffic
engineering effective is difficult [79].

2.7.6 Traffic Engineering

Traffic engineering is an activity that manipulate the way traffic flows for the purpose of
avoiding congestion in the network. Traffic flows are manipulated by use of some routing
technologies, such as OSPF [30, 31] or MPLS [9, 10, 108, 16].

CHAPTER 2. HIGHLY AVAILABLE INTERNET 21

Traffic engineering requires knowledge of traffic demands in the network in advance.
Thus, measuring or estimating traffic demands is important. The traffic matrix can be mea-
sured, for example, by using statistics of MPLS LSP [108]. Another way to estimate the
traffic demand matrix from link loads has been proposed [111]. However, in general, it is
very difficult to obtain traffic demand matrix because traffic is very dynamic, and because
precision is required (errors in traffic matrix estimation degrade the optimality of the traffic
engineering significantly [6]).

Although further research is recommended, this dissertation assumes that the minimal
function required to estimate traffic demands is already provided. This research assumes
that the traffic demands are given, and are precise. The consideration of errors in traffic
demand estimation is future work.

Given the traffic demands, traffic engineering must be performed to avoid congestion
in order to implement the highly available Internet. There are many traffic engineering
research activities, described in Chapter 3.

However, the past traffic engineering research and technologies cannot be employed
because they do not provide sufficient failure recovery mechanisms which are primarily
required for the highly available Internet.

2.7.7 Service Protection

When considering a special service that is required to be highly reliable such as emergency
phone call service, the service must be protected from other services, especially in terms of
bandwidth. It is still possible that traffic of other services may interrupt the special service.
This can be prevented by DiffServ [14], ALTQ [15], and bandwidth guaranteed virtual circuit
technologies such as MPLS [16]. Another approach is to construct a dedicated network for
the special service.

Although a failure recovery mechanism and a simple traffic engineering technique are
provided in this dissertation, to realize the special service that needs to be highly available,
these service protection efforts must be employed simultaneously with the technologies pro-
posed in this dissertation.

While service protection technologies are required for the mission critical services, it is
considered in this dissertation that it is possible to control the network availability without
employing the service protection technologies. Hence, the service protection technologies
are outside the scope of this dissertation.

CHAPTER 2. HIGHLY AVAILABLE INTERNET 22

2.8 Strategy

This section provides a strategy and the prospects of this dissertation to achieve the highly
available Internet and to improve the network availability.

(4)(1) (2) (3)

Future

(10)(5) (6) (7) (8) (9)

This work

Past

network planning traffic engineering

availability
calculation stabilizing immediate

recovery

(11)

immediate
problem detection

(12)
highly available Internet

service protection

Network

maintenance slow/partial
recovery

network
optimization

(4)(1) (2) (3)

FutureFuture

(10)(5) (6) (7) (8) (9)

This work

PastPast

network planning traffic engineering

availability
calculation stabilizing immediate

recovery

(11)

immediate
problem detection

(12)
highly available Internethighly available Internet

service protection

NetworkNetwork

maintenance slow/partial
recovery

network
optimization

Figure 2.4: Relations of issues and strategy to the highly available Internet.

Figure 2.4 gives an overview of the past Internet (Past), Internet with the result of
this work (This work), and a future Internet (Future) regarding the areas mentioned in
Section 2.7. Relations and expected influences of each area, including expected influences of
contributions of this research, are shown as the arrow lines attached with the parenthesized
number. Each relationship is described in turn.

In the past Internet before this work (Past), Internet is constructed and operated mainly
by four areas of activity: network planning, maintenance of network elements, slow or
partial recovery, and traffic engineering ((1), (2), (3) and (4) in Figure 2.4). Recovery is
performed slowly by routing protocols, or partially by MPLS, SONET/SDH or WDM.

The minimal functions and areas required for the highly available Internet that are de-
ficient are, Availability Calculation (Section 2.7.2), Maintenance of Network Elements (Sec-
tion 2.7.3), Recovery from Problem (Section 2.7.5), and Traffic Engineering (Section 2.7.6).
They are addressed in Chapters 4, 5, 7, and 8, which achieve availability calculation, stabi-
lizing, immediate recovery, and network optimization, respectively.

The strategy of this research is as follows.

CHAPTER 2. HIGHLY AVAILABLE INTERNET 23

1. Provide a method to calculate the availability of the network and to evaluate the
routing system

By providing a tool to evaluate the network availability and the routing system, net-
work administrators and users give further consideration to practical availability of
the network, and the characteristics of the applied routing system. With the tool, prac-
tical network availability that considers applied routing methods can be computed.
Knowing the current network availability is the first and the requisite step to improve
the availability of the Internet. The tool is expected to influence network planning in
the way that the practical network availability will be considered in network planning
and/or network design ((5) in Figure 2.4).

2. Demonstrate the importance of improving the availability of each network element

Maintenance of network elements, namely activity improving availability of network
elements, is not sufficient. For example, as shown in Chapter 5, OSPF routing system
is vulnerable to oscillations. Other distributed systems are likely to have the similar
kind of defects. By presenting the importance and a way to improve the availability
of the distributed system, this work may accelerate the development of technologies
which improve the availability of each network element. This work shows how to
stabilize OSPF routing system in Chapter 5 and hence reinforces current maintenance
of network elements ((6) in Figure 2.4).

3. Construct a new multipath routing architecture to enable failure recovery

The basic principle described in Section 2.6 is incorporated in the new multipath rout-
ing architecture. By constructing a new multipath routing architecture, network ad-
ministrators gain control on the network availability through addition of multiple
paths in the network, the Internet users gain failure recovery capability, and the net-
work becomes more robust. With the new multipath architecture, the incentive to add
many multipaths in the network is enhanced, where the more multipaths the higher
the network availability, hence affect network planning to provide larger number of
multipaths ((7) in Figure 2.4). Since users and end hosts can recover from failures
by themselves when using the Drouting architecture, the burden for network admin-
istrators of fixing the failures manually and quickly is alleviated ((8) in Figure 2.4).
Finally, the multipath routing architecture enables immediate recovery in contrast
to the current slow/partial recovery, reinforcing the failure recovery property of the
communication network ((9) in Figure 2.4).

4. Develop a traffic engineering scheme on the new routing architecture

By presenting a traffic engineering scheme on the new routing architecture, the prospect
of achieving the failure recovery capability and traffic engineering capability at the

CHAPTER 2. HIGHLY AVAILABLE INTERNET 24

same time is shown. The scheme enables network optimization, and anticipated to
help traffic engineering activities ((10) in Figure 2.4).

5. Improve the problem detection technologies

Application of problem detection technologies improves the failure recovery property
of the network ((11) in Figure 2.4). If individual problem detection for each service
is achieved, immediate problem detection for each service is possible, and the avail-
ability of each service is improved. The improvement and application of problem
detection technologies are outside of the scope of this dissertation, and are given here
as a future prospect.

6. Apply service protection technologies

Finally, service protection technologies directly contribute to the communication net-
work to protect services ((12) in Figure 2.4), thus enabling achievement of mission
critical services. The application of service protection technologies are outside of the
scope of this dissertation, and is given here as a future prospect.

In the step 4 in the strategy, the minimal functions for the highly available Internet
are achieved. Enforcing the rest of the strategy implements the Internet that has higher
availability, to the direction of Dependable Internet.

2.9 Summary

In the current Internet, practical availability of the network considering many network el-
ements, in particular, routing systems, has not been studied. The notion of network avail-
ability is described in Section 2.2. Then the highly available Internet is defined in Section 2.1
and the goal of this dissertation is defined to provide the minimal function to implement
it, in Section 2.5. Next, a basic approach, a perspective, and a strategy toward the highly
available Internet are given in Section 2.6, 2.7, and 2.8, respectively.

In summary, in order to construct the highly available Internet, the first step is to be able
to control the network availability. The minimal functions that are deficient in the current
Internet to control the network availability are:

• A method to calculate practical network availability,

• A method to improve stability of distributed systems,

• A method to recover from any possible problems, and

• Amethod to execute traffic engineering in conjunction with capability to recover from
problems.

CHAPTER 2. HIGHLY AVAILABLE INTERNET 25

These are addressed in turn in the following chapters.

Chapter 3

The Current Internet Routing

This chapter gives the description of the current internet routing as background. Descrip-
tions include the Internet topology, the types of routing systems, the operation of the net-
works and the routing systems, the current trends in network statistics, and the emerging
research technologies that have not yet been deployed.

3.1 The Internet Topology

The Internet is a union of networks where each network is autonomously and independently
administered. Routing in the Internet is divided into two levels, above and below what
is known as an Autonomous System (AS, sometimes referred to as routing domain); the
routing internal to an AS is called intra-domain routing, and the routing external to an AS
(in other words, the routing between ASes) is called inter-domain routing.

An AS was classically defined to be a network managed under a single administration
using a single intra-domain routing protocol [82]. Today an AS may utilize multiple routing
protocols and metrics, and an AS may even represent multiple organizations. An AS should
now be regarded as just a unit of global routing with a single consistent routing policy [13].
A typical AS is administered by a single organization. An organization maymanage multiple
ASes, for example to improve scalability or to decrease the management cost to unite two
networks. Internet Service Providers (ISPs) usually manages one or more ASes. Unless
otherwise explicitly noted, the term “AS”, “ISP”, and “domain” are used interchangeably in
this dissertation.

Figure 3.1 illustrates the notion of ASes. Intra-domain routing is the routing of router-
level network (lower right in the figure), and inter-domain routing is the routing of AS-level
network (upper left in the figure). The division of the Internet into ASes is to provide
scalability of the Internet routing, because no single routing system can support flat routing
(router level routing) on the entire Internet. Dividing the routing domain by AS boundary

26

CHAPTER 3. THE CURRENT INTERNET ROUTING 27

IX
AS

AS

AS

AS

AS

AS

AS

Router

AS

Figure 3.1: The hierarchical routing structure of autonomous systems (ASes).

also achieves locality; the routing changes inside an AS can be hidden from outside of the
AS.

Around 1995, the inter-domain topology (i.e., the AS-level network graph) of the In-
ternet was analyzed [34]. It was found that despite the growth, the diameter and degree
distribution in the inter-domain topology had remained relatively constant. A new address
prefix appeared every 25 minutes, a new domain (i.e., a new AS) every 12 hours, and a new
inter-domain links every 8 hours. The diameter in AS units seemed relatively constant, 9 in
1994 and 10 in 1995. The growth in approximate number of ASes and IP prefixes are given
in Table 3.1.

Table 3.1: Growth in number of ASes and IP prefixes.

Year/Month approx. #ASes approx. #IP Prefixes Reference

1995/12 900 31,000 Govindan, et. al [34]
2008/01 27,000 250,000 CIDR Report [38]

As for the intra-domain topology (i.e., the network topology inside an AS), the Rocket-
fuel project [92] proposes a method to infer the network topology from outside the network.
The project also publicly released the ISP network maps inferred by their method. The sizes
of the biggest networks inferred by the project are shown in Table 3.2.

There have been efforts to derive appropriate models for the Internet’s network topology.

CHAPTER 3. THE CURRENT INTERNET ROUTING 28

Table 3.2: Number of routers and links in Splintlink, Verio, and AT&T. “BB” refers to back-
bone.

Name ASN #Routers #Links #BB routers #BB Links

Sprintlink 1239 8,280 9,022 471 1,337
Verio 2914 7,284 6,490 862 1,941
AT&T 7018 9,968 10,138 487 1,067

Faloutsos et al. [29] reported the relationship between the number of nodes per out-degree
and the out-degree obeyed power-law distribution in both inter-domain and intra-domain
topology. Li et al. [53] argued that significant number of types of graph could exist within
the power-law distribution, and proposed a intra-domain network model considering router
performance.

An AS typically consists of a collection of Points of Presence (PoP). A PoP is a physical
location where the ISP houses routers to relay connections from cities to cities. There are
two classes of routers in every PoP, backbone and access routers. Backbone routers typically
connect to other backbone routers in other PoPs. Sometimes backbone routers are also called
core routers. Access routers connect customer networks to the backbone routers in the ISP.

As of 2004, Sprint’s PoPs connected via high-speed OC-48c (2.5 Gb/s) and OC-192c
(10 Gb/s) links [39]. In Sprint PoPs, each access router was connected to at least two back-
bone routers, and all backbone routers were connected in a full-mesh topology to provide
redundancy. For similar reasons, all Sprint PoPs were connected to at least two other PoPs.
Furthermore, two adjacent PoPs had multiple parallel links connecting them, with each link
terminating on a different router within the same PoP. This construction of the network en-
sured that there was always at least one alternative path, unless multiple failures occurred
simultaneously.

3.2 Intra-domain Routing Protocols

The class of routing protocols used for intra-domain routing is called Interior Gateway Pro-
tocol or IGP. Typical IGPs calculate the shortest path routes depending on routing metrics
configured on network links.

3.2.1 RIP

Routing Information Protocol (RIP) [54] is the classic and the simplest IGP. Routers run-
ning RIP collectively execute the Bellman-Ford algorithm in a distributed way (hence it is

CHAPTER 3. THE CURRENT INTERNET ROUTING 29

said that RIP executes distributed computation). The distributed execution of Bellman-Ford
algorithm involves transmission of all known routing metrics (called distances) to the des-
tination between RIP routers. Because RIP routers transmit a vector of distances in each
routing message, it is also called a distance-vector routing algorithm.

RIP only considers the distances to the destination. For a certain destination, two ad-
jacent RIP routers inform each other of their distance to the destination. If the distances
are different, the router with the longer distance will redirect its route to the destination to
the router with the shorter distance. Because RIP routers compare only the distance to the
destination and do not consider the path to the destination, RIP suffers from routing loops
and convergence problems; sometimes RIP converges very slowly or, in a very rare case,
never converges, with routing loops in the network. In order to speed up the convergence
of RIP, techniques called split horizon, triggered update, and poisonous reverse were intro-
duced [37]. When RIP does not converge, it increments the distance to the destination in
each steps of the protocol execution. Theoretically it will never stop incrementing, and the
problem is called counting to infinity. In order to stop the counting to infinity practically,
RIP protocol specifies that the distance is limited to 15. When the distance of a route reached
16, the route is marked as unreachable and the route is deleted. Then the calculation of the
route to the destination is restarted from scratch. The fact that the distance is limited up to
15 turns out to limit the application of RIP to only small networks, where the diameter is less
than 16 hops. Improving the distance-vector algorithm of RIP to avoid counting to infinity
has been proposed [88], but it complicates the RIP protocol specification significantly, and
have never been deployed.

3.2.2 OSPF and IS-IS

Another type of routing protocols, called Link-state routing protocols, are used to avoid
RIP’s problems in the current Internet. A link-state routing protocol distributes a complete
network map among all routers, so it is classified as distributed database [58], compared
to distance-vector’s distributed computation. Open Shortest Path First (OSPF) [59] and In-
termediate System to Intermediate System (IS-IS) [1] are representative link-state routing
protocols. Link-state routers synchronize the map of the entire network and each router
calculates routes to all destination in the network independently. The algorithm used to
calculate routes from the network map is Dijkstra’s algorithm [23], also known as Shortest
Path First (SPF) algorithm.

The difference between OSPF and IS-IS is controversial. They are essentially the same
because both are link-state routing protocols, using distributed database and Dijkstra’s SPF
algorithm. Three major differences are described below.

First, IS-IS was originally developed for ISO’s OSI communication protocol stack, not for

CHAPTER 3. THE CURRENT INTERNET ROUTING 30

IP. IS-IS can calculate the routes for both OSI and IP at the same time using the OSI protocol
stack. OSPF was developed for IP and cannot calculate routes for OSI. However, sometimes
it is not desired to calculate IP routes using the OSI protocol stack, because even if only
an OSI protocol module fails in the network, IP routes are also affected and changed. The
method to calculate routes independently, i.e., IP routes are calculated by IP routing protocol
and OSI routes are calculated by OSI routing protocol, is sometimes preferred, and coined
the term “Ships in the Night” (meaning that ships decide its direction by itself autonomously
in the night).

Second, IS-IS ages routing information by decrementing the lifetime, while OSPF does
by incrementing the age and limiting the upper age for routing information to survive. OSPF
specifies that all routing information should be updated every 30 minutes, and to remove the
routing information that is not updated for 1 hour. In contrast, IS-IS allows the originator
of the routing information to decide when to update and when to remove. This flexibility
influences the scalability of the routing system in that the bandwidth and the CPU time
consumed in OSPF to process the distributed database grow linearly with the size of the
network, while that of IS-IS can be controlled. For this reason, some major ISPs in United
States of America deploy IS-IS.

Third, OSPF ensures that the routing database is synchronized with the adjacent router
before advertising the link to the adjacent router as an routing information. IS-IS does not
check the synchronization and just advertises the link. Hence IS-IS is said to be simpler, and
OSPF is said to be complex and smarter.

All of the current routing protocols do shortest path routing. Both OSPF and IS-IS ex-
ecute the SPF algorithm, and hence are shortest path routing. “Shortness” is decided by
summation of all intermediate links’ costs in the network path. The shortest path routing
allows multiple shortest paths. In link-state routing protocols like OSPF and IS-IS, multiple
shortest paths are commonly calculated, and are known as Equal Cost Multi-Paths (ECMPs).
However, the number of cases where the multiple shortest paths can be calculated is rela-
tively limited. Hence in practice the shortest path routing is basically a single path routing.

3.2.3 EIGRP

Enhanced Interior Gateway Routing Protocol (EIGRP) is another routing protocol that is
actually deployed. EIGRP is a distance-vector protocol with some enhancements:

1. it implements Diffusing Update ALgorithm (DUAL) to avoid routing loops, even a
transient one in routing changes,

2. it handles the composed metric: the routing metric is composed of figures of Band-
width, Delay, Reliability, Load, and MTU, and

CHAPTER 3. THE CURRENT INTERNET ROUTING 31

3. it is a proprietary routing protocol of Cisco Systems, Inc. and the protocol specification
is not publicly available.

EIGRP is a single path routing protocol. Because EIGRP is proprietary, OSPF and IS-IS are
more commonly used in the Internet.

3.3 Inter-domain Routing and BGP

The AS-level global Internet routing is called Inter-domain Routing. The class of routing
protocols used for the inter-domain routing is called Exterior Gateway Protocols or EGP.
Currently the only deployed routing protocol used for EGP is Border Gateway Protocol
version 4 (BGP-4) [82]. A router running BGP is called a “BGP speaker”.

BGP utilizes a variant of the distance-vector routing algorithm, which is called the path-
vector routing algorithm. Path-vector routing algorithm exchanges vectors of AS-level
paths, or lists of ASes, instead of distances. The path-vector routing algorithm and BGP
have following advantages:

1. As route information includes a list of ASes that the routing information has prop-
agated through, routing loops in AS-level are immediately found and rejected. This
means that it is not necessary to count to infinity in order to avoid routing loops.

2. Arbitrary routing policy can be implemented by filtering routes for arbitrary reason.
In contrast to a link-state routing protocol that requires synchronization of distributed
databases, the distance-vector algorithm and its variants allow arbitrary filtering of
routes. In a distance-vector routing algorithm family, the data traffic is routed along
the path on which the routing information flows, in the opposite direction. Filtering
routing information about a path only results in data traffic not being routed on the
path. Utilizing this route filtering, BGP can, and indeed does, enforce the routing
policy.

BGP may not be running on all routers in the domain, and BGP uses TCP to deliver BGP
routing information to other BGP speakers inside the AS. This means that the intra-domain
routing has to be implemented properly so that the BGP speakers can communicate each
other via TCP.

To maintain the consistency regarding inter-domain routing within the entire AS, all
BGP speakers in the AS must synchronize the routing information. Hence BGP handles
two types of session. One is called internal BGP (iBGP) and is established inside the AS.
The other is called external BGP (eBGP) and is established between ASes. iBGP is used to
synchronize the routing view with the other BGP speakers in the same AS. eBGP is used to
exchange routing information with other ASes.

CHAPTER 3. THE CURRENT INTERNET ROUTING 32

Griffin et al. [35] discovered that conflicts on routing policies can keep entire inter-
domain routing from convergence. The conflicts on routing policies are identified as “dispute
wheel”, and they showed that whether inter-domain routing converges depends on the ex-
istence of the dispute wheel.

Sobrinho [91] showed that the path-vector routing requires “monotonicity” in its routing
metric function to converge to a local optimal path.

BGP specifies that each BGP speaker must decide a best path among the path candidates
before advertising the route to other BGP speakers. Hence BGP is a single path routing.

3.4 Network Failures

Labovitz et al. [50, 49] studied network failures in an ISP using the monitoring logs of a net-
work management station and the routing protocol events, from November 1997 to Novem-
ber 1998. The study showed that approximately 20% of the router interface failures last
longer than two hours.

Iannaccone et al. studied network failures in Sprint by investigating the IS-IS routing
protocol event from December 2001 to April 2002 [40], and from April to August 2002 [39].
Latter reported that most failures were short-lived (called transient failures, meaning that
the duration was less than 10 minutes) but 10% of the failures lasted longer than 45 minutes
(called longer failures). About 70% of the transient failures were isolated failures, but less
than 30% of longer failures were isolated, meaning that longer failures typically involves
multiple simultaneous failures. Markopoulou et al. [56] did similar investigation with char-
acterization of network failures from April to October 2002 in Sprint, and have found similar
results.

Nippon Telegraph and Telephone East (NTT-East) experienced a major outage that
lasted about 6 hours in 15th-16th May 2007 [26, 66]. During the outage, services on a
part of their Asymmetric Digital Subscriber Line (ADSL) and Fiber To The Home (FTTH),
as well as IP phone service including emergency phone calls, could not be established.

These indicate following facts.

1. Failures do occur.

2. Some failures last for a long time such as hours.

3. Sometimes multiple failures occur simultaneously.

4. The failures can disrupt the communication environment badly.

CHAPTER 3. THE CURRENT INTERNET ROUTING 33

3.5 Failure Recovery Methods

There are two failure recovery techniques; Protection and Restoration.
Protection proactively prepares against a certain failure by provisioning a backup com-

munication path using circuit technologies such as MPLS. Because MPLS’s Label Switched
Paths (LSPs) can provide Quality of Service (QoS) guarantee such as available bandwidth
and estimated delays by pinning the LSP to a certain path, protection is believed to be able to
provide reliable and guaranteed service. When primary path fails, the communication path
is switched over to the backup path. There are a number of types in protection depending
on how to prepare the backup path. The preparing of a backup path that spans only a part
of primary path is called local repair. Allowing a backup path to reserve the bandwidth is
not efficient, because bandwidth of all backup paths settled in the network remain unused.
Hence sharing bandwidth between backup paths is considered, and called “1 : N” method
compared to original “1 : 1” method [55].

Protection only defends against a set of predicted failures. If multiple failures occur and
both primary and backup path fails, the protection technique does not provide recovery even
when there are other viable alternative paths. Note that simultaneous multiple failures do
occur (See Section 3.4).

Restoration is a classical method of rerouting via recalculating the routes by routing
protocols. Since it is a reactive technique where the path is calculated after the occurrence
of failure, rerouting by routing protocols are typically slow, in the order from a few tens of
seconds to a few minutes.

Protection usually utilize a hardware mechanism (SONET/SDH alarm) to detect fail-
ures, so it can recover in a few tens of milliseconds, which is very quick. However, because
protection requires preparation of backup paths for each primary path, it takes more admin-
istrative cost compared to restoration [85]. While restoration recovers slowly such as a few
tens of seconds, it takes less administrative cost because it provides an alternative path using
existing facilities.

3.6 Network Administration

Some aspects of Sprint’s network design have been made public [39]. Due to the difficulty
of installing protection paths with sufficient diversity, Sprint opted for IP-level Restoration
technique using IP routing protocols, rather than protection scheme. It indicates that the
following two things;

1. The protection scheme is sometimes difficult to deploy, especially in a larger network
such as Sprint.

CHAPTER 3. THE CURRENT INTERNET ROUTING 34

2. Improving the routing protocol is important because the networks heavily depend on
it.

ISPs typically have two requirements on network administration.

1. Enough space capacity (link bandwidth) should be available, even in the event of
failures.

2. Service Level Agreements (SLAs) must be satisfied. SLAs define performance guar-
antees that the ISPs offer their customers. Typical SLAs are upper bound of allowed
packet loss rate and communication delays.

In order to achieve these requirements, the network administrators in Sprint maintain
the 5 min average utilization of any link under 50%. When it grows over 50%, the link is
upgraded to have sufficient bandwidth. By keeping the link utilization below 50%, conges-
tions are avoided and SLAs are easily achieved.

3.7 Traffic Engineering

Congestion induces excessive amounts of communication delay and packet loss, and hence
must be avoided. Manipulating traffic to maintain link utilization in order to avoid conges-
tion is called Traffic Engineering (TE).

Traffic engineering requires preliminary measurement and prediction of traffic demands,
generally as a traffic matrix. However, accurate prediction of traffic matrix is difficult be-
cause traffic is hard to predict and changes dynamically. If there are errors in the traffic
matrix, the network optimality decreases drastically [6].

There are two methods to execute traffic engineering. One is to optimize a routing
metric [30, 31]. The other is to use circuit-based approach using MPLS [9, 10, 108, 16].

3.7.1 Routing Metric Optimization

Since optimizing the routing weight configuration for a given set of demands is NP-hard, a
number of heuristic approaches are given to gain near-optimal routing configuration [30, 31,
93]. However, they are not known to perform well on arbitrary network graphs.

Although it is not classified usually as a traffic engineering technique, a traffic-aware dy-
namic routing algorithm that performs metric optimization while running is proposed [12].
It defines a special type of routing metric, and changes the routing metric according to the
traffic state, and demonstrated a good congestion avoidance property.

CHAPTER 3. THE CURRENT INTERNET ROUTING 35

3.7.2 Circuit-based Traffic Engineering

In circuit-based traffic engineering, there are some types of method to perform traffic engi-
neering.

First is the method which uses the MPLS Label Switched Paths (LSPs) in a static way,
with settings of typically huge number of full meshed LSPs [108]. MPLS LSP is useful
because it can be routed arbitrary in the network manually, and because traffic measurement
is easily derived from the LSP’s statistics. Static method, of course, does not adapt to the
traffic.

Second is the dynamic methods, which moves traffic from LSP to LSP [28, 47], typically
without knowing the traffic demands in advance.

Both types utilize the LSPs set in advance, and hence the administrative burden of huge
LSPs is a demerit.

Another method is called Constrained Based Routing (CBR) [21], in which a computation
server calculates a network path and establishes an LSP to respond a flow request. It can
support consideration of bandwidth constraints of LSPs or the network links. However,
the CBR technique is not efficient in terms of optimization of the network utilization. A
problem called the unsplittable Multi-Commodity Flow (MCF) problem, which is equivalent
to the optimization problem in the CBR technology, is known to be NP-complete [17]. The
unsplittable MCF problem is a problem of routing of traffic flows on a single arbitrary path in
the network graph without splitting, in the order received, while minimizing the maximum
relative load imposed on network links.

Chapter 4

SimRouting: A Tool for Availability
Calculation and Routing Evaluation

4.1 Overview

Since Internet communication is used for many purposes in modern day-to-day life, the
importance of the availability of the Internet is increasing. Investigation of the availability
of the Internet is the first step toward the implementation of the highly available Internet.
However, little has been studied for the availability of the Internet practically, and more
generally, for the practical availability of communication networks. Specifically, reliability
calculation tools that consider routes calculated in the network does not exist, to the best of
our knowledge. We know only the availability of the past Internet by statistical methods,
and we do not know the availability of the current and near-future Internet. It is imperative
to investigate how to determine the availability of the Internet.

Since the Internet is too large and heterogeneous to discuss its availability as a single
system, as the first step, we focus on some of the Internet’s constituent networks. Hereafter
the term “network” indicates an intra-domain network.

It is necessary to understand the current network availability as the first step to improve
the availability of the network. Further, it is desired to predict how much the availability
will increase after some changes (such as changes in routing methods and routing metrics)
are made in the network. This enables improvement of the network availability effectively.

The investigation of network availability includes understanding of the failure recovery
property and the performance level of the network. Since the reachability is the primary
specification of the network, whether the network is able to recover from a failure or not,
and the probability of recovery, indicate the network availability. The performance level
of the network, such as the existence of congestion that degrade throughput and increase
communication delay and packet loss rate, is another measure.

36

CHAPTER 4. SIMROUTING 37

Thus, in order to discuss the availability of the network, the necessary functions are the
ability to calculate system availability of the network, the ability to obtain the overview of
the current network, and the ability to predict the network state after changes of the network
and its parameters.

Since current network simulation tools lack the necessary functions, a new simulation
tool called SimRouting is developed in this chapter. The specific functions required to obtain
network availability and network state for each current and modified network, are 1) to
construct various networks in the simulation easily, 2) to modify the network variables
easily, 3) to investigate the resulting link utilization as the network state, and 4) to calculate
the network availability.

In particular, an applied routing method must be considered both to calculate network
availability and to obtain the network state. The routing method is really important when
we discuss the availability of the network and communications performed on it, because the
routing method decides the failure recovery property and the performance of the communi-
cations. However, current simulation tools do not satisfy the required ability to investigate
the availability and network state related to the routing method.

Further, to improve the network availability, the routing method must be improved. To
improve the Internet routing, the evaluation of routing methods is the first step. However,
evaluation of routing is a challenging task since it involves many variables such as network
graphs, capacity of links, routing metric configurations, and traffic demands. No tool existed
for the purpose to evaluate various routing methods, which considers the variation in these
variables.

SimRouting, described in this chapter, helps users to investigate the state of the network
in various combinations of network graphs, link capacities, routing methods, routing met-
rics, and traffic demands. In SimRouting, traffic loads in network links and the availability
can be easily calculated for the applied routing method. It is expected that SimRouting con-
tributes to obtaining the overview of the network and its state, indicating the insufficient
part of the network that should be improved, predicting the network state after network
changes, and evaluation of routing methods. Thus, this chapter contributes to improving
the availability of the Internet by providing the SimRouting tool.

Organization of this chapter is as follows. Section 4.2 revisits the desired property of a
new simulation tool. Section 4.3 describes the required feature for the new simulation tool.
Section 4.4 discusses the other simulation tools as the related works. Section 4.5 describes the
design and implementation of the SimRouting. Section 4.6 shows the sample usage of Sim-
Routing to calculate network availability. Section 4.8 evaluates the SimRouting. Section 4.9
gives concluding summary of this chapter.

CHAPTER 4. SIMROUTING 38

4.2 Need for Routing Simulation

Since the routing system applied in the network determines the network path that each
traffic traverses, performance and availability of communication, and the entire network
state in terms of link utilization and congestion, depend on the method of the routing system.
Hence, in order to investigate the network state and the availability, it is critical to consider
the routing method. However, current simulation tools do not provide satisfactory attention
to routing method, for example, there is no way to investigate the network availability
on the routing sub-graphs. Providing an easy way to construct a new routing method in
the simulation and to evaluate the routing method are other desired, but yet not provided,
functions.

Calculating the system reliability as summarized in Appendix A is another required
feature for the communication network. Availability investigation by system reliability
calculation on the network graph indicates the degree of robustness of the network as a
whole. Additionally, calculating the availability on the routing sub-graphs provides the
simple and plausible practical availability of network communication. Hence, calculating
the system reliability is a required feature for our simulator.

Ease of handling of many network variables is another desired feature in simulations.
Evaluating routing methods is required to employ better routing method in the Internet,
and thus to improve the availability of the Internet. However, evaluating routing methods
is a difficult task, because many network variables are related. These many network vari-
ables include the network graph structure, the setting of the routing metric, properties of
the applied routing algorithm, capacities of each network link, and the demands of network
traffic. It is not trivial to determine whether the routing method is good or bad even when
the routing method exhibits good performance on a particular network configuration. Cer-
tain routing systems may work well on particular network graph structures and network
traffic models. For example, suppose that a routing system RA runs better than a routing
system RB on a network graph structure G1. It is not uncommon that on the other network
graph structure G2, the relation between the routing system RA and RB changes, i.e., RB

runs better than RA. To evaluate routing systems with considerations to their preferences
on network topologies and traffic models, many combination of topology and traffic model
must be tested and compared. Generally, simulations on many combinations of topology
and traffic model involve an immense amount of time and effort, hence are difficult. A tool
that minimizes that burden is valuable.

In particular, the ability to import network graph structures from other tools such as
BRITE [57] and Rocketfuel [92] is desired. Importing the real network graph structure from
OSPF’s LSDB via SNMP helps to calculate the availability of a network that closely reflects
the real world.

CHAPTER 4. SIMROUTING 39

Finally, defining traffic demands, and calculations of the traffic loads on the network
links are necessary to investigate the network state. Providing a sufficiently redundant
network graph and a good routing method may not be sufficient, depending on the traffic
demands. The traffic loads on the network links must be calculated to check whether there
is a congested link that degrades the network performance significantly.

These desired features for the simulation tool are summarized as requirements in the
next section.

4.3 Requirements for the Simulation Tool

The simulation tool necessary for investigating and improving the network availability re-
quires the following features.

1. Ability to import a network graph structure from various tools.

To evaluate a routing algorithm, it is necessary to investigate the characteristics and
tendency of the algorithm on various network graphs. To study the applicability on
the real network topology, it is necessary to investigate the network status on the
major ISP’s network topologies inferred by Rocketfuel, and on the real network topol-
ogy retrieved by SNMP access to the router’s OSPF LSDB. This ability to construct a
graph automatically or to import from other tools is referred to as Graph Definition
hereafter.

2. Ability to define and maintain network variables independently.

To compare routing systems, it is necessary to change only one network variable and
to compare the network status. For example, changing only the traffic demands while
leaving other network variables unchanged is necessary to evaluate routing systems
in various traffic demands. For another example, routing systems must be compared
with different routing metrics, without changing other network variables such as net-
work topology and traffic demands, to compare the best routing metric settings for
each routing method. To achieve this, the network variables such as the network
graph structure, the routing metric settings, the routes calculated by the routing al-
gorithms, and the traffic demand matrix must be defined, maintained, and modified
independently and separately. The combinations of these network variables produce
various network states. In the various network states, how the routing systems be-
have needs to be observed. This ability to maintain network variables independently
is referred to as Independent Vars hereafter.

3. Ability to construct a new routing method easily

CHAPTER 4. SIMROUTING 40

In researching routing methods, a new routing algorithm needs to be constructed and
evaluated in a simulation tool. In order to provide a way to construct it easily, a
well-known programming language is preferred rather than the newly defined, ob-
scure, languages. Also, the graph structures need to be accessed easily, and inclusion
of the new routing method into the simulation tool is desired to be simple. This abil-
ity to construct a new routing method easily is referred to as Develop New Routing
hereafter.

4. Ability to calculate system reliability for the network graphs

Calculating the system reliability for a network graph is desired to evaluate the net-
work graph. This also helps to determine whether adding a certain network link is
good or not, thus contributing to the network planning activity. Also, calculating the
system reliability on the routing sub-graph indicates simple practical network avail-
ability, as described in the next item. This ability to calculate system reliability is
referred to as Availability Calc hereafter.

5. Ability to calculate routes and the routing sub-graph

Calculating the routes using a routing method is necessary to evaluate the routing
method later in terms of network loads and existence of congestion. Handling of
routing sub-graphs as a network graph enables the calculation of practical availability,
and the comparison of the resulting availability of applied routing method with the
availability on the base network graph. This comparison helps the evaluation of the
routing method. This ability to calculate and investigate on routing sub-graphs is
referred to as Routing Sub-graph hereafter.

6. Ability to define traffic demands and to calculate network loads

Various traffic demands needs to be defined and modified easily to investigate the
preference and compatibility with the network graph and the routing methods. After
loading the traffic demands along the route in the simulated network, the resulting
network state must be checked for each link’s utilization and the existence of con-
gestion by calculation of network loads. This ability to define traffic demands and to
calculate network loads is referred to as Traffic Demands & Loads hereafter.

4.4 Existing Simulation Tools

• Network Simulator (NS) [65] is a famous network simulator targeted at network re-
search. Various TCP algorithms, queues, moves of nodes, and radio propagation mod-
els are supported. NS is written in C++, and employs Tcl scripts to describe the simu-
lation scenario. Graph Definition in NS is relatively manual in that users should write

CHAPTER 4. SIMROUTING 41

Tcl script, although users can create an arbitrary graph construction algorithm in Tcl.
Some graph generation tools support NS, for example BRITE supports an output for-
mat to be included in NS. Independent Vars is supported in the sense that users can
write separate Tcl scripts for each network variables. Develop New Routing in NS
is hard because users must understand some abstract notions in NS, such as Agent
and rtProto, and because Tcl interface must be provided in C++ program codes to
be included in the simulation. Availability Calc and Routing Sub-graph are not sup-
ported. Traffic Demands & Loads is supported by placing traffic agents on nodes and
observing the queues in the nodes.

• GloMoSim [110] is a discrete-event simulation tool targeted mainly at wireless net-
works. It supports mobility models, radio models, and many Mobile Adhoc NET-
work (MANET) routing protocols [42], in a layered fashion. It is based on a C-based
discrete-event simulation language, named Parallel Simulation Environment for Com-
plex Systems (PARSEC) [102]. Since GloMoSim targets wireless networks, GloMoSim
handles the topology as spaces, rather than graphs. Although Graph Definition can
be automatically generated by inherent algorithms, importing from other tools is not
supported. Independent Vars is supported in the sense that users can write separate
configuration files for each network variable. Develop New Routing in GloMoSim is
relatively easy since users must only write a single C module and hook send/recv
functions on the global GloMoSim. However, due to the layered structure and space
division approach of GloMoSim, access to the global topology seems not to be possible.
Thus, routing algorithms that are not defined as distributed protocols are not easily
developed in GloMoSim. Hence, Develop New Routing in GloMoSim is attributed to
be hard. Availability Calc and Routing Sub-graph are not supported. Traffic Demands
& Loads is supported in the sense that users must place many application entities in
the network to define traffic demands.

• QualNet [87] is a commercial derivative of GloMoSim. It is written in C++, and sup-
ports many advanced features such as wired networks, real-time simulation, multi-
threading, animation, and scalability of supporting 3500 nodes. QualNet has the
ability to gather the network topology information from real networks via SNMP.
QualNet enhances many features to simulate or even emulate the real networks, and
has the ability to cooperate with a battle simulator called OneSAF∗ Testbed Base-
line (OTB) [70] and with a software for the Aerospace Industry called Satellite Tool
Kit (STK) [4]. However, except for the SNMP support, evaluations on the required
features remain the same with GloMoSim.

∗One Semi Automated Force (US Army Computer Generated Forces)

CHAPTER 4. SIMROUTING 42

• OPNET [71] was developed at MIT, and released as the first commercial network sim-
ulator in 1987. OPNET supports most network protocols such as OSPF and MANET
routing protocols. OPNET can import network models from commercial network
management tools, such as CiscoWorks and HP OpenView. Evaluations of OPNET
on the required features are similar to that of QualNet.

• OmNet++ [69] is a discrete event simulation environment written in C++. It uses the
newly defined language, called NED, to organize the simulation. Although Graph
Definition in OmNet++ must be done manually either by a text file or graphically,
BRITE can export a graph file that OmNet++ can read. Independent Vars is not sup-
ported in OmNet++. Develop New Routing is similar to GloMoSim, in that construc-
tion of new module is easy (write C++ module and register it by Define_Module()
macro), but constructing an routing method without distributed protocol specification
is difficult, due to lack of easy way to access global topology. Availability Calc and
Routing Sub-graph are not supported, Traffic Demands & Loads is supported.

• Georgia Tech Network Simulator (GTNetS) [60] is a network simulation environment
for researchers. GTNetS is a set of C++ objects, and the simulation scenario is written
in the C++’s main() function. Graph Definition in GTNetS is basically manual, but
it supports importing from BRITE. Independent Vars is not supported. Develop New
Routing is easy in that users can write arbitral C++ program code with easy access
to the global topology. Availability Calc and Routing Sub-graph are not supported.
Traffic Demands & Loads is supported.

In summary, all the existing simulators target simulating a real network state such as
available bandwidth and packet loss rate, in a timed system. Their features are mainly
focused on showing TCP performance and a detailed network protocol operations. Their
purposes are not for the comparison and evaluation of routing systems on various network
topologies, and hence they are not good at the task. This leads to a motivation of developing
a new routing simulation tool, SimRouting.

The comparison of simulation tools in supported features is summarized later in Sec-
tion 4.8.2 along with the evaluation of SimRouting.

4.5 Design and Implementation of SimRouting

This section describes a routing simulation tool, SimRouting, developed in this research.
The notion of network variables in SimRouting is illustrated in Figure 4.1. Each network
variables, such as Network Graph Definition, Routing Metric Definition, Routing Algorithm,
Routes, Traffic Definition, Network State, are handled separately, from the command line

CHAPTER 4. SIMROUTING 43

interface module at the top of the figure. Supported commands and instructions for each
network variable are described in the following sections.

Command Line Interface

Routing Metric
Definition

Network Graph
Definition

Network Graph
Definition

Routing
Algorithm

Routes Routes

Routing Metric
Definition

Network Graph
Definition

Traffic Definition

Check Routes

Routes

Routing Metric
Definition

Network Graph
Definition

Traffic Definition

Check Network Utilization
for Links

Routing
Algorithm

Routing
Algorithm

Comparison

Illustrate
Graphviz BRITE ROCKETFUEL SNMP/OSPF

User

Network StateNetwork State

Command Line Interface

Routing Metric
Definition

Network Graph
Definition

Network Graph
Definition

Routing
Algorithm

Routes Routes

Routing Metric
Definition

Network Graph
Definition

Traffic Definition

Check RoutesCheck Routes

Routes

Routing Metric
Definition

Network Graph
Definition

Traffic Definition

Check Network Utilization
for Links

Check Network Utilization
for Links

Routing
Algorithm

Routing
Algorithm

ComparisonComparison

Illustrate
Graphviz

IllustrateIllustrate
Graphviz BRITE ROCKETFUEL SNMP/OSPFBRITE ROCKETFUEL SNMP/OSPF

UserUser

Network StateNetwork State

Figure 4.1: SimRouting architecture.

4.5.1 Command Line Invocation and Scenario Files

The users instruct simulation steps and network status check, through the command line
interface at the top of Figure 4.1. Also, a scenario file is read as a line-oriented list of
simulation commands by the command line interface module. Figure 4.2 illustrates the
SimRouting interactive shell. <cr> and <?> are typed characters. Figure 4.3 illustrates the
invocation with scenario files as arguments. Command line option -i specifies the run in
interactive mode after execution of scenarios.

4.5.2 Network Graph Definition

Definitions of network graph can be achieved by importing from other tools such as BRITE,
Rocketfuel, and SNMP [36], as well as by manual definition of each nodes and links. Fig-
ure 4.4 shows the scenario file to import graph 100, 200, 300, and 400 from BRITE, Rock-
etfuel maps file, Rocketfuel weights file, and OSPF’s LSDB via SNMP, respectively, and

CHAPTER 4. SIMROUTING 44

% ./simrouting<cr>

<cr>

simrouting> <?>

logout logout

routing enter routing node

weight enter weight node

write write information

traffic enter traffic node

group group specify command

network enter network node

enable enable features

save save information

disable disable features

load load configuration file

show display information

quit quit

exit exit

graph enter graph node

simrouting>

Figure 4.2: SimRouting interactive shell.

% ./simrouting <scenario-file1> <scenario-file2> ... >& <logfile>
or

% ./simrouting -i <scenario-file1> <scenario-file2> ...
...

simrouting>

simrouting> (can execute subsequent commands.)

Figure 4.3: SimRouting command-line invocation.

CHAPTER 4. SIMROUTING 45

outputs the each of graph structure (nodes and its neighbors printed as text) to standard
output.

graph 100

import brite etc/topology/RTBarabasi20UNI.brite

show graph structure

exit

graph 200

import rocketfuel maps ../rocketfuel/rocketfuel_maps_cch/1221.cch

show graph structure

exit

graph 300

import rocketfuel weights ../rocketfuel/weights-dist/1221/weights.intra

show graph structure

exit

graph 400

import ospf localhost public 0.0.0.0

show graph structure

exit

Figure 4.4: SimRouting graph importation.

SimRouting also allows generation of routing sub-graph by importing from the routes
for a specified destination. It is described later in Section 4.5.4.

The defined graph can be exported as the DOT language file of GraphViz [27]. An
example of importing from OSPF’s LSDB and exporting to a GraphViz’s DOT file with the
output file name “tmp/wide-ospf-net-DATE-TIME.dot” is given in Figure 4.5.

4.5.3 Routing Metric Definition

Based on the definition of the network graph, routing metrics can be set and stored sep-
arately from the network graph definition. Note that not all routing algorithms require
a definition of routing metrics. Routing Metric Definition can be set by one of following
ways.

1. To set all link’s routing metric as 1 (called minimum-hop).

CHAPTER 4. SIMROUTING 46

graph 400

import ospf localhost public 0.0.0.0

export graphviz tmp/wide-ospf-net-%Y%m%d-%H%M%S.dot

show graph structure

exit

Figure 4.5: SimRouting exportation to GraphViz.

2. To set the routing metric for a link inversely proportional to the link’s bandwidth
(called inverse-capacity).

3. To set all link’s routing metric manually.

Definition of routing metrics requires definition of network graphs in advance. In the
case of inverse-capacity, capacities must also be included in the graph definition. For ex-
ample, BRITE generates link capacities on generating a graph. Examples of definition of
routing metrics (only the part regarding routing metrics) are shown in Figure 4.6.

4.5.4 Routing Algorithm and Routes

By specifying a routing algorithm, SimRouting constructs routes on a network graph. The
routes are then used to generate routing sub-graphs, or to route the traffic on the network
later in Section 4.5.6. SimRouting currently supports the following routing algorithms.

1. Dijkstra’s shortest path calculation [23]

2. Multipath route calculation of Deflection’s (See Section 7.3 in Chapter 7)

3. MARA-MC that is proposed and described in this work (See Chapter 6)

Note that Dijkstra and Deflection requires definitions of routing metrics in advance, while
MARA-MC does not.

Figure 4.7 shows examples of routing calculations. “show routing” command outputs
the routes to standard output. All of the routing clauses calculate routes on the same
graph, namely graph 100, for the comparison purpose. Deflection algorithm [109] calcu-
lates identical routes to Dijkstra, and calculates additional backup routes in a separate rout-
ing table. “show deflection set” command shows the contents of the separate routing
table. “routing-algorithm ma-ordering” command specifies the use of MARA-MC
routing algorithm.

Once the routes are calculated, a routing sub-graph for a specified destination can be
generated as another graph. Figure 4.8 illustrates the graph generation.

CHAPTER 4. SIMROUTING 47

weight 100

weight-graph 100

weight-setting inverse-capacity

show weight

exit

weight 200

weight-graph 200

weight-setting minimum-hop

show weight

exit

weight 300

weight-graph 300

weight-setting import rocketfuel ../rocketfuel/weights-dist/1221/weights

.intra

show weight

exit

weight 400

weight-graph 400

import ospf localhost public 0.0.0.0

show weight

exit

Figure 4.6: SimRouting routing metric specification.

CHAPTER 4. SIMROUTING 48

routing 100

routing-graph 100

routing-weight 100

routing-algorithm dijkstra

show routing

exit

routing 200

routing-graph 100

routing-weight 100

routing-algorithm deflection

show routing

show deflection set

exit

routing 300

routing-graph 100

routing-algorithm ma-ordering

show routing

exit

Figure 4.7: SimRouting route calculations.

graph 500

import routing 100 sink-tree destination 0

show graph structure

exit

Figure 4.8: SimRouting importation of routing sub-graph.

CHAPTER 4. SIMROUTING 49

4.5.5 Traffic Definition

Traffic demands are defined in a traffic clause in a N×N matrix (where N is the number
of nodes). The only currently supported model to automatically generate traffic demands
is the model of Fortz and Thorup [30]. The scaling parameter for Fortz-thorup model, α ,
must be specified. Another ways to set traffic are to set a traffic demand in a random
and specified pair of nodes. Setting a traffic demand in a random pair of nodes is called
Single-random-flow. Users can utilize Single-random-flow multiple times to produce traffic
demands easily. Random seed can be specified by “traffic-seed” command. Since it calls
srandom(), setting random seed may help to reproduce the same traffic demands (both
Fortz-thorup mode and Single-random-flow utilize random number generations). Example
traffic demand definitions are given in Figure 4.9.

traffic 100

traffic-graph 100

traffic-seed 30

traffic-model fortz-thorup alpha 100.0

show traffic

exit

traffic 200

traffic-graph 100

traffic-seed 77

traffic-set random random bandwidth 40

traffic-set random random bandwidth 50

traffic-set random random bandwidth 60

show traffic

exit

Figure 4.9: SimRouting definition of traffic demands.

4.5.6 Network State

In network clause, loading of traffic demands along routes can be instructed, and the re-
sulting network state (e.g., link utilization of each links) can be stored. Figure 4.10 shows
the example.

CHAPTER 4. SIMROUTING 50

network 100

network-graph 100

network-routing 100

network-traffic 100

network-load traffic-flows

show network

exit

Figure 4.10: SimRouting calculation of network state.

4.6 Example Simulation

In this section, a brief example of usage of SimRouting is shown. Dijkstra routing is calcu-
lated on a BRITE generated topology of 20 nodes. The link bandwidth capacities generated
by BRITE are used in the simulation, to derive inverse-capacity metrics, and to calculate the
utilization of links. The node positions generated by BRITE are also used in illustration by
GraphViz, and traffic generation in fortz-thorup model. Figure 4.11 and Figure 4.12 give the
output of BRITE.

Figure 4.13 shows the SimRouting scenario file for the simulation. This calculates the
Dijkstra’s shortest path routing with the inverse-capacity metric, on the BRITE generated
topology. The purpose of the simulation is to investigate the utilization of the links after
routing the traffic demands on the network. Figure 4.14 illustrates the topology. Figure 4.15
shows the traffic demands generated by the fortz-thorup model. In showing the traffic de-
mands, the fractional parts are rounded.

Table 4.1 is the resulting network state. Note that a bidirectional link in BRITE is repre-
sented as two directional links in SimRouting. s and t denote the source and sink node of
the edge (network link). Load, BW, and Util denote traffic loads, bandwidth capacity, and
utilization of the link, respectively.

The maximum link utilization in the network was 0.930688, and the minimum link uti-
lization was 0.004501. The average and standard deviation were 0.239890 and 0.233147,
respectively.

4.7 Availability Calculation

SimRouting has the ability to calculate the system reliability of a graph. Calculation of a
s-t reliability of a real network is given as an example of estimation of network availability
in this section. The real network taken for availability calculation is the WIDE Project’s

CHAPTER 4. SIMROUTING 51

Topology: (20 Nodes, 37 Edges)

Model (2): 20 1000 100 1 2 2 10 1024^@

Nodes: (20)

0 470.00 658.00 6 6 -1 RT_NODE

1 46.00 279.00 9 9 -1 RT_NODE

2 854.00 879.00 8 8 -1 RT_NODE

3 711.00 48.00 5 5 -1 RT_NODE

4 621.00 92.00 7 7 -1 RT_NODE

5 259.00 793.00 6 6 -1 RT_NODE

6 510.00 906.00 4 4 -1 RT_NODE

7 802.00 211.00 3 3 -1 RT_NODE

8 401.00 425.00 3 3 -1 RT_NODE

9 137.00 822.00 3 3 -1 RT_NODE

10 421.00 917.00 2 2 -1 RT_NODE

11 216.00 943.00 2 2 -1 RT_NODE

12 430.00 431.00 2 2 -1 RT_NODE

13 137.00 744.00 2 2 -1 RT_NODE

14 118.00 773.00 2 2 -1 RT_NODE

15 967.00 448.00 2 2 -1 RT_NODE

16 892.00 751.00 2 2 -1 RT_NODE

17 422.00 849.00 2 2 -1 RT_NODE

18 394.00 661.00 2 2 -1 RT_NODE

19 865.00 796.00 2 2 -1 RT_NODE

Edges: (37):

0 0 1 568.70 1.90 104.16 -1 -1 E_RT U

1 0 2 443.05 1.48 888.60 -1 -1 E_RT U

2 1 2 1006.41 3.36 270.20 -1 -1 E_RT U

3 3 2 843.21 2.81 38.46 -1 -1 E_RT U

4 3 1 703.98 2.35 340.57 -1 -1 E_RT U

5 4 0 585.80 1.95 538.79 -1 -1 E_RT U

6 4 1 604.64 2.02 603.30 -1 -1 E_RT U

7 5 1 556.39 1.86 762.14 -1 -1 E_RT U

8 5 0 250.49 0.84 358.52 -1 -1 E_RT U

9 6 2 345.06 1.15 373.71 -1 -1 E_RT U

10 6 4 821.53 2.74 54.19 -1 -1 E_RT U

Figure 4.11: SimRouting sample BRITE generated file.

CHAPTER 4. SIMROUTING 52

11 7 4 216.61 0.72 442.46 -1 -1 E_RT U

12 7 5 795.97 2.66 372.16 -1 -1 E_RT U

13 8 1 383.85 1.28 704.52 -1 -1 E_RT U

14 8 5 394.45 1.32 414.34 -1 -1 E_RT U

15 9 1 550.57 1.84 230.02 -1 -1 E_RT U

16 9 8 476.77 1.59 398.00 -1 -1 E_RT U

17 10 4 848.90 2.83 662.02 -1 -1 E_RT U

18 10 2 434.66 1.45 288.27 -1 -1 E_RT U

19 11 6 296.32 0.99 444.85 -1 -1 E_RT U

20 11 2 641.20 2.14 662.09 -1 -1 E_RT U

21 12 4 389.10 1.30 625.57 -1 -1 E_RT U

22 12 1 412.99 1.38 415.47 -1 -1 E_RT U

23 13 4 812.01 2.71 757.58 -1 -1 E_RT U

24 13 9 78.00 0.26 401.49 -1 -1 E_RT U

25 14 2 743.59 2.48 816.07 -1 -1 E_RT U

26 14 0 370.31 1.24 28.15 -1 -1 E_RT U

27 15 7 288.78 0.96 583.25 -1 -1 E_RT U

28 15 3 474.91 1.58 855.85 -1 -1 E_RT U

29 16 5 634.39 2.12 596.14 -1 -1 E_RT U

30 16 3 725.93 2.42 845.42 -1 -1 E_RT U

31 17 3 851.54 2.84 114.48 -1 -1 E_RT U

32 17 1 682.84 2.28 426.92 -1 -1 E_RT U

33 18 5 188.81 0.63 539.60 -1 -1 E_RT U

34 18 2 509.04 1.70 907.04 -1 -1 E_RT U

35 19 0 418.41 1.40 227.65 -1 -1 E_RT U

36 19 6 371.65 1.24 957.91 -1 -1 E_RT U

Figure 4.12: SimRouting sample BRITE generated file (continued).

CHAPTER 4. SIMROUTING 53

graph 100

import brite etc/topology/sample.brite

export graphviz tmp/brite-dijkstra-invcap.dot

exit

weight 100

weight-graph 100

weight-setting inverse-capacity

exit

routing 100

routing-graph 100

routing-weight 100

routing-algorithm dijkstra

exit

traffic 100

traffic-graph 100

traffic-seed 30

traffic-model fortz-thorup alpha 100.0

show traffic

exit

network 100

network-graph 100

network-routing 100

network-traffic 100

network-load traffic-flows

show network

exit

Figure 4.13: SimRouting example scenario.

CHAPTER 4. SIMROUTING 54

brite-dijkstra-invcap

0

1

2

4

5
14

19

3

8

9

12

17

6
10

11

18

7

13 16

15

Figure 4.14: SimRouting example network graph.

CHAPTER 4. SIMROUTING 55

Table 4.1: Results of example simulation in SimRouting.

EdgeId s t Load BW Util EdgeId s t Load BW Util

0 0 1 0.000 104.160 0.000 1 1 0 0.000 104.160 0.000
2 0 2 237.665 888.600 0.267 3 2 0 274.613 888.600 0.309
4 1 2 205.539 270.200 0.761 5 2 1 179.008 270.200 0.663
6 3 2 0.000 38.460 0.000 7 2 3 0.000 38.460 0.000
8 3 1 61.894 340.570 0.182 9 1 3 19.273 340.570 0.057
10 4 0 501.446 538.790 0.931 11 0 4 232.627 538.790 0.432
12 4 1 256.082 603.300 0.424 13 1 4 316.095 603.300 0.524
14 5 1 106.838 762.140 0.140 15 1 5 195.646 762.140 0.257
16 5 0 48.893 358.520 0.136 17 0 5 1.614 358.520 0.005
18 6 2 311.449 373.710 0.833 19 2 6 277.863 373.710 0.744
20 6 4 0.000 54.190 0.000 21 4 6 0.000 54.190 0.000
22 7 4 208.373 442.460 0.471 23 4 7 145.885 442.460 0.330
24 7 5 75.087 372.160 0.202 25 5 7 10.786 372.160 0.029
26 8 1 185.276 704.520 0.263 27 1 8 279.203 704.520 0.396
28 8 5 48.881 414.340 0.118 29 5 8 58.683 414.340 0.142
30 9 1 0.000 230.020 0.000 31 1 9 0.000 230.020 0.000
32 9 8 44.699 398.000 0.112 33 8 9 50.003 398.000 0.126
34 10 4 124.623 662.020 0.188 35 4 10 309.358 662.020 0.467
36 10 2 72.375 288.270 0.251 37 2 10 116.415 288.270 0.404
38 11 6 19.351 444.850 0.044 39 6 11 64.147 444.850 0.144
40 11 2 203.272 662.090 0.307 41 2 11 379.854 662.090 0.574
42 12 4 202.114 625.570 0.323 43 4 12 51.641 625.570 0.083
44 12 1 162.272 415.470 0.391 45 1 12 19.586 415.470 0.047
46 13 4 296.558 757.580 0.391 47 4 13 283.428 757.580 0.374
48 13 9 52.602 401.490 0.131 49 9 13 117.135 401.490 0.292
50 14 2 259.766 816.070 0.318 51 2 14 180.910 816.070 0.222
52 14 0 0.000 28.150 0.000 53 0 14 0.000 28.150 0.000
54 15 7 53.833 583.250 0.092 55 7 15 44.618 583.250 0.076
56 15 3 23.640 855.850 0.028 57 3 15 28.271 855.850 0.033
58 16 5 191.373 596.140 0.321 59 5 16 14.732 596.140 0.025
60 16 3 19.491 845.420 0.023 61 3 16 92.853 845.420 0.110
62 17 3 0.000 114.480 0.000 63 3 17 0.000 114.480 0.000
64 17 1 278.302 426.920 0.652 65 1 17 133.030 426.920 0.312
66 18 5 61.409 539.600 0.114 67 5 18 455.852 539.600 0.845
68 18 2 196.119 907.040 0.216 69 2 18 205.295 907.040 0.226
70 19 0 13.709 227.650 0.060 71 0 19 114.568 227.650 0.503
72 19 6 60.210 957.910 0.063 73 6 19 239.892 957.910 0.250

Util: routing-100: max: 0.930688 min: 0.004501 med: 0.467595 avg: 0.239890 std: 0.233147

CHAPTER 4. SIMROUTING 56

config-traffic-100> show traffic

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 11 7 0 1 1 1 0 3 0 1 16 11 3 7 6 0 0 5 8 11

1 7 11 0 1 13 5 6 10 26 10 15 18 2 21 3 4 0 2 5 32

2 10 19 0 0 10 3 3 2 3 8 1 10 6 13 11 4 0 1 7 22

3 15 11 0 2 4 1 2 2 5 3 2 17 2 9 12 2 0 10 15 24

4 28 17 0 2 7 16 0 8 51 4 55 30 9 26 10 11 1 11 1 7

5 28 2 0 0 8 7 4 5 12 14 21 49 2 15 13 3 0 8 43 12

6 30 23 1 1 11 6 4 10 35 6 56 45 4 15 29 0 1 7 37 13

7 6 31 0 1 15 13 9 3 14 10 27 1 5 12 10 1 0 11 48 25

8 32 19 0 1 3 4 3 2 27 13 19 35 9 16 4 4 0 1 37 27

9 17 5 0 0 8 4 2 5 27 1 7 40 5 11 6 5 0 7 1 11

10 18 14 0 1 4 9 12 11 20 10 44 13 7 16 10 4 1 11 3 35

11 25 8 0 1 13 3 3 9 30 5 10 12 7 14 17 8 1 6 49 17

12 42 19 0 2 0 23 0 20 35 2 58 10 5 24 17 1 1 14 68 27

13 22 21 0 1 4 3 4 3 13 2 28 11 4 9 19 3 0 10 24 21

14 31 12 0 0 2 10 3 12 5 2 28 55 0 7 16 3 0 16 44 29

15 1 4 0 1 5 0 1 2 10 4 4 10 1 2 7 1 0 1 6 12

16 6 12 0 0 1 4 5 5 7 4 14 12 0 8 2 5 0 4 7 14

17 12 17 0 1 14 4 13 10 18 4 43 48 0 16 1 2 1 19 59 14

18 4 3 0 0 0 6 1 4 5 3 6 11 3 5 1 2 0 5 10 2

19 1 0 0 0 3 5 1 3 10 0 16 19 1 5 3 1 0 4 2 15

Figure 4.15: SimRouting example traffic demands.

network [107]. It is illustrated in Figure 4.16.

The availability calculation technique implemented in SimRouting is I_VT [101], one
of the family of SDP with MVI. The theory is summarized in Appendix A. Although the
methods of path enumeration and sorting of path list are important for the performance
of the calculation (e.g., computation time), path enumeration is performed by simple depth-
first-search (DFS) each time in the graph, and the sorting of path list is not performed. These
means that performance improvement is possible for the computation time presented below.

The source (s) and the sink (t) of the s-t reliability are the node 5 and the node 0,
respectively. The scenario file used is shown in Figure 4.17. There are 3031 distinct paths
from node 5 to node 0, where the minimum number of hops is 7, the maximum number of
hops is 34, and the average is 20.632794.

“calculate reliability” commands in Figure 4.17 instruct the availability calcu-
lations. Calculating reliabilities were executed on the base graph, the dijkstra’s routing
sub-graph, and the MARA-MC’s routing sub-graph (described later in Chapter 6) to see
how shortest path routing degrades the network availability. All the link reliability is set to
0.9 to emphasize the difference. The statistics of the calculations and the availability results
are shown in Table 4.2. Note that the shortest path routing employed in the current Internet
significantly decreases the availability, despite the sufficient number of network paths.

CHAPTER 4. SIMROUTING 57

t

s

Figure 4.16: s-t reliability calculation in the WIDE Project’s network.

Table 4.2: Results of the s-t reliability calculation in SimRouting.

Graph used #Paths #terms in I_VT Time Taken (sec) Availability

Base Graph 3,031 208,843 16,649 0.8641323325
Routing Sub-graph (Dijkstra) 1 1 0.000149 0.5314410000
Routing Sub-graph (MARA-MC) 6 8 0.004171 0.7963936209

CHAPTER 4. SIMROUTING 58

graph 100

import ospf localhost public 0.0.0.0

link all reliability 0.9

show path source 5 destination 0

calculate reliability source 5 destination 0 stat

exit

weight 100

weight-graph 100

import ospf localhost public 0.0.0.0

exit

routing 200

routing-graph 100

routing-weight 100

routing-algorithm dijkstra

exit

graph 200

import routing 200 sink-tree destination 0

link all reliability 0.9

show path source 5 destination 0

calculate reliability source 5 destination 0 stat

exit

routing 300

routing-graph 100

routing-algorithm ma-ordering

exit

graph 300

import routing 300 sink-tree destination 0

link all reliability 0.9

show path source 5 destination 0

calculate reliability source 5 destination 0 stat

exit

Figure 4.17: SimRouting availability calculation scenario.

CHAPTER 4. SIMROUTING 59

Table 4.3: Supported methods in SimRouting.

Graph Routing metric Routing algorithm Traffic model

BRITE minimum-hop Dijkstra Fortz-thorup
Rocketfuel inverse-capacity Deflection Single-random-flow
SNMP/OSPF MARA-MC

4.8 Evaluation

4.8.1 Number of Methods to Construct Network Graphs

Table 4.3 summarizes the options for each network variable. Only Dijkstra and Deflection
can consider the setting of routing metric, hence

3× (2×2+1)×2 = 30 (4.1)

combinations of network setting can be constructed with only a few tens of lines in the sce-
nario file. This feature can contribute a network researcher to evaluate routing algorithms
and/or network settings with comparison to other similar settings. Changing only one net-
work variable between two setting presents the influence of the changed network variable
to the network state.

Note that the number of network types above (i.e. 30) is the number of method to
construct a network setting. The number of actual network setting is infinite even when we
limit the importation of network graph from BRITE.

4.8.2 Achievement of Required Features

Comparison of features of SimRouting with other simulation tools is given in Table 4.4. The
required features are from Graph Definition (shortened as Graph in the table) to Traffic
Demands & Loads. The rationale for the required features is explained in Section 4.3.

A few tools support importation of network graph (i.e., Graph Definition) from other
tools. Note that, since OPNET can import real network status from some vendors’ net-
work management tools, its Graph (SNMP/OSPF) is attributed to yes (support). However,
SimRouting supports the largest methods to import network graphs, which is the desired
property of a simulation tool for network researchers. Support of handling of network vari-
ables independently (Independent Vars) is also supported in SimRouting, as well as other
simulation tools. Develop New Routing is easy in SimRouting due to the easy access to
the global network graph structure. SimRouting implements a method to calculate system
reliability, while others does not. This is shown in the row of Availability Calc. The ability

CHAPTER 4. SIMROUTING 60

Table 4.4: Comparison of features with other simulation tools.

Feature \ Name NS GloMoSim QualNet OPNET OmNet++ GTNetS SimRouting

Graph (BRITE) Yes No No No Yes Yes Yes
Graph (Rocketfuel) No No No No No No Yes
Graph (SNMP/OSPF) No No Yes Yes No No Yes
Independent Vars Yes Yes Yes Yes No No Yes
Develop New Routing Hard Hard Hard Hard Hard Easy Easy
Availability Calc No No No No No No Yes
Routing Sub-graph No No No No No No Yes
Traffic Demands & Loads Yes Yes Yes Yes Yes Yes Yes
Timed System Yes Yes Yes Yes Yes Yes No
Detailed Protocol Impl Yes Yes Yes Yes Yes Yes No

to handle Routing Sub-graph is unique to SimRouting. All tools in the comparison support
Traffic Demands & Loads.

To perform fair comparison, two measures that are deficient in SimRouting have been
added in Table 4.4. These are Timed System and Detailed Protocol Impl.

Considering time in simulations is necessary to comprehend the difference, dynamics of
a system over time. In contrast to the fact that most simulation tools support timed simula-
tion scenario, SimRouting does not support simulation of time. This deficiency leads to the
difficulty to handle time related variables, such as hardware failure probability (reliability of
a hardware changes over time such as widely known as the bath-tub curve). In SimRouting,
only a snapshot of a time can be taken into consideration. Thus, the failure probabilities of
all network components at the snapshot time must be calculated manually in advance to the
simulation.

Detailed Protocol Impl means whether the detailed protocol implementation is included
in the simulation. Most other simulation tools take the approach of layered communica-
tion structure, where many detailed implementations of network protocols can be involved.
The advantage of this approach is that the state of the network becomes closer to that of
reality, because the control traffic of the underlying network protocols are also considered.
In SimRouting such overhead of the underlying network protocols cannot be considered in
simulation. SimRouting is intended to be as simple as possible, to provide test environment
for abstract ideas in theory.

In summary, SimRouting provides the simple test environment for new abstract ideas
in networks and routing. In contrast to most other simulation tools that take layered com-
munication protocol stack approach for the purpose to simulate the real network closely,
SimRouting takes the approach of abstract network such as done in Graph theory. The ab-

CHAPTER 4. SIMROUTING 61

stract graph approach helps to understand the overview of the network, rather than details,
and therefore more appropriate in searching new technology that has pervasive influence
over the entire network, such as routing algorithms. Support of all required features in
SimRouting enables comprehensive study of a new routing algorithm.

4.9 Summary

In order to improve network availability, thorough investigation must be done with various
network settings. Particularly, routing systems including the methodology to set routing
metrics are really important in terms of both failure recovery and congestion avoidance.

However, current researches have evaluated their methods only on very limited network
settings. Testing a routing algorithm on different network topologies was a difficult task
because it was difficult to utilize the network model that is generated by other tools. A
method that enables the evaluation of routing systems by comparison with other network
setting was necessary.

A routing simulation tool named SimRouting was developed to help investigation and
evaluation of various network settings. It supports the many network settings, such as by
importing the network graphs from BRITE, Rocketfuel and SNMP/OSPF. The routing set-
tings can be chosen from minimum-hop or inverse-capacity. The routing algorithm options
are Dijkstra, Deflection, and MARA-MC. The traffic model supports Fortz-thorup model and
Single-random-flow. The SimRouting tool supports the execution of simulation on various
network settings easily, and hence contributes to improve routing systems.

This work contributes to improve the availability of the Internet by presenting a method
to compare, evaluate and improve routing systems. The deficiency and tendency of routing
systems can be shown by SimRouting, and hence it is utilized to improve routing systems.
Improving routing systems certainly contributes to Internet availability.

This chapter discussed an evaluation of the availability of the Internet, with relation to
the network settings and routing systems. Following chapters discuss how to improve the
routing system actually. Next chapter discusses how to stabilize a routing system.

Chapter 5

OSPF Flap Damping

In this chapter, a method to stabilize a routing system is described, in order to improve the
availability of the routing system. In Section 2.7.3, we discussed the need for improving
the reliability of network elements. Here, we use OSPF flap damping as a representative
example.

5.1 Overview

The communication data paths in the Internet are controlled by routing protocols. They
are responsible for finding alternate paths/routes in the face of network failures, such as
hardware failures, excessive load conditions, incorrect implementations, and network up-
grades/routine maintenance. In the case of such failures, communication across the network
can be partially or even totally lost until the routing protocols find the next best paths for
all the routes traversing the failed network.

When a network event causes routes to either fail or become available, routers distribute
routing update messages that permeate networks, stimulating re-computation of optimal
routes and eventually causing all routers to agree on these routes. The process from network
changes to recovery of communication paths is called “convergence” wherein all the routers
agree on their view of optimal paths.

During convergence, there can be routing loops in the network and a subset of destina-
tions will be reachable via sub-optimal paths or will not be accessible at all. Routing loops
themselves may delay the overall convergence process as some routing control packets may
be lost. Thus it is desired that the routing protocols in the routing domain take minimum
time to converge, because this will lead to increased network availability since the periods
for which routes will not be available nor optimal will be minimum.

The central symptom of route instability is the disappearance of a route that previously
existed in the routing table. Such routes may disappear and reappear intermittently, a con-

62

CHAPTER 5. OSPF FLAP DAMPING 63

dition referred to as “flapping”. Thus the number of route flaps over a period of time char-
acterizes the intensity of the perturbation in the network.

In this chapter, the effect of such persistent “route flaps” on a link state routing protocol,
OSPF [59], is studied. It is observed that how the route flaps disrupt the routing and affect
the communication environment adversely. Further, a scheme for damping the route flaps is
implemented, and it is shown that how the methodology can solve such problems in OSPF.

5.2 Effects of Route Flaps

In this section, the effects of persistent route flaps in OSPF and a UDP [76] communication
channel are explored through an experiment.

5.2.1 Network Configuration

R1R2R3

ospf ospf ospf

Address E::1 Address E::1

add/delete (flap)

External E::/64
metric 12345

External E::/64
metric 10000

udp
server

udp
server

udp
client

Figure 5.1: Network configuration for the route flap experiment.

The network setup used in the experiment is shown in Figure 5.1. There are three routers,
each of which runs OSPFv3 [18] using Zebra ospf6d [99, 67]. Both R1 and R3 advertise the
prefix E::/64 as AS-External route with metrics 12345 and 10000 respectively. Additionally
both R1 and R3 are configured with address E::1 on their interfaces and thus each can receive
packets destined to E::1.

R1 and R3 are configured as UDP servers while R2 runs a UDP client sending a stream
of test UDP packets. These packets will be received by either R1 or R3, depending upon
whichever is chosen as the best path at that particular instant. Under the steady state con-
ditions R1 is the preferred destination as it is advertising the prefix with a smaller metric.

CHAPTER 5. OSPF FLAP DAMPING 64

Upon receiving the test UDP packet, the UDP server writes down the value of HopLimit
(TTL), fills its hostname as means for identification and sends it back to the source (UDP
client). The UDP client, by comparing the time when a packet was sent and the time
when its response is received, computes the total round trip time (RTT) for each packet.
By examining the hostname filled in the packet it can know which router received that
particular packet and can thus estimate when the traffic starts using the secondary path. By
looking at the sequence numbers, it can determine the number of packets which get dropped.
By examining the round trip hop count, it can know when the packets got stuck in a routing
loop.

As described above, under the steady state conditions the primary path for all traffic
destined to E::1 is via R1. This is the primary path. When this path is not available, the traffic
shifts to the secondary path, which is through R3. Ideally, the routing to the destination
should stick to the secondary path when the primary path has some trouble, such as flaps in
this work.

Flapping is artificially introduced in the setup by adding and deleting the address E::1
to/from R1’s interface using the ifconfig command in NetBSD [98]. Zebra ospf6d is dynam-
ically notified of this event and it in turn advertises this information to both R2 and R3 by
originating and purging the corresponding AS-External-LSA.

5.2.2 OSPF Behavior

There are 2 built-in fixed timers in OSPF which implicitly damp the origination of LSAs
against flapping entities. The first is MinLSInterval specifying that an LSA cannot be orig-
inated within 5 seconds if a previous copy was originated within this time period. The
other is MinLSArrival timer that does not accept newer LSAs if a previous copy was re-
ceived within 1 second back. These two timers can, however, adversely affect in certain
circumstances as described below.

Figure 5.2 illustrates the relationship between the periodicUp/Down events, OSPF send/receive
events for LSAs, and reachability of UDP communications. In the figure, the lowest line in
the chart indicates the event causing the network topology change, which is in this case,
addition and deletion of address E::1 at R1. For the sake of brevity, adding the address E::1
to R1’s interface is called as the Up event hereafter, and deleting it as the Down event. Each
Up/Down event is generated periodically after every 1 second, as shown in the figure.

The second line from bottom shows the origination of appropriate LSA for prefix E::/64 at
R1. Each LSA can only be originated after every 5 seconds as the LSA origination interval is
limited by MinLSInterval seconds in the OSPF specification. Thus at each Up event, ospf6d
tries to originate the corresponding AS-External LSA with age 0 unless affected by the
MinLSInterval (described as “Active Sent” in Figure 5.2). At each Down event, ospf6d tries

CHAPTER 5. OSPF FLAP DAMPING 65

Down

Up

MaxAge Sent

Active Sent

MaxAge Received

MaxAge Dropped

Active Dropped

Active Received

(Loss) 0

1

2

3

0 10 20 30 40 50 60 70

R
ou

nd
 T

rip
 T

im
e

(m
ill

is
ec

on
ds

)

Time elapsed (seconds)

primary path

secondary path

packet loss

loop(ttl: 128->52)

MinLSInterval
(5sec)

44.1ms

First raised portion

Figure 5.2: RTT, OSPF send/receive events during the flapping of 2 seconds cycle (1 second
for Up, 1 second for Down).

to flush this LSA from the routing domain by flooding a copy of this LSA with its LS Age set
to MaxAge (3600) (described as “MaxAge Sent” in the figure). It was often observed that
the LSA origination was immediately followed by the attempt of flushing it. This is caused
by the timing of the Down event.

The third from the bottom illustrates the corresponding AS-External-LSA receive events
at R2. There are four kinds of receive events: MaxAge Received, MaxAge Dropped, Ac-
tive Dropped and Active Received. As the names suggest, the events Active Dropped and
MaxAge Dropped indicate the events when ospf6d rejects the received LSAs because of the
MinLSArrival restraint, while MaxAge Received and Active Received indicate the events
when the LSAs are accepted.

The top line in the chart indicates the total round trip time (RTT) between the UDP
client and the UDP server. The packets which are lost during the re-route period are shown
with RTT value of 0. The use of the primary path exhibits larger RTT, and the secondary
path exhibits smaller RTT. The figure shows that route flaps affect the reachability adversely
where the route periodically shift between the primary path, the secondary path, and packet
loss.

In the same figure, the first raised portion of OSPF receive events shows the adverse
effects of the MinLSInterval and MinLSArrival timers. The focused version of the figure,
given in Figure 5.3, illustrates the part in detail. It is explained as follows.

When receiving the LSA that corresponds to Active Sent (which was delayed by R1 due

CHAPTER 5. OSPF FLAP DAMPING 66

Down

Up

MaxAge Sent

Active Sent

MaxAge Received

MaxAge Dropped

Active Dropped

Active Received

15.5 16 16.5 17 17.5 18 18.5
Time elapsed (seconds)

Figure 5.3: The first raised portion of Figure 5.2.

to MinLSInterval), the event Active Received occurs. Then, as mentioned before, the event
MaxAge Sent gets triggered due to the real Down event immediately after the Active Sent
event. Since OSPF specifies that the LSA must be dropped if a previous copy is received less
than MinLSArrival (1 second) ago, this MaxAge LSA flooding is rejected by R2.

This results in routing disparity, where different routers have different views of the
optimal paths. The packets get dropped in the test UDP communication network, because
R2 still believes that R1 is the best path for E::/64, whereas in reality it is actually down.

Zebra ospf6d does not apply MinLSInterval when flooding the MaxAge LSAs, and these
LSAs are flooded as soon as the Down event occurs. The problem is that the other routers
will still apply the MinLSArrival timer. Since the other routers had just received the LSA,
they ignore this MaxAge LSA (without acknowledging it). The faulty routing thus persists
in the routing domain till either the next realDown event or the expiry of the Retransmission
timer occur. In this case the event Down occurs first and the MaxAge LSA is originated
again by the R1. At this time the other routers accept this LSA, the routing gets converged,
and the packets start flowing through the secondary path. Even if implementations apply
MinLSInterval to control the flooding of MaxAge LSA, the problem is only going to get
worse, because the period during which false routing exists will last longer.

Figure 5.4 shows the worst case scenario for this environment by executing Up event
immediately followed by the Down event. with a period of 7 seconds. Thus the period of
Up event is a little (less than 1 second) and that of the Down event is 7 seconds.

CHAPTER 5. OSPF FLAP DAMPING 67

Down

Up

MaxAge Sent

Active Sent

MaxAge Received

MaxAge Dropped

Active Dropped

Active Received

(Loss) 0

1

2

3

0 20 40 60 80 100
Time elapsed (seconds)

R
ou

nd
 T

rip
 T

im
e

(m
ill

is
ec

on
ds

)

primary path

secondary path

packet loss

loop(ttl: 128->32)

RxmtInterval
(5sec)

65.8ms

Figure 5.4: RTT, OSPF send/receive events during the flapping of 7 seconds cycle (Up imme-
diately followed by Down and remains Down for 7 seconds).

This result shows that all the MaxAge Sent triggered by Down event were rejected by
R2, so the incorrect routing information lasts until R1 retransmits its un-acknowledged LSA
to R2 after the expiry of RxmtInterval. In OSPF, RxmtInterval a is configurable interface
parameter, which is set as 5 seconds for this experiment. Here the RTT for the UDP com-
munication channel at the top of the figure shows the packet loss for 5 seconds, which then
recovers to use the secondary path until the beginning of the next Up/Down cycle, for 2
seconds (shown in the figure as the reachability via the secondary path between packet
losses).

5.2.3 Experiment Result

In this section, the summary of observations in the experiment is given.
First, the current timers in OSPF (MinLSInterval, MinLSArrival), which are considered

to be enough to damp short flaps, are inadequate and fail miserably when the period of flap
becomes greater than 5 seconds. Even for flaps with periods less than 5 seconds there can
be transient black holes depending upon how the MinLSInterval and purging of the LSA
(Down event) are synchronized.

During the period that OSPF advertises and calculates these false routes, there are little
chances for communications to use the alternative stable route even if there exists. When
used in conjunction with Traffic Engineering, OSPF may further aggravate the situation

CHAPTER 5. OSPF FLAP DAMPING 68

because each time the network topology changes, traffic engineered paths may need to be
rerouted. Even if alternate paths have been recomputed, there are overheads involved in
tearing down the old path and setting up the new one.

It is shown that MinLSInterval which delays the origination of LSA up to 5 seconds and
MinLSArrival which delays receiving and processing of LSA up to RxmtInterval seconds are
both pathological in some particular scenarios.

By varying the period and cycles of flaps, further interesting statistics were collected.
Here the total period of flap is set to 2 seconds: 1 second of Up state followed by 1 second
of the Down state. Then the test UDP communication resulted in the following 10 second
repeated cycle: 1 second of packet loss, 1 second of using the primary path, 3 seconds of
using the secondary path, 1 second of using the primary path, and 4 seconds of using the
secondary path (all these measurements are approximate). Thus in a cycle of 10 seconds the
primary path (which is defined to be the best path) was only used for 2 seconds.

Given that today the IGP is used extensively, this behavior of OSPF against flaps is
clearly inadequate and warrants closer inspection.

5.3 Application of Flap Damping to OSPF

To solve the problems described above, a solution very similar to one explained in BGP
Route Flap Damping [103] is implemented in this section. Paths and routes can be cate-
gorized either “well-behaved” or “ill-behaved”. A well-behaved route shows a high degree
of stability during the extended period of time. On the other hand, an ill-behaved route
experiences a high level of instability in a short period of time.

5.3.1 Flap Damping Algorithm

A figure of merit named penalty is maintained for each route, and it is incremented each
time the route flaps. This gives the degree of instability of that route. penalty is increased
by a constant DefaultPenalty when a Down event occurs for the route. When the route
flaps, advertisements of the availability of the path are kept suppressed. When the penalty
goes beyond a configured Suppress value, the route is kept from being advertised. During
the period without a flap, the penalty continues to be decayed exponentially at a rate, where
the penalty is reduced by half for each configured HalfLife seconds. When the penalty falls
below a configured Reuse value, the route that has been suppressed is now advertised and
the router originates an AS-External-LSA with age set to 0.

For the subsequent experiments, the parameters DefaultPenalty, Suppress, Reuse and
HalfLife are set to 1000, 3000, 2000 and 20, respectively.

CHAPTER 5. OSPF FLAP DAMPING 69

5.3.2 Experiment Result

Down

Up

MaxAge Sent

Active Sent

MaxAge Received

MaxAge Dropped

Active Dropped

Active Received

(Loss) 0

1

2

3

0 20 40 60 80 100 120 140 160
Time elapsed (seconds)

R
ou

nd
 T

rip
 T

im
e

(m
ill

is
ec

on
ds

)

primary path

secondary path

packet loss

RxmtInterval (5sec)

27.8ms 26.1ms 14.7ms

Figure 5.5: RTT, OSPF send/receive events during the flapping of 7 seconds cycle (Up imme-
diately followed by Down and remains Down for 7 seconds) with flap damping.

The technique was applied over the worst case scenario when there is a flap cycle of 7
seconds in which the Up state lasts for a very short period of time (< 1 second), and the
Down state lasts 7 seconds. The results are shown in Figure 5.5.

The lowest line shows how the route was flapped. It was brought Up for a very short
period of time and was brought Down for the next 7 seconds. The second line from the
bottom in the chart shows the OSPF send events which were significantly improved even
in case of persistent real Up/Down events (i.e., when the route is flapping). RTT of UDP
communication (top line in the chart) shows that while damping was performed, there were
no packet losses or routing loops formed, and the UDP communication peacefully used the
secondary path and was oblivious to the flapping (from time(x) = 20 to 80). After the
flapping of the address at R1was stopped, it took approximately 40 seconds (from time(x) =
80 to 120) of stability for R1 to decide advertising itself as the primary path. The UDP
communication was then restored to the primary path.

The penalty transition is shown in Figure 5.6. It shows the relationship between the
Up/Down event, the penalty value, and the OSPF behavior of originating LSAs. At each
Down event, penalty is increased by 1000 (referred to as DefaultPenalty) while decaying
is applied simultaneously. Once the penalty reaches a value of 3000 (Suppress) the damp-
ing starts. The damping function maintains the route’s state as “Down” during the period
of damping, and R1 stops any further origination and flushing of the corresponding AS-

CHAPTER 5. OSPF FLAP DAMPING 70

Down

Up

MaxAge Sent 0

Active Sent 500

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120 140 160

P
en

al
ty

 V
al

ue

Time Elapsed (Seconds)

Reuse Value

Suppress Value

ceil=8000, half-life=20, t-hold=40 default-penalty=1000

Figure 5.6: penalty transition during the flapping of 7 seconds cycle (Up immediately fol-
lowed by Down and remains Down for 7 seconds) with flap damping.

External LSA for this prefix. If the flapping stops, penalty is not increased any more and it
only decays as the time elapses. When the penalty falls below 2000 (Reuse), it is assumed
that the route is now stable and an AS-External-LSA is originated for this prefix.

The reason why the LSA was not originated immediately when the penalty falls be-
low Reuse limit, is because of the time granularity used in the implementation. The time
granularity is a constant DeltaReuse which is set to 10 seconds.

It is possible to configure flap damping to handle either short term severe route flaps or
even milder (long term) repeated route flaps, by changing the parameters. A less aggressive
suppression can be applied to the case where no alternate path exists. In the simplest case, a
more aggressive suppression should be applied if any alternate route/path exists.

5.4 Summary

The behavior of OSPF against flaps has been investigated in this chapter. It is shown that
how flaps adversely affect OSPF routing and the communication environment in general.
The current OSPF fixed timer damping function is not “flap tolerant” since each flap may
lead to a few seconds of lost connectivity. MinLSInterval and MinLSArrival timers can
sometimes adversely affect the network convergence. Further, because OSPF advertises and
computes SPF based upon incorrect information, there are less chances of switching to the
alternative stable route even if one exists.

CHAPTER 5. OSPF FLAP DAMPING 71

A route flap damping technique is implemented to originate AS-External-LSA only when
it is expected that the route redistributed into OSPF is stable. This has shown considerable
improvement over cases where no such techniques were applied.

It is expected that the same solution gives similar results, for different sources of flaps
such as link flaps and adjacency flaps, for other link state routing protocols such as IS-IS [1],
and even for general distributed systems that distribute and synchronize information.

This chapter has described a contribution to improving the availability of a routing sys-
tem, which is a representative network element. In the next chapter, we continue with our
overall strategy to improve the reliability of the Internet by addressing multipath systems.

Chapter 6

MARA: Maximum Alternative Routing
Algorithm

6.1 Overview

In this chapter, a family of new multipath routing algorithms called Maximum Alternative
Routing Algorithm (MARA) are introduced. The multipath routing algorithms are used to
improve the network availability in the following chapter.

Routing systems in the Internet play a very important role, deciding the paths that will be
used for all communication sessions. The path that the routing system calculates determines
factors such as the reachability of the destination, the available amount of bandwidth, and
the communication delay.

The most essential task of routing systems is to calculate routes that do not include
routing loops and are consistent on all routers. The Internet is designed as a hop-by-hop
network so that routers in the network need not maintain per-session communication state,
improving scalability in performance, number of nodes, and number of sessions. Since all
routers in the Internet forward packets autonomously, they must independently make con-
sistent decisions about the path to a destination in order to avoid routing loops. Configuring
consistent routes in a network for a destination without routing loops is synonymous with
constructing a Directed Acyclic Graph (DAG) for the destination. The presence of directed
edges in the DAG that eventually sink to the destination without any cycles indicates that
valid routes have been calculated in each router.

To a first approximation, routing in the Internet is single-path routing. Its goal is to find
the shortest path by assigning each edge a cost and making the routing decision so that,
for each source and destination pair of nodes, the sum of the edge costs in the path is the
minimum. This principle can be seen in all commonly used routing protocols, including
RIP [54], OSPF [59], IS-IS [1], and BGP [82].

72

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 73

Compared to the single-path routing commonly used in the Internet, enabling the use
of multiple paths simultaneously, called multipath routing, can improve availability and
transport capacity. However, in the current shortest-path routing, each router usually selects
a single shortest path to a destination. Thus, the routes to the destination form a sink tree
to the destination (called a Shortest Path Tree, or SPT), where multiple paths in the network
can rarely be used. Although the existing IP routing architecture allows multipath routes
where the path from the current node to the destination branches to multiple nexthops,
multipaths in the shortest path routing require the costs to the destination on these paths to
be equal, which rarely happens. The rare multipath routes in the shortest path routing are
called Equal Cost Multi Paths (ECMPs) [59]. Note that both SPT and its ECMP extension
(no longer precisely a tree) are still a kind of DAG.

Multipath routing can contribute to the availability of the communication network. Al-
though it is commonly believed that the Internet routing systems avoid failures, in the real
world, complex problems that cannot be detected by routing systems occur, such as hard-
ware malfunctions and software bugs in routers [84, 64]. In theory, the rich connectivity
of the Internet should exhibit high reliability. In practice, the Internet routing protocols
reduce the richer graph to a non-redundant tree. The non-redundant tree is vulnerable to
link failures, which induce route recomputations and degrade communication performance
and connectivity for the duration of the recomputation, and to problems in the forwarding
plane of routers, which may remain undetected for extended periods and may ultimately
require manual intervention. Advance calculation of multipaths along with a path switch-
ing mechanism that does not depend on the failure detection of a particular routing system
can contribute to the availability of a communication system. One example of such a path
switching mechanism is Deflection [109], where the end host can request a change of the
communication path by changing the packet tag embedded in IP packets.

Multipath routing may also contribute to the transport capacity of network. In the case
of shortest-path routing, the maximum available bandwidth between a source and a desti-
nation is limited to that of the shortest path. This means that the transport capacity of a
network is unreasonably constrained, despite the possible availability of alternative paths
with additional bandwidth. Multipath routing can alleviate this problem by splitting traffic
to multipaths to balance the network load. Although MPLS [83] may be considered to be a
multipath routing mechanism, this work also considers networks that do not use MPLS.

This chapter proposes a family of novel multipath route calculation algorithms, called
Maximum Alternative Routing Algorithm (MARA), that construct a DAG that includes all
edges in the network graph structure, in order to provide the maximum number of alter-
native paths to all nodes in the network. This is the first study of such DAGs for Internet
routing, to the best of our knowledge. Three new graph problems, all-to-one maximum
connectivity routing problem, all-to-one max-flow routing problem, and all-to-one maxi-

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 74

Base Graph

0

2
3

5

6

7

10

14

4

9

11

13

12

81

Dijkstra’s SPT

0

3
2

1

11

5

6

7

8

10

14

4

12

9

13

MARA’s DAG

0

3
42

1

11

5

6

7

8

10

14

12

9

13

Figure 6.1: Example of routes calculated by SPT and by MARA.

mum shortest path alternatives problem are introduced, to describe the objectives of the
algorithms in this chapter. The new routing algorithms that solve the problems optimally,
called MARA-MC, MARA-MMMF, and MARA-SPE, are defined as applications of an exist-
ing algorithm called Maximum Adjacency Ordering (MA ordering [61, 62]) algorithm to the
Internet routing.

The example of routes calculated by existing Dijkstra’s algorithm and by MARA is il-
lustrated in Figure 6.1. The network graph is shown in “Base Graph” (upper-left part in the
figure), and the routes for the destination node 11 are illustrated as directions on the edges.
Dijkstra’s algorithm tends to calculate a single shortest-path route, as shown in “Dijkstra’s
SPT” (upper-right part in the figure). MARA calculates multipath routes that include all
edges in the graph, as shown in “MARA’s DAG” (bottom in the figure). The MARA’s DAG,
in contrast to the Dijkstra’s SPT, provides redundancy in the routing level which is expected
to contribute to failure recovery, and provides options to each node which route to use, to

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 75

reach the destination.

We proposed Load Balancing Routing Algorithm (LBRA) [68]. The work of LBRA in-
spired us to define the all-to-one maximum flow routing problem, which in turn led to the
optimal utilization of MA ordering algorithm.

The main contributions of this chapter are: (a) the introduction of the new graph rout-
ing problems; (b) the proposal of new multipath routing algorithms that apply MA ordering
algorithm to the Internet routing; (c) the optimality proofs; and (d) the analysis of the algo-
rithms on ISP topologies down from the current Internet.

The rest of this chapter is organized as follows. Section 6.2 presents the related work
of multipath routing algorithms. Section 6.3 defines the problems. Section 6.4 describes
the algorithms and optimality proofs. Section 6.5 presents analysis of the algorithms as an
evaluation. Section 6.6 gives the summary of this chapter.

6.2 Related Work

Maximum flow algorithms such as Dinits’ algorithm [25] consider the max-flow for a source-
destination node pair in the graph, while the all-to-one max-flow routing problem considers
the max-flow among all nodes to the destination.

Some multipath route calculation algorithms have been proposed in the past. Multipath
routing methods proposed in the past are based on, and are extensions of, the shortest path
routing. Hence they require the routing metric setting in advance. MPDA [104] is a link
state routing algorithm which distributes only partial topology information. MDVA [106]
is a distance vector routing algorithm that uses diffusing computation [24]. MPATH [105]
is another distance vector routing algorithm that distributes predecessor node information
of paths. MPDA, MDVA and MPATH calculate multipath routes that are loop-free at every
instance, using the Loop Free Invariant (LFI) condition on the routing metrics. MARA does
not consider the routing metrics specified by network administrators, and calculates routes
directly on graph attributes such as link bandwidth.

FIR [52] computes per network interface routing tables by executing the Shortest Path
First (SPF) calculations separately for each of its neighbors in order to route around the
failure. In [109], Yang and Wetherall proposed Deflection, which extends the LFI condition
by utilizing the identity of the previous hop to produce an increased number of nexthops.
FIR and Deflection are multipath routing methods for the purpose of failure avoidance.
They provide backtracking paths that transit the same node twice, while the method in this
chapter provides simple hop-by-hop multipath routes without backtrackings.

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 76

6.3 Problem Definitions

An undirected graph G = (V,E) and a destination node t ∈ V in the graph are given. For
the destination, it is required to calculate a routing direction on every edge in the graph.
The directions on edges indicate routes for the hop-by-hop routing from every node to the
destination on the graph. To avoid routing loops, the resulting directed graph should not
have any directed cycles; i.e., the goal is to find a directed acyclic graph (DAG) on the input
graph. The DAG is sometimes referred to as a routing graph.

A number of DAGs is allowed for a hop-by-hop network to be used as a routing graph.
In the rest of this section, three problems are defined for the calculation of a DAG that
achieves particular objectives. Note that a DAG signifies routing directions for a destination
node. Thus multiple DAGs must be calculated to produce routes for all source-destination
pairs in the network.

Remark This chapter takes undirected graphs as input, only for ease of explanation. The
algorithms in this chapter support directed graphs, as is; that is, for a given directed graph
and a destination node, a DAG that achieves the particular objective should be found, with-
out any modification required. The only difference of directed input graphs from undirected
input graphs is that the explanation “a DAGwhich includes all edges in the graph” no longer
conforms. For example, when an undirected graph is translated to a directed graph, an edge
in the undirected graph is expressed as a pair of edges with opposite directions in the di-
rected graph. Then either one of the edge would not be used in the DAG calculated by the
algorithms in this chapter.

6.3.1 All-to-one Maximum Connectivity Routing Problem

The first objective is to calculate a DAG with robustness. To improve the robustness of
the routing graph in the network, it is required to maximize the edge connectivity from all
nodes to all destinations. The robustness of reaching from all nodes to the destination in the
network is determined by the minimum connectivity in the routing graph. By maximizing
the minimum connectivity among all nodes to the destination node, an ideal routing that
achieves the highest robustness among all nodes to one destination node can be obtained.
The problem of deciding the directions of edges in order to maximize the minimum con-
nectivity among all nodes to a destination is called the all-to-one maximum connectivity
routing problem. By calculating such routing for every destination, the whole routing that
achieves the most robustness for all source-destination pairs can be obtained.

A formal description of the all-to-one maximum connectivity routing problem is as fol-
lows. An undirected graph G = (V,E) is given, as the graph structure of the network on
which the routes are to be calculated. The input graph is assumed to be connected and may

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 77

have multiple edges between a pair of nodes, i.e., multigraph. A node t ∈V is also given as
the destination.

A possible solution (a routing graph, DAG) is expressed by an orientation of edges (in
other words, a set of directions of all edges). For each orientation p of edges, kp(v, t) denotes
the edge connectivity from v to t in the DAG determined by the orientation p. (kp(t, t) =
+∞ is assumed for every orientation p.) The all-to-one maximum connectivity routing
problem is to find an orientation of edges in the given graph that maximizes the minimum
connectivity among all nodes to the destination t under the condition that the resulting
directed graph is acyclic. The problem is formulated as follows.

Maximize min
v∈V

kp(v, t)

subject to p is an acyclic orientation.

An algorithm to solve this problem and an optimality proof for the algorithm are given
in Section 6.4.2.

6.3.2 All-to-one Max-flow Routing Problem

The next objective is to support as high traffic load as possible. A typical routing algorithm
uses only the shortest path to support traffic load between each source-destination pair.
By using roundabout paths, it becomes possible to support traffic load with excess amount
for the shortest path. The traffic which can be supported from a node to the destination
in the network is determined by the max-flow of the routing graph. Since the minimum
of max-flows among all nodes to the destination node (called the bottleneck) limits the
supported range of the traffic demands, it is important to increase the minimum max-flow.
By maximizing the minimum max-flow to the destination among all nodes, an ideal routing
that achieves the best support for the excessive amount of traffic to the destination can be
obtained. This problem is called the all-to-one max-flow routing problem. By calculating
such routing for every destination, the routing that achieves the best support for all source-
destination node pairs can be obtained.

A formal description of the all-to-one max-flow routing problem is as follows. An undi-
rected graph with link capacity G = (V,E,cap) is given, where cap(v,u) is the capacity of
the edge (v,u) if (v,u) ∈ E , otherwise 0 (cap(v,u) > 0 if and only if (v,u) ∈ E). A node
t ∈V is also given as the destination.

A possible solution (a routing graph, DAG) is expressed by an orientation of edges. For
each orientation p of edges, fp(v, t) denotes the amount of max-flow from v to t in the DAG
determined by the orientation p. (fp(t, t) = +∞ is assumed for every orientation p.) The all-
to-one max-flow routing problem is to find an orientation of edges in the given graph that
maximizes the minimum max-flow among all nodes to the destination t under the condition

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 78

that the resulting directed graph is acyclic. The problem is formulated as follows.

Maximize min
v∈V

fp(v, t)

subject to p is an acyclic orientation.

An algorithm to solve this problem and an optimality proof for the algorithm are given
in Section 6.4.3.

6.3.3 All-to-one Maximum Shortest Path Alternatives Problem

Most existing Internet routers employ shortest-path routing. When creating a new routing
graph, it may be preferable to construct a DAG such that it includes the shortest path tree
(SPT). If a new routing is consistent and is a superset of the shortest path routing, new
routers and shortest path routers can coexist in the network simultaneously. Routing algo-
rithms proposed in the past (e.g., FIR [52], N-hub [17], and Deflection [109]) extend or utilize
the shortest path routing.

The objective of this section is to calculate a DAG that is consistent and is a superset
of the shortest path routing, in order to obtain higher robustness in routing graphs. The
problem of deciding the directions of edges to maximize the minimum connectivity among
all nodes to a destination under the constraint of including SPT and the graph extended
by ECMP, is called the all-to-one maximum shortest path alternatives problem. It is also
possible to consider a problem of calculating a DAG that extends the shortest path routing,
with the best traffic load support.

A formal description of the all-to-one maximum shortest path alternatives problem is as
follows. An undirected graph with link costs G = (V,E,cost) is given, where cost(v,u) > 0
gives the cost of the edge (v,u) if (v,u) ∈ E , otherwise +∞ (the path with cost +∞ is
considered as unreachable). A node t ∈V is also given as the destination.

For an orientation p of edges, kp(v, t) denotes the edge connectivity from v to t in the
DAG determined by the orientation p. (kp(t, t) = +∞ is assumed for every orientation p.)
The all-to-one maximum shortest path alternatives problem is to find an orientation of edges
in the given graph that maximizes the minimum connectivity among all nodes to the desti-
nation t under the condition that the resulting directed graph is acyclic and the orientation
is a superset of the orientation in the shortest path tree (denoted by pspt). The problem is
formulated as follows.

Maximize min
v∈V

kp(v, t)

subject to p ⊇ pspt ,

p is an acyclic orientation.

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 79

An algorithm to solve this problem and an optimality proof for the algorithm are given
in Section 6.4.4.

6.4 Algorithms

In this section, algorithms to solve the problems denoted in Section 6.3 are described. Instead
of deciding the direction of each edge independently, a permutation of nodes is determined
by the algorithms (i.e., nodes are labeled from 1 to n). A permutation of nodes sets the
direction of each edge from the higher-labeled node to the lower-labeled node. It is known
that constructing a DAG on an undirected graph is equivalent to deciding a topological order
of nodes [2].

First, the MA ordering proposed by Nagamochi and Ibaraki [61] is reviewed in Sec-
tion 6.4.1. In Sections 6.4.2, 6.4.3, and 6.4.4, new algorithms based on the MA ordering are
proposed in order to solve the problems introduced in Sections 6.3.1, 6.3.2, and 6.3.3, respec-
tively.

6.4.1 MA Ordering

Let G =(V,E) be an undirected graph that has n nodes and m edges. An ordering v1,v2, . . . ,vn

of nodes is called an MA ordering if an arbitrary node s is chosen as a starting point v1, and
after choosing the first i nodes as v1,v2, . . . ,vi, the (i + 1)-st node vi+1 is chosen from the
remaining nodes v that have the largest number of edges between v and {v1, . . . ,vi}. It
is known that MA ordering is useful for various problems on graphs, such as identifying
a minimum cut between two nodes and solving the edge-connectivity augmentation prob-
lem [62]. An algorithm to compute an MA ordering is given in Algorithm 1, where d(v,S)
denotes the number of edges between a node v and a set of nodes S (i.e., the number of edges
from v to one of the nodes in S).

For a capacitated, undirected graph G = (V,E,cap), an ordering similar to the MA
ordering is also defined. In this case, instead of choosing a node v ∈ T with the largest
d(v,S) in Line 5, a node v with the largest ∑u∈S cap(v,u) is chosen.

By using an appropriate data structure such as Fibonacci heap [32], an MA ordering for
an undirected graph G = (V,E) and a node s ∈V can be obtained in O(m+n) time for the
case without link capacity and O(m+n logn) time for the case with link capacity [61].

6.4.2 MARA-MC

Now an algorithm that solves the all-to-one maximum connectivity routing problem opti-
mally is proposed. The algorithm is called MARA-MC, where MC stands for maximum con-
nectivity. MARA-MC is very simple: An MA ordering for an undirected graph G = (V,E)

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 80

Algorithm 1MA ordering algorithm.
1: procedure MA ordering(G = (V,E),s ∈V)
2: v1 ← s, S = {s}, T = V \{s}
3: i ← 2
4: while i ≤ |V | do
5: choose a node v ∈ T with the largest d(v,S)
6: vi ← v, S = S∪{v}, T = T \{v}
7: i ← i+1
8: end while
9: output ordering (v1,v2, . . . ,vn) of nodes
10: end procedure

and an destination node t ∈ V is computed using the destination t as the initial node s in
Algorithm 1. Then the direction of each edge is set from the higher-labeled node to the
lower-labeled node. The direction on an edge is interpreted as a route to the destination,
with the head of the directed edge being the nexthop of the route. The MA ordering cal-
culates routes from all nodes to the destination t . In order to determine routes among all
source-destination node pairs in the network, the MA ordering algorithm must be executed
for each destination in the network separately, i.e., n times. Hence MARA-MC runs in
O(m + n) time for a destination; O(mn + n2) time for all source-destination pairs. A node
must calculate routes for all source-destination pairs to find the routes from the node to all
destinations in the network.

Below, an optimality proof for MARA-MC is given. Let us define the bottleneck node v
in an orientation p as the lowest-labeled node with the minimum kp(v, t), where an orienta-
tion p of edges is given with a permutation of nodes; i.e., nodes are labeled from 1 to n and
each edge is headed to the lower-labeled node. First, in the following lemma, it is shown
that the minimum cut between v and the destination t is always the neighboring cut of the
bottleneck node v.

Lemma 6.4.1. Let v be the lowest-labeled node with the minimum kp(v, t). Then, kp(v, t) =
d(v,V ′) holds, where V ′ is the set of nodes which have lower-labels than v.

Proof. By using a relationship between the cut and the connectivity on a graph, kp(u′, t) ≤
d(u′,U) holds for every node u′ , t , where U is a set of nodes having lower-labels than
u′. In other words, the connectivity from u′ to t , i.e., kp(u′, t), cannot exceed the number of
edges in its neighboring cut, d(u′,U).

The equality in Lemma 6.4.1 is proven by contradiction. Suppose that kp(v, t) < d(v,V ′)
holds. The max-flow min-cut theorem on a directed graph [22] implies that there exists a
directed cut X (i.e., a partition of nodes) whose size is equal to the connectivity from v to t ,

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 81

V ′

V ′′

v

d(v, V ′)

v′

X
(kp(v, t))

kp(v
′, t)

t

1labelingn

Figure 6.2: The relation between v, V ′, v′, V ′′, X and t in Lemma 6.4.1.

i.e., kp(v, t). Let us see Figure 6.2 as an example. Figure 6.2 shows the cut X in the center,
and v′ is assumed to be the lowest-labeled node such that v and v′ belong to the same subset
of nodes partitioned by X . Then, the following inequalities hold:

kp(v, t) ≥ d(v′,V ′′) ≥ kp(v′, t), (6.1)

where V ′′ is the set of nodes which have lower-labels than v′ (V ′′ is also shown in the
upper right in Figure 6.2). This contradicts the assumption that v is the lowest-labeled node
with the minimum connectivity to t . �

Theorem 6.4.2. MARA-MC solves the all-to-one maximum connectivity routing problem
optimally.

Proof. Suppose that the MA ordering algorithm using the destination node t as an initial
node gives a label i to node vi for every node in V (i.e., the destination node has label 1,
t = v1). Call the orientation of edges from the higher-labeled node to the lower-labeled node
“ma,” and let gma be the objective value for this orientation, i.e., the minimum connectivity
among all nodes to the destination t . Vi = {v1,v2, . . . ,vi−1} denotes the set of nodes which
have smaller labels than vi. By the definition of d(v,V ′), d(v,B) ≤ d(v,A) if B ⊆ A holds.

Let vk be the lowest-labeled node whose connectivity kma(vk, t) to the destination node t
in “ma” is the smallest. By using Lemma 6.4.1, the following equalities hold:

gma = kma(vk, t) = d(vk,Vk). (6.2)

From a property of the MA ordering algorithm (in Line 5 of Algorithm 1), d(vi,Vk) ≤
d(vk,Vk) holds for i = k +1,k +2, . . . ,n, because vk is chosen earlier than vi.

Assume that the optimal ordering, whose orientation is denoted by “opt ,” is better than
the MA ordering (i.e., gopt > gma holds). Let vl be the node with the smallest label in opt
among a set of nodes {vk,vk+1, . . . ,vn}. In other words, vl is the node which is to the left

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 82

ma

opt

Vk

vn, . . . , vl, . . . , vk, . . . , . . . , v1(= t)

vx, . . . , vk, . . . , . . . , vl, . . . , v1(= t)

V ′

kma(vk , t) = gma

Figure 6.3: The optimality proof of MARA-MC.

of vk in “ma”, but is the rightmost node in “opt” among the nodes {vk,vk+1, . . . ,vn}. This is
illustrated in Figure 6.3. Then, the following equalities and inequalities hold:

gopt ≤ kopt(vl, t) ≤ d(vl,V ′) ≤ d(vl,Vk) ≤ d(vk,Vk) = gma, (6.3)

where V ′ is the set of nodes having smaller labels than vl in opt (shown in bottom right
of Figure 6.3). This contradicts the assumption that there exists a better orientation opt with
gopt > gma. �

6.4.3 MARA-MMMF

The algorithm that solves the all-to-one max-flow routing problem optimally is calledMARA-
MMMF, where MMMF stands for maximizing the minimum max-flow. MARA-MMMF
computes an MA ordering for an undirected graph with link capacity G = (V,E,cap) us-
ing ∑u∈S cap(v,u) instead of d(v,S) to consider the max-flow rather than the connectivity.
The difference between MARA-MC and MARA-MMMF is only the input (the graph con-
tains link capacity) and the preference on the node (larger max-flow is preferred over larger
connectivity). MARA-MMMF runs in O(m + n logn) time for a destination node, and in
O(mn+n2 logn) time for all node pairs.

The optimality proof for MARA-MMMF is very similar to that of MARA-MC. The op-
timality of MARA-MMMF can be obtained by transforming the proof of MARA-MC where
d(v,S) and kp(v, t) are substituted by ∑u∈S cap(v,u) and fp(v, t), respectively.

6.4.4 MARA-SPE

In this section, an algorithm that solves the all-to-one maximum shortest path alternatives
problem is proposed. The algorithm is called MARA-SPE, where SPE stands for shortest
path extension. MARA-SPE consists of two stages: (1) a shortest path tree (or a partial
order of nodes in general case) on the input graph G = (V,E,cost) is computed using the
destination node t as the root of the tree, (2) a routing graph from all nodes to the destination

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 83

is calculated under the condition that the resulting directed graph is acyclic and all edges
in the shortest path tree have directions from leaves to the root (i.e., toward the destination
node t) in the DAG.

In the first stage, MARA-SPE computes a shortest path tree by using Dijkstra’s algo-
rithm. This is done in O(m + n logn) time. In the second stage, MARA-SPE computes an
ordering of n nodes with an algorithm similar to the MA ordering algorithm. In Line 5 of
Algorithm 1, a node v with the largest d(v,S) was chosen among all v ∈ T for an MA order-
ing. Instead of this condition, a node v with the largest d(v,S) was chosen among all nodes
v ∈ T ′, where T ′ ⊆ T is a set of nodes whose ancestors in the SPT are already chosen in
Line 5 (i.e., all the ancestors of the node v in the SPT belong to S). It is possible to choose a
node v ∈ T ′ with the largest d(v,S) in O(logn) time with a heap [89].

Note that a very similar algorithm can be applied to the following problem: Find an
orientation of edges in the given graph that maximizes the minimum max-flow among all
nodes to the destination t under the condition that the resulting directed graph is acyclic and
the orientation is a superset of the orientation in the shortest path tree (denoted by pspt).
MARA-SPE (and the very similar algorithm) run in O(m + n logn) time for a destination
node, and in O(mn+n2 logn) time for all node pairs.

At the end of this section, let us see an optimality proof for MARA-SPE. First, MARA-
SPE always output a permutation of n nodes; that is, the size of node set T ′ is at least 1
for any i ≤ |V | in Line 5 since the shortest path tree (or its extensions) must not have any
directed cycles. It is also clear that the resulting DAG includes all the edges in the shortest
path tree with those correct directions (this property also comes from Line 5). The optimality
on the objective value can be obtained very similar to that of MARA-MC.

6.5 Evaluation

MARA-MC is evaluated for the number and the length of paths, the computational com-
plexity, and the computation time. Since the primary objective of MARA are to calculate
as many alternative paths as possible, the number of paths is the most important metric for
the purpose of this work. Advantage in the number of paths of MARA-MC over another
multipath calculation algorithm, LFI, is shown.

For computation time, an implementation of the MARA-MC with a (basic) heap (i.e.,
it runs in O((m + n) logn) time) is evaluated in this section. Even though there exists a
faster O(m + n) implementation for all-to-one maximum connectivity routing problem as
mentioned earlier, this version of MARA-MC gives, at least, an indicative estimate whether
MARA, especially MARA-MC and MARA-MMMF, are practical. Evaluation of other re-
lated algorithms, such as the faster algorithm of all-to-one maximum connectivity routing
problem and MARA-SPE are left as future work.

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 84

Table 6.1: Average and standard deviation of the number, the average length, and the max-
imum length of paths. The average length increases with multipath algorithms due to the
active use of secondary, longer paths.

#paths avg path len max path len
AS num algorithm avg stddev avg stddev avg stddev

Dijkstra 1.37047 0.62119 5.79252 1.77890 5.93393 1.86591
AS1221 LFI 3.36870 3.90845 6.03323 1.84686 6.34677 2.01281

MARA-MC 26.27146 31.46643 8.24450 2.98650 10.60143 4.30103
Dijkstra 2.07190 1.69354 6.07565 2.13137 6.23442 2.22470

AS1755 LFI 16.58821 44.47381 6.57977 2.21208 7.31221 2.66163
MARA-MC 872.52753 2335.68504 11.70987 4.53271 16.44426 6.79061
Dijkstra 2.14138 1.97148 6.82304 2.74271 7.17437 2.94942

AS3257 LFI 607.56405 2999.14628 7.98135 3.09047 9.65547 4.33032
MARA-MC 10176.30097 37125.45047 12.40258 4.54230 18.45062 7.50249
Dijkstra 1.88704 1.69201 5.87894 2.15526 6.08406 2.36544

AS3967 LFI 75.98442 232.45061 7.02206 3.00882 8.35832 4.05909
MARA-MC 42.08098 66.93976 8.61961 3.30758 10.95245 4.63834

6.5.1 Number and Length of Paths

MARA-MC is evaluated by comparing the number and length of the computed paths on
topologies collected using Rocketfuel [92]. The number of paths is calculated by enumerating
all of the paths on the DAG, for each source-destination pair. Results for four ASes, AS1221,
AS1755, AS3257, and AS3967, are shown in Table 6.1. Since the enumeration of paths takes
time exponential in the number of edges, the evaluation of two larger ISPs, AS1239 and
AS6461, are omitted here, but will be included in results below. The Dijkstra algorithm used
in the evaluation calculates ECMP properly.

The average and standard deviation of the number, the average length, and the max-
imum length of paths among source-destination pairs are shown in Table 6.1. The table
shows that on most topologies, MARA-MC outperforms LFI in the number of calculated
multipaths. In AS3967, LFI outperforms MARA-MC in the average number of paths. This
is because LFI computed a large number of paths to a small set of source-destination pairs
(more than 1000 paths to 1.31% fraction of source-destination pairs). The average and max-
imum length of paths tend to become larger when more multipaths are calculated. The use
of multipaths implicitly presumes the use of longer roundabout paths.

The CCDF of the number, the average length (in nodes), and the maximum length of
paths are shown in Figures 6.4 and 6.5. The figures show that MARA-MC consistently
calculates a large number of multipaths for most source-destination pairs, while the ability
of LFI to find multipaths is heavily dependent on the topology. Dijkstra, which calculates
only equal-cost multipaths, finds few for most source-destination pairs. For example, in

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 85

Table 6.2: Computational complexities of routing algorithms. l denotes the number of neigh-
boring nodes for a node, m the number of edges in the graph, and n the number of nodes.

At each node Overall

Bellman-Ford O(mn) O(mn2)
Dijkstra O(m+n logn) O(mn+n2 logn)
LFI & Deflection-1 O(lm+ ln logn) O(mn+n2 logn)
Deflection-2 O(lm+ ln logn+ l2n) O(mn+n2 logn+m2)
Deflection-3 O(lm+ ln logn+ l2n) O(m2n+mn2 logn)
MARA-MC O(mn+n2) O(mn+n2)
MARA-MMMF O(mn+n2 logn) O(mn+n2 logn)

AS1221, MARA calculates more than 15 multipaths for 52.65% of source-destination pairs,
while LFI does for only 2.17% . The average path length and the maximum path length of
LFI and Dijkstra are roughly the same for both AS1221 and AS1755. MARA-MC exhibits
longer path length. For example in AS1221, the fraction of source-destination pairs that has
more than 8 node path length is 14.89% for Dijkstra, and 16.5% for LFI, while it is 55.96%
for MARA-MC.

In AS3967, the average number of paths by LFI outperformed MARA-MC (Table 6.1).
However, the distribution of number of paths in AS3967 still exhibits the preferable charac-
teristic of MARA. In the low range, MARA-MC provides the same paths to larger fraction of
source-destination pairs than LFI. For example, LFI provides more than 15 paths to 38.43%
of source-destination pairs, while MARA-MC provides to large fraction, which is 53.03%.
Providing a small number of multipaths to larger part of the network is preferred over pro-
viding a large number of multipaths to a small part of the network, for failure avoidance
purpose.

6.5.2 Computational Complexity

Table 6.2 gives the computational complexities for several algorithms. The middle column
is the run time for the algorithm as run at each node (router) in the network; the right-hand
column is the network-wide total computation necessary for all nodes to calculate the routes
from all nodes to all destinations. l denotes the number of neighboring nodes for a node, m
the number of edges in the graph, and n the number of nodes.

Bellman-Ford [37] is the routing algorithm utilized in Distance Vector routing algorithms
such as RIP. For each node, it calculates n routes in at most m steps, and globally it calculates
this n times.

The complexity of Dijkstra, used in OSPF and IS-IS, is similar to that of MA Ordering,
in that it is O(m+n logn) by appropriate use of Fibonacci heap. Since Dijkstra calculate all
routes from a source node to all destinations, globally it must be calculated n times (one for

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 86

each source node).

Deflection-1, Deflection-2 and Deflection-3 indicate Rule-1, Rule-2, Rule-3 of Deflection,
respectively. Deflection-2 and Deflection-3 are important theoretical mileposts for compar-
ison, but cannot practically be deployed, because they calculate routes with routing loops
that require special treatment in packet forwarding and routing tables. They are described
here for comparison purpose, only.

Deflection-1 is equivalent to LFI, which is used in MPDA, MDVA, and MPATH. For
a node, LFI and Deflection-1 require the Dijkstra calculation for each neighboring node,
and comparisons of the neighbor’s cost with the node’s cost for each destination, which is
O(ln). The complexity of LFI and Deflection-1 is globally n times Dijkstra plus m times cost
comparisons for each destination, which is O(mn).

Deflection-2 compares the costs of previous hop in the packet forwarding path (called
previous node), with that of (possible) successor nodes in the path. Hence, at each node
it requires Dijkstra l times and cost comparison

(l
2

)
times for each destination, leading to

the complexity O(lm + ln logn + l2n). Globally it requires Dijkstra n times in addition to
the cost comparisons for all neighboring pairs of nodes (m times, for downhill), and for all
neighboring pairs of edges (

(m
2

)
times in the worst case, for two-hop). Hence the global

complexity is O(mn+n2 logn+m2).

Deflection-3 compares a successor node’s cost on a modified graph with one edge re-
moved, the node’s cost on another modified graph depending on the previous node, and
the previous node’s cost on the original graph, to calculate routes from a node to a des-
tination. This approach means that Deflection-3 requires Dijkstra on 3l different graphs,
and cost comparison

(l
2

)
times for a destination in a node. This leads to the complexity

O(lm + ln logn + l2n) at each node. Globally Deflection-3 requires Dijkstra for each one
edge removed from the graph, for each destination (which is mn times). The cost compar-
isons are performed for all neighboring pairs of nodes (m times, for downhill) and for all
neighboring pairs of edges (

(m
2

)
times in the worst case, for two-hop). Hence the global

complexity is O(m2n+mn2 logn).

The bottom line of the table shows the complexity of two of MARA algorithms. Unlike
the above algorithms, MARA does not prune the graph; the connectivity from nodes not on
the shortest path can still contribute to multipaths, so all edges in the graph are retained.
Conversely, the calculation is the same at every node or router; it is, in theory, possible to
share results of the calculation among multiple nodes if desired.

Of course, the O(·) notation, by definition, hides a constant factor and transient terms
in the execution time. Those terms can be of critical importance when considering whether
to deploy a system in the real world. The next subsection addresses these concerns.

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 87

6.5.3 Computation Time

The computation times of three of the routing algorithms are shown in Figure 6.6. The
algorithms are implemented in C and executed on a Linux PC with Intel R© Pentium R© D
3.20GHz CPU and 4GB memory. The algorithms use the more practical priority queue, i.e.,
a heap, rather than a Fibonacci heap, hence the complexities differ somewhat from those
shown in Section 6.5.2. Our implementation of Dijkstra is O((m + n) logn), LFI O(l(m +
n) logn), and MARA-MC O(n(m+n) logn). The computation time to calculate routes to all
destinations in the network is measured 1000 times for each source node. The calculation
naturally requires a different amount of time for each node in the network, as reflected
in the the CDF of the computation time, as shown in Figure 6.6. The time is measured
by gettimeofday() in a user-mode software application, hence the operating system’s
process scheduling may be negatively affecting the variability of the results. Allocation and
deallocation of the necessary memory is included in the computation time. Additionally,
MARA is implemented as labeling algorithm, while LFI and Dijkstra are implemented so
that many memory allocations are necessary. This means that LFI and Dijkstra can be
implemented more faster. However, MARA’s feasibility remains the same even when the
other algorithms are implemented more efficiently.

The results show that the computation time of MARA-MC is reasonable. In all of the
ASes examined, the execution times are tightly clustered and are only a small fraction of
a second. In most cases, MARA-MC is faster than LFI. For example, 94.25% fraction of
executions of MARA-MC for AS1755 terminate within 12 milliseconds, while only 36.29%
terminate in the case of LFI.

AS1221 and AS6461 include a disconnected component in the graph. Since Dijkstra finds
only the routes for connected component from the source, the computations for those nodes
terminate quickly. MARA does not determine whether the destination node is connected
from the computation node during the course of the computation, and hence calculate all
routes for nodes in disconnected component, which eventually fail to find routes to other
parts of the graph. This suggests that the MARA should be used after checking the basic
connectivity of the graph.

6.6 Summary

Migrating the Internet from essentially single-path routing to multipath routing can poten-
tially improve the fault resilience of the network, raise the aggregate bandwidth available
between two nodes, and increase the utilization of otherwise idle resources. One step to-
ward the realization of this goal is the development of algorithms for finding the multipath
routes on the network graph.

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 88

Toward this goal, three new multipath routing problems are introduced. The problem of
finding a DAG that includes all edges, and that maximizes the minimum connectivity among
the nodes to a destination, is defined as the all-to-one maximum connectivity routing prob-
lem. The similar problem of maximizing the minimummax-flow we call the all-to-one max-
flow routing problem. Finally, the all-to-one maximum shortest path alternatives problem
is the problem of maximizing the minimum connectivity while satisfying the condition of
being consistent with the existing shortest path routing algorithms.

A family of three optimal algorithms to solve these problems are developed, which we
call MARA-MC, MARA-MMMF, and MARA-SPE. This family is called MARA, for Maxi-
mum Alternative Routing Algorithms. All three algorithms calculate a DAG that includes
all of the edges in the graph. These routing algorithms compute many multipaths, which
may be used in the Internet to improve failure avoidance. MARA-MC is evaluated on the
number and the length of paths and on the algorithm’s computational time, using topolo-
gies inferred from real, large networks. The results showed that MARA-MC calculates a
significant number of multipaths; for the several autonomous systems (ASes) evaluated, the
lowest average number of paths found was more than twenty-five. The computation time
on a modern Intel processor is sub-one second, verifying its feasibility in practice.

In this chapter, routing algorithms that calculate many multipaths with objectives of
maximizing connectivity and max-flow are developed. The following chapter presents how
to use these routing algorithms to improve network availability.

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 89

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

Fr
ac

tio
n

of
 s

rc
-d

st
 p

ai
rs

#Paths in AS1221

MARA-MC
LFI

Dijkstra

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

Fr
ac

tio
n

of
 s

rc
-d

st
 p

ai
rs

#Paths in AS1755

MARA-MC
LFI

Dijkstra

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16

Fr
ac

tio
n

of
 s

rc
-d

st
 p

ai
rs

Average path length in AS1221

MARA-MC
LFI

Dijkstra

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24

Fr
ac

tio
n

of
 s

rc
-d

st
 p

ai
rs

Average path length in AS1755

MARA-MC
LFI

Dijkstra

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22

Fr
ac

tio
n

of
 s

rc
-d

st
 p

ai
rs

Maximum path length in AS1221

MARA-MC
LFI

Dijkstra

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 4 8 12 16 20 24 28 32 36

Fr
ac

tio
n

of
 s

rc
-d

st
 p

ai
rs

Maximum path length in AS1755

MARA-MC
LFI

Dijkstra

Figure 6.4: Comparison on distributions on the number, the average, and the maximum
length of paths for AS1221 and AS1755.

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 90

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

Fr
ac

tio
n

of
 s

rc
-d

st
 p

ai
rs

#Paths in AS3257

MARA-MC
LFI

Dijkstra

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

Fr
ac

tio
n

of
 s

rc
-d

st
 p

ai
rs

#Paths in AS3967

MARA-MC
LFI

Dijkstra

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Fr
ac

tio
n

of
 s

rc
-d

st
 p

ai
rs

Average path length in AS3257

MARA-MC
LFI

Dijkstra

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18

Fr
ac

tio
n

of
 s

rc
-d

st
 p

ai
rs

Average path length in AS3967

MARA-MC
LFI

Dijkstra

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 4 8 12 16 20 24 28 32 36 40

Fr
ac

tio
n

of
 s

rc
-d

st
 p

ai
rs

Maximum path length in AS3257

MARA-MC
LFI

Dijkstra

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24

Fr
ac

tio
n

of
 s

rc
-d

st
 p

ai
rs

Maximum path length in AS3967

MARA-MC
LFI

Dijkstra

Figure 6.5: Comparison on distributions on the number, the average, and the maximum
length of paths for AS3257 and AS3967.

CHAPTER 6. MARA: MAXIMUM ALTERNATIVE ROUTING ALGORITHM 91

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45

Fr
ac

tio
n

of
 tr

ia
l

Computation time (msec) in AS1221

MARA-MC
LFI

Dijkstra
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 150 300 450 600 750 900

Fr
ac

tio
n

of
 tr

ia
l

Computation time (msec) in AS1239

MARA-MC
LFI

Dijkstra

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24

Fr
ac

tio
n

of
 tr

ia
l

Computation time (msec) in AS1755

MARA-MC
LFI

Dijkstra
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 15 30 45 60 75 90 105 120

Fr
ac

tio
n

of
 tr

ia
l

Computation time (msec) in AS3257

MARA-MC
LFI

Dijkstra

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24

Fr
ac

tio
n

of
 tr

ia
l

Computation time (msec) in AS3967

MARA-MC
LFI

Dijkstra
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200 250 300 350 400

Fr
ac

tio
n

of
 tr

ia
l

Computation time (msec) in AS6461

MARA-MC
LFI

Dijkstra

Figure 6.6: Computation time of algorithms.

Chapter 7

Drouting Architecture: A Multipath
Routing Architecture

7.1 Overview

The Internet communications are disrupted by failures of routers, circuit failures, fibre op-
tic cable cuts, misconfigured routers, software bugs in routers, and many other reasons. In
general, communication reachability is recovered through the recomputation of alternative
routes. Routing systems have the responsibility to detect failures and to recompute alterna-
tive routes.

An important problem arises here that there are many cases where the routing system
cannot detect the failures, due to its unlimited variety of causes. For example, malfunctions
caused by either hardware or software bugs in the forwarding plane cannot be detected
through OSPF Hellos [59] or BGP Keepalives [82]. In case of a failure that cannot be detected
by the routing system, it may take a long time (e.g. a few hours) for the network to recover,
as the network administrator informed of the failure by users examines and recovers it
manually. Although the length of the failure duration depends on the individual networks,
past studies showed that a small fraction of failures can last more than an hour. In a study
at an ISP [50], approximately 20% of failures lasted more than two hours. It is shown in
[40, 56] that about 10% of real failures lasted more than 20 minutes, and approximately 5%
lasted more than one hour, in the Sprint backbone.

Many methods have been proposed to minimize service downtime, such as multipath
routing, IP restoration, and path protection (see Section 7.2 for related work). Recently a
method called Deflection has been proposed [109]. Deflection constructs a multipath rout-
ing on the existing shortest-path machinery and utilizes those roundabout paths when the
packet tag is changed by the source host, as explained in Section 7.3.

In this chapter a novel routing architecture called Drouting is proposed. Drouting sim-

92

CHAPTER 7. DROUTING ARCHITECTURE 93

plifies and generalizes Deflection and improves the ability to route around failures. The
Drouting architecture consists of two components. First is the multipath route calculation
component. It computes multipath routes by constructing Directed Acyclic Graphs (DAGs)
that include all links in the network. DAGs that include all links in the network have not
been studied for the purpose of the Internet routing. The second component of Drouting is
the tag forwarding framework. The IP packet forwarding procedure is slightly changed to
select the actual nexthop from the precomputed multipath routes based on the packet tag. A
packet tag corresponds to a network path deterministically without any state management
on routers. The tag forwarding component enables end hosts to change a route dynamically,
which can be based solely on user preferences.

Drouting architecture is evaluated by comparing it to Deflection using simulations. The
comparisons are on: (1) the number of nexthops, (2) the number of paths, (3) the length of
paths and (4) the probability of recovery from failures by changing the packet tag. Drouting
exhibits similar results with Deflection in the first three points, while in terms of the failure
recovery probability, Drouting outperforms Deflection on most topologies.

The rest of this chapter is organized as follows. Related works are given in Section 7.2.
In Section 7.3 the Deflection is reviewed as a competitor. In Section 7.4 the Drouting archi-
tecture and how it works are described. In Section 7.5 the evaluation results and its analysis
are presented. This chapter is concluded in Section 7.7.

7.2 Related Work

RON [5], Detour [86] and PlanetLab [74] utilize overlay networks for the purpose of failure
recovery. MPDA [104], MDVA [106] and MPATH [105] are multipath routing algorithms
that calculate non-shortest multipaths. They use a condition for the routing metric called
the Loop Free Invariant (LFI). FIR [52] computes routing tables per network interface us-
ing the previous hop information in the routing calculation in order to improve network
availability when transient failures occur. IPFRR [7] explores calculating loop-free alter-
nate nexthops using a routing metric condition similar to LFI. Deflection [109] extends LFI
(which is equivalent with what they call Rule-1) and calculates more multipaths depending
on the previous hop. It also proposed a packet tag system for end-systems to “deflect” the
path upon failures.

Until Deflection, little has been discussed regarding an actual architecture to utilize mul-
tipaths for the purpose of failure recovery.

CHAPTER 7. DROUTING ARCHITECTURE 94

7.3 Deflection Architecture

In this section the Deflection architecture [109] is reviewed to understand for later compar-
ison with our architecture. Deflection is akin to multipath routing schemes. It calculates
multipaths using the specific conditions of routing metrics and the identity of previous hop
in the forwarding of the packet. The nexthop set that forms a loop-free path is called the “de-
flection set”. There are three conditions of routing metrics for a neighbor to decide whether
or not the neighbor can be put in the deflection set. The first, called Rule-1, is equivalent to
LFI [104, 106, 105]. Rule-1 specifies that the neighbor having a lower cost to the destination
can be used as a nexthop of a valid route where no routing loop is guaranteed. Rule-1 calcu-
lates only a small deflection set for a router, and the use of a Rule-1 deflection set does not
achieve sufficient failure recovery capability. Hence, the second condition, Rule-2, is made
to extend Rule-1 by using the identity of the previous hop. Rule-2 specifies (in addition to
Rule-1) that the neighbor having a lower cost than the previous hop can be used as a nex-
thop. Rule-2 calculates many members in the deflection set, and provides sufficient failure
recovery capability, but it can result in a backtracking path that transit a same node twice.
For this reason the path of Rule-2 tends to become longer. To avoid this problem, Rule-3 is
introduced with more complex conditions to prevent immediate backtracks in a path. Rule-3
calculates the shortest path costs on modified graphs where the link from the previous hop
to the calculating node, or from the calculating node to the neighbor, is removed. Then it
compares those costs to decide whether the neighbor can be a nexthop.

Among the three rules, Rule-3 is the best solution and is the major competitor with
our method, since Rule-1 calculates too few nexthops and Rule-2 calculates unrealistic net-
work paths, which backtrack and transit a same node twice. For this reason, Rule-2 is not
considered as a viable competitor in this chapter.

Deflection allows the end host to voluntarily try a different path through the network. In
Deflection, packet tags are used to switch paths within the multipath set. When the end host
detects (or suspects) a failure in the network that the routing system has not yet corrected,
it can switch the packet tag and possibly bypass the failure until the network heals itself. If,
after changing the packet tag, packets still do not reach their destination, the end host can
try another packet tag. Up to ten packet tags are tested; the first five tags to be tested are 1
through 5, then the next five are chosen randomly from the range [6,1023].

In order for routers not to synchronize with other routers in terms of the forwarding
direction for the same packet tag, Deflection proposes to prepare for each router a prime
number p from the first primes (e.g. the first 10) greater than or equal to k (where k is the
size of the deflection set). Then the router uses p to form n = (t mod p) mod k, where t is
the packet tag, and the packet is forwarded to the n-th member in the deflection set. These
rules are followed in later simulations.

CHAPTER 7. DROUTING ARCHITECTURE 95

There are paths that cannot be used in the network, because of the following two rea-
sons. First, two or more routers may choose the same prime number for p. If this condition
occurs, the routers will synchronize in terms of selection of the n-th nexthop in the deflec-
tion set, resulting in the possibility of non-used combinations of nexthops. Second, because
the number of possible tags is 1024, at most 1024 paths can be used for a source-destination
pair. If the network has more than 1024 paths in a source-destination pair, those paths
greater than the number 1024 cannot be used.

Assuming m and n are the number of links and nodes in the graph respectively, and
k is the number of neighbors for a router, complexity for Deflection Rule-3 in a router is
that of 3k times∗ Dijkstra’s SPF [23], hence O(km + kn logn). Calculation of deflection
sets for all routers in the network can be done by one Dijkstra for each router plus one
Dijkstra for each case of one link removed in the network graph. Hence, the complexity is
O((m+n)(m+n logn)).

7.4 Drouting Architecture

7.4.1 Overview of Drouting Architecture

Drouting is similar to Deflection in that both calculate multipath routes and switch a path
using a packet tag. Compared to Deflection, Drouting generalizes the specification of the
packet tag. In Drouting the packet tag is a random value, while in Deflection choosing spe-
cific packet tags is proposed. Another difference is the method of calculating the multipath.
Deflection calculates multipath routes by using the identity of the previous hop (incoming
hop) of a packet and relations between routing metrics. Drouting does not depend on rout-
ing metrics and calculates simple hop-by-hop multipath routes without using the identity of
the previous hop.

The route calculation component of Drouting computes multipath routes by constructing
Directed Acyclic Graphs (DAGs) that include all links in the network. DAGs that include all
links in the network have not been studied for the purpose of the Internet routing.

The tag forwarding component enables end hosts to dynamically change a path based
on user preferences. A packet tag is assigned to a network path deterministically without
having to maintain any states on routers. The packet tag is randomly chosen. A source host
changes its packet tag only when it desires to use another network path. In order to avoid
packet reordering and degradation of TCP performance, source hosts are assumed to assign
the same packet tag for all the packets in one TCP session.

∗Deflection calculates the shortest paths on the graph without the link to the nexthop and with the nexthop
as a root, on the graph without the link from previous hop and with the router itself as a root, and on the graph
with the previous hop as a root.

CHAPTER 7. DROUTING ARCHITECTURE 96

In the beginning, the source host initiates a communication using packet tag 0. The
packet tag 0 is treated as special packet tag that instructs the network to use the default
shortest path. The source host is assumed to detect problems on the communication path
in some way such as a fixed timer for packet losses or dynamic bandwidth estimation (for
methods to detect the bandwidth problems, refer to [45]. This problem is beyond the scope of
this chapter). Once the source host detects a problem, it randomly chooses a new packet tag,
such as 0x159bf. The new packet tag is expected to be assigned to a new communication
path, which may stochastically recover from the problem.

Introducing a special packet tag 0 provides the separation of default routing plane and
backup routing plane. Although Drouting can be used also for the default routing plane,
this chapter focuses on the use only in the backup routing plane, in order to compare the
failure recovery property with Deflection fairly. When Drouting is used also for default
routing plane, a failure case (a combination of source-destination pair and a failure node,
upon which comparisons are based) for Drouting and Deflection would be different, because
Drouting’s default path may traverse the failure node depending on the value of the first
packet tag. (See Section 7.5.1 for the details of the failure recovery simulation.) Thus the
use of Drouting also in default plane makes the evaluation of failure recovery property by
comparison harder, and studying the use of Drouting in default routing plane is left as future
work.

In our architecture, a source node can neither predict nor specify in advance which
network path will be assigned for its packets. A network path is only randomly assigned
to a packet as a result of forwarding the packet with the particular packet tag. However, a
source node can specify the same network path for multiple communication sessions to the
same destination, by using the same packet tag.

Changing the packet tag enables recovery from a long failure even if the routing system
fails to detect the network failure. If a failure occurs in the network and the routing system
can detect the failure, the routing system will automatically recompute network routes,
hence altering network paths to recover from the failure, the same as in the existing Internet.
A source host can use an alternative path by changing the packet tag, regardless of whether
or not the routing system detects (and hence will route around) the failure. By changing
the packet tag, the network path which the packet will take may or may not be changed,
depending on the randomly generated new packet tag.

Our architecture can be used to minimize perceived network downtime as end hosts do
not have to wait for the routing system to finish route recomputations. Furthermore, end
hosts can possibly address QoS performance problems by changing the packet tag when the
performance of the current path deteriorates. For example, congested links and/or over-
loaded routers can be avoided to improve QoS performance.

Figure 7.1 shows an overview of the Drouting architecture. Components modified from

CHAPTER 7. DROUTING ARCHITECTURE 97

��������� 	�

��������

��������� 	�

���������������

����� ��"!����

#�$ �%����&('
�)%�"!*�������

#+$ �%�"�(&('
,-�/.0��� 	�����(�/	1���2%3�3/���%.4.

� ��"!*������%

5�6 7�698�:�;�<>=�? @�A>? B4C/5"?

DE%.0F
G��+	������(�/	

H @/I�J KL@%M�J�54N H @/I�J

OQP%P ? R S9BTJ�R @�U

V NWB4U�I P @�N(J

X 5TJ A>@�N�Y[Z�8�:�\

] BTJ�B�? R U%Y

:�^"_�I0R S9B�?

Z�5�6 7+6�`�a V :+\

��������� 	�

��������

��������� 	�

���������������

����� ��"!��������� ��"!����

#�$ �%����&('
�)%�"!*�������

#�$ �%����&('

�)%�"!*�������

#+$ �%�"�(&('
,-�/.0��� 	�����(�/	1���2%3�3/���%.4.

� ��"!*������%
� ��"!*������%

5�6 7�698�:�;�<>=�? @�A>? B4C/5"?

DE%.0F
G��+	������(�/	

H @/I�J KL@%M�J�54N H @/I�J

OQP%P ? R S9BTJ�R @�U

V NWB4U�I P @�N(J

X 5TJ A>@�N�Y[Z�8�:�\

] BTJ�B�? R U%Y

:�^"_�I0R S9B�?

Z�5�6 7+6�`�a V :+\

Figure 7.1: Overview of the Drouting architecture.

the existing routing architecture are shaded. Notice that Drouting is an intuitive exten-
sion of the basic multipath routing. Only the routing protocols and packet forwarding en-
gine are slightly changed without adding a significant new complication. The packet tag
is assumed to be stored in the IPv6 flowlabel [81], hence no packet format modification is
needed. Because the length of the IPv6 flowlabel field is 20 bits, the packet tag has the
range [1-0xfffff] in this chapter. Changing the packet tag is the task of either application
software or a transport protocol such as SCTP [96]. The routing algorithm in the routing
protocol is discussed in Section 7.4.2. The actual design of the routing protocol is beyond the
scope of this chapter. The packet forwarding framework is discussed in Section 7.4.3.

7.4.2 Multipath Route Calculation

To guarantee loop-free packet forwarding and that each packet will eventually reach its
destination, routes must be calculated such that routes for a given destination construct a
DAG that sinks to the destination. Each route corresponds to a directed link in the DAG. By
following the nexthops of the routes hop-by-hop in the DAG, a packet will eventually reach
its destination without any routing loop.

In the Drouting architecture a method to construct DAGs that include all of the links

CHAPTER 7. DROUTING ARCHITECTURE 98

Network Graph
t

a b c

d e

s

DAG SPT
t

a b c

d e

s

DAG ALL-LINK
t

a b c

d e

s

Figure 7.2: A network graph, the shortest path tree (SPT) as it would be calculated today,
and the DAG that includes all links.

in the network graph is proposed, in order to provide the maximum number of alternative
paths in hop-by-hop routing. The difference between the DAGs utilized by the existing
routing systems and the DAGs that include all links in the network graph is illustrated in
Figure 7.2. Shortest Path Tree (SPT), as shown in the middle of the figure, has been used for
routing on the example network graph shown in the left of the figure. Use of the DAG that
include all links (ALL-LINK), as shown in the right of the figure, is proposed to improve the
failure recovery capability.

A DAG that includes all links can be constructed by topological ordering [2] in which
nodes are labeled from 1 to n and the links are directed from the higher-labeled node to the
lower-labeled node. To construct a DAG that sinks to the destination, labeling is started
from the destination node.

We proposed constructing DAGs usingMaximumAdjacency (MA) ordering [62] to make
DAGs that have the maximum number of paths to the destination. Drouting employs this
method, and the failure recovery property is investigated through simulations for the first
time in this chapter. The formal problem definition and proof for the multipath calculation
method are given in Chapter 6.

The complexity of the MA ordering to calculate a DAG is O(m + n logn). Each router
must calculate all DAGs for each destination. Hence, the complexity of Drouting for both a
router and the overall network is O(mn+n2 logn).

7.4.3 Tag Forwarding

An end host randomly chooses the tag for Drouting in the range [1,0xfffff]. The network
path to be used by a traffic flow will be selected stochastically from the combination of the
nexthops in all intermediate routers.

CHAPTER 7. DROUTING ARCHITECTURE 99

In Drouting, packet tags are random values. Based on this random value, and through
the random switching of a nexthop in the nexthop set in the routers, a stochastic selection
of a network path for a packet tag is achieved.

Each intermediate router performs a routing table lookup by using the IP destination
address as the key (as in the existing Internet). The resulted routing table entry contains
multiple nexthops to the destination. The router selects the nexthop randomly by the packet
tag. The assignment of a packet tag to a nexthop is performed deterministically, such that:
(1) intermediate routers do not need to maintain the state of each traffic flow (i.e., TCP
session or IP source-destination pair), and (2) randomly chosen packet tags yield a network
path randomly.

A perfect hash function Fx : U 7→ U (U is the set represents the tag space) which is
different for each router vx is employed. The nexthop selection is n = Fx(t) mod k (where
t is the packet tag, k is the number of nexthops in the routing table entry, and the selected
nexthop is the n-th nexthop in the routing table entry). The Fx can be implemented as
follows. First, prepare an table tab[|U |] and initialize tab[t] = t for each tag t ∈ U . Next,
swap tab[t] with tab[i] of a random index i for each tag t .

7.4.4 Differences from Deflection

A summary of the differences of Drouting from Deflection is described here.

• Deflection limits the number of tags to 1024, hence the number of paths Deflection
provides are up to 1024. Drouting limits the number of paths to 0xfffff−1 (sub-
tracting special default tag 0).

• The prime number chosen by each router in Deflection may synchronize. This leads
to unused combinations of nexthops, i.e., unused paths. Drouting does not have this
problem.

• The methods used to calculate multipath routes are different. The method of Deflec-
tion considers relations between routing metrics to calculate multipaths, while Drout-
ing calculates the multipaths with maximum connectivity to the destination. Com-
plexity for a router is O(km+ kn logn) in Deflection, and O(mn+n2 logn) in Drout-
ing. This difference comes from the fact that, if a Deflection router has k neighbors, it
calculates the routing tree k times, once assuming each neighbor is the previous hop
(removed from the graph to avoid immediate backtracking). Hence the complexity
of Deflection is parameterized by k (the number of neighbors). In contrast, Drouting
decides the routing graph (basically not tree, because it includes all links), for each
destination. Hence the complexity of Drouting is parameterized by n (the number of
destination nodes). The difference of complexity is hence that of k (more precisely, 3k)

CHAPTER 7. DROUTING ARCHITECTURE 100

and n, and can be deemed to be negligible. Moreover, Deflection requires the memory
space to hold the results of each of 3k Dijkstra runs to finish the calculation process
for a router. In Drouting it is simpler because the result for a destination is indepen-
dent from the result for other destinations, and the memory used for the calculation
of different destination can be released. In summary, the complexities for a router to
execute routing calculation in a network in both methods are equivalent to a constant
multiple of Dijkstra, and hence they are both realistic and reasonable.

7.5 Evaluation

Drouting architecture is evaluated by comparison with Deflection on several topologies us-
ing simulations. The topologies were obtained from Rocketfuel [92]. The size of each net-
work graph and the description are shown in Table 7.1. Telstra, Sprint, Ebone, Tiscali,
Exodus and Abovenet are ISP topologies inferred by Rocketfuel.

Table 7.1: The network graphs for simulations of Drouting architecture.
Name #nodes #links description

Telstra 108 153 AS1221
Sprint 315 972 AS1239
Ebone 87 166 AS1755
Tiscali 161 328 AS3257
Exodus 79 147 AS3967
Abovenet 141 374 AS6461

Four systems are compared on these topologies: Deflect-1, Deflect-2, Deflect-3 and
Drouting. The notations Deflect-1, Deflect-2, Deflect-3 indicate Deflection routing Rule-
1, Rule-2, Rule-3 in [109] respectively. Deflect-3 is the major competitor, as mentioned in
Section 7.3.

The comparisons were done in four aspects: (1) the probability of success to recover from
failures (i.e., the failure recovery probability), (2) the number of nexthops, (3) the number
of paths, and (4) the length of paths. Improving the failure recovery probability is the pri-
mary purpose of the four systems, and thus evaluated first. Comparisons in the number of
nexthops, the number of paths, and the length of paths are performed to reveal overheads
and side-effects of these technologies. The simulation method and the interpretation of path
comparisons are given in Sections 7.5.1 and 7.5.2, respectively.

The results of simulations and analysis on these topologies were largely the same. Thus,
only the result on the network topology of Telstra is given in this chapter. The results of

CHAPTER 7. DROUTING ARCHITECTURE 101

simulations and analysis on other topologies are given in Appendix B.

7.5.1 Failure Recovery Simulation Method

The failure recovery simulations were done as follows. First, a node was randomly chosen to
fail. Then, for every source-destination pair, it was checked whether the failure node was on
the default shortest path calculated by the Dijkstra calculation. For each source-destination
node pair that included the failure node in the default shortest path (this is called “a failure
case”), a tag was chosen to see if the retry using the new tag avoids the failed node in
forwarding the packet. If the retry did not avoid the failed node, another new tag was
tested. At most ten tags were tested. For each failure case, the number of tags tested before
the failed node was successfully avoided is recorded. This procedure was executed for each
method, Deflection and Drouting, with the same source-destination pair and failure node.
1000 random failure cases are tested for both Deflection and Drouting, and recorded the
fraction of failure cases in which the failure was successfully avoided within x tag changes
(retries).

Additionally, similar failure recovery simulation with 10 failed nodes are performed. A
case where one of the failed nodes affect the default shortest path is called “a 10 failures
case”. The simulation is called the “10 failures recovery simulation”. The single failure ver-
sion is called the “single failure recovery simulation” in contrast to the 10 failures recovery
simulation.

Notice that the assumption here is that Drouting is used as a backup routing plane,
where the routing plane is constructed separately from the default routing plane. This is
just like Deflection, and is done to compare with Deflection fairly. This assumption makes
Figure 7.1 incorrect in a precise sense, because after the assumption a router has two routing
tables, one for default routing and the other for Drouting.

As for Drouting, the simulation results shown here utilize the retry packet tag range
of [0-0xfffff] instead of [1-0xfffff], which is not precisely the same as the expected
deployment as backup routing plane in real network. However, the difference is negligible;
it is expected that just 1 smaller range of packet tag does not influence the major results of
the failure recovery property.

7.5.2 Interpretation of path comparison

The fraction of source-destination pairs having only one nexthop indicates the number of
single point of failures in the network, and hence provide the degree of weakness of the
network. A smaller number of routers that have only one nexthop to the destination is
preferred. However, too many nexthops in a router indicate the inefficient use of memory,
as it would not be necessary for avoiding a small number of network faults (we assume

CHAPTER 7. DROUTING ARCHITECTURE 102

that the number of network faults that occur simultaneousely is usually small, such as at
most 10). The distribution of the number of nexthops among routers where the majority of
routers have a small number of nexthops equally is preferred, over the distribution where
a small number of routers have huge nexthops and others have a few nexthops. This is
because it is desired to provide multipaths for greater number of source-destination pairs,
for failure recovery purpose.

The comparison on the number of paths shows the simplest degree of failure avoidance
possibility. Additionally, a large number of paths with a small number of nexthops means
the efficient calculation of multipath routes. The number of paths in Deflection was counted
by examining tags from 0 to 1023 and counting the unique paths, as was done in [109]. The
number of paths in Drouting is counted by enumerating all possible paths. The numbers
of paths counted by this way represent the actual paths that can be used in each routing
method.

The length of paths indicate performance degradation as the side-effect of improving
the failure recovery probability, because the longer the path, the more the communication
delay. Further, use of the longer path means inefficient utilization of link bandwidth, as
the same traffic will consume additional bandwidth in longer paths. Although the shorter
length of the paths are preferred, the use of multipath naturally involves the use of longer,
roundabout paths, and thus the length of paths tends to become longer when more number
of multipaths are calculated.

7.5.3 Simulation and Analysis on Telstra (AS1221)

The network topology of Telstra is shown in Figure 7.3. The isolated component of the graph
is due to the topology data provided by the Rocketfuel project.

The result of the single failure recovery simulation on the Telstra topology is shown
in Figure 7.4, and the result of the 10 failures recovery simulation is shown in Figure 7.5.
The fraction of failure cases in the single failure recovery simulation in which the first retry
avoided the failure was 25.1% in Drouting, while it was only 14.9% in Deflect-1, 14.7%
in Deflect-2, 11.8% in Deflect-3. Up to 10 retries, Drouting has successfully avoided 55.2%
failure cases, while Deflect-1 has 26.6%, Deflect-2 has 39.7%, and Deflect-3 has 41.2%. The
failure avoidance probability of Drouting is significantly larger than Deflection’s. Even in
the 10 failures case (Figure 7.5) Drouting recovers 40.4% of the failure cases up to 10 retries,
outperforming Deflect-3’s 30.6%.

The distribution of the number of nexthops among routers are shown as Complemen-
tary Cumulative Distribution Function (CCDF) in Figures 7.6. In the figure, Deflect-2 has
the largest number of nexthops. Then, briefly, Deflect-3, Deflect-1 and Drouting follow in
the order. Deflect-1 and Drouting have largely similar numbers of nexthop distribution. In

CHAPTER 7. DROUTING ARCHITECTURE 103

Figure 7.3: The Telestra’s network topology.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10

Fr
ac

tio
n

of
 F

ai
lu

re
 C

as
es

Number of Retries

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure 7.4: The fraction of failure cases, successfully recovered by different systems on the
Telstra topology.

CHAPTER 7. DROUTING ARCHITECTURE 104

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8 10

Fr
ac

tio
n

of
 F

ai
lu

re
 C

as
es

Number of Retries

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure 7.5: The fraction of 10 failures cases, successfully recovered by different systems on
the Telstra topology.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Number of Nexthops

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure 7.6: The fraction of source-destination pairs on the Telstra topology, having more
than x nexthops.

CHAPTER 7. DROUTING ARCHITECTURE 105

Deflect-1, 36.1% of the source-destination pairs have 2 or more nexthop entries. In Drout-
ing, 37.4% have. The small number of nexthops in each router in Drouting, and the simi-
larity between Deflect-1 and Drouting are interpreted as the feasibility of Drouting, since a
router in Drouting architecture does not require huge memory for nexthops.

Deflect-3 fails to calculate a non-empty deflection set for 17.9% of the source-destination
pairs. This is due to the stub nodes in the Telstra topology and the fact that Deflect-3 does
not calculate a backtracking path.

The result seems to show that Drouting does not calculate enough nexthops to pro-
vide sufficient multipaths. However, as shown in the distribution of the number of paths
(described next), Drouting provides enough multipaths. The fact that Drouting calculates
the least nexthops for similar or better performance means that Drouting is more memory
efficient than Deflection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Number of Paths

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure 7.7: The fraction of source-destination pairs on the Telstra topology, having more
than x paths.

Figure 7.7 shows the distribution of the number of paths in source-destination pairs
in the network. Figure 7.8 shows the focused version of the numbers of paths for each
routing method in Telstra topology, in the range below 100 paths. It shows that Deflect-1
provides only a small number of paths where almost all source destination pairs have only
less than 10 paths. Although Deflect-2 has the largest number of paths, Deflect-2 is not
a viable competitor because of backtracking paths as mentioned in Section 7.3. Deflect-3
and Drouting provide largely similar numbers of paths. It is surprising that even though
the numbers of nexthops between Deflect-1 and Drouting is largely the same (Figure 7.6),
the numbers of paths they provide are completely different. It is observed that the route

CHAPTER 7. DROUTING ARCHITECTURE 106

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Number of Paths

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure 7.8: The fraction of source-destination pairs on the Telstra topology, having more
than x paths, focused version in the range below 100 paths.

calculation method of Drouting provides a significant number of paths by using a small
number of nexthops efficiently.

In Figure 7.8, Drouting provides a small number of paths (less than 20) to more fraction
of source-destination pairs than Deflect-3. For example, Drouting provides more than 15
paths to 52.7% of source-destination pairs, while Deflect-3 does 41.7%. This Drouting’s
property is preferred, because all nodes having a similar number of alternative paths are
preferred over the case where only small number of nodes have huge alternative paths.
Hence, among viable competitors, Drouting was the best in this case.

Here the lengths of paths are compared for each routing methods. The shorter the length
of the path becomes, the better the routing we obtain, since generally a longer path means
more communication delay. The average and maximum path lengths over multipaths for
each source-destination pair in Telstra are shown in Figures 7.9 and 7.10. For both average
and maximum path lengths, the relations between each routing methods are largely the
same. Deflect-2 tends to provide longer paths, and the maximum path length is 28 nodes.
Drouting provides paths which are significantly shorter than Deflect-2 but yet slightly longer
than Deflect-3. For example, the fraction of source-destination pairs that has an average path
length of more than 10 nodes is 21.0% in Deflect-3, while in Drouting it is 31.7%. Deflect-1
provides shortest paths in which the length of almost all paths in all source-destination pairs
are less than 10 nodes.

In summary, Drouting provides slightly longer paths in Telstra. The length of paths is
completely the graph dependent, and it can be very long when Drouting is employed. This

CHAPTER 7. DROUTING ARCHITECTURE 107

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Average Path Length in Nodes

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure 7.9: The fraction of source-destination pairs on the Telstra topology, having path
length more than x in average.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Maximum Path Length in Nodes

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure 7.10: The fraction of source-destination pairs on the Telstra topology, having path
length more than x in maximum.

CHAPTER 7. DROUTING ARCHITECTURE 108

is a trade-off for improved failure recovery capability.

7.6 Observations

Notice that although actual value increased depends on the individual network, the failure
recovery probability is increased on all topologies. The Drouting improves not only the
probability of recovery after ten retries, but also the probability on the first retries.

The improvement of the failure recovery property of Drouting stems from the way MA
ordering calculates the multipath on the network graph. MA ordering chooses the node
with the maximum connectivity to the node set that has already decided the routes to the
destination, in each of its steps. The decision of routes to destination on a node with smaller
connectivity is postponed, so that the node can utilize the routes on other nodes with more
connectivity later when the node is decided on its routes. This way MA ordering maximizes
the minimum connectivity among all the nodes to the destination (see Chapter 6). This
enables a smaller number of nexthops to result in a larger number of paths to the destination
using efficient utilization of combinations of the nodes with the small number of nexthops.

The number of paths in Drouting concentrate in lower numbers among all nodes, com-
pared to Deflect-3 (Figure 7.7). Deflect-3 distributes the number of paths uniformly among
nodes, namely the number of nodes with more paths and with lesser paths are both in-
creased compared to Drouting. This negatively affects the failure recovery property, since
the more nodes with lesser paths, the smaller the possibility to recover from failure at these
points.

Deflection methods are based on shortest path routing, considering a smaller routing
metric to be better. Hence except Deflect-2 which backtracks, Deflection chooses shorter
paths and prunes longer paths. This leads to a relatively smaller number of hops in the
paths. On the other hand, Drouting which uses MA ordering, does not consider routing
metrics and shortness of paths, and calculates also longer, roundabout paths. The existence
of longer roundabout paths appears both in average and maximum path length (Figure 7.9
and 7.10).

7.7 Summary

Drouting architecture is presented, which enables user-driven change of traffic paths. Users
or end hosts can avoid failures even when the routing system fails to detect the failures.
Hence Drouting contributes to improving the robustness and availability of the network.

Simulations showed improved failure recovery probability compared to the previous
work called Deflection. The properties of Deflection and Drouting are studied in four as-
pects, namely the number of nexthops, the number of paths, the length of paths and the

CHAPTER 7. DROUTING ARCHITECTURE 109

failure recovery probability. The results showed significant improvement in failure recovery
probability while the other properties are reasonable.

There are a number of beneficial characteristics in the Drouting architecture. First, many
multipath routes can be held in a Drouting network and utilized effectively. Many multipath
routes are further expected to be used for the purpose of load-balancing and QoS-oriented
routing. Second, calculating routes by constructing DAGs that include all links in the net-
work can increase the probability to recover reachability. The probability increases as the
network is more redundant. Third, the Drouting architecture is a simple and intuitive ex-
tension of the current routing architecture. The simplicity of the Drouting architecture
preserves the most beneficial properties of the Internet such as extendability. Last, network
administrators in internet service providers can enforce their routing policies by using route
filters in constructing DAGs.

The future work is as follows. This chapter calculates DAGs in a centralized way. But
in practice, the DAGs and multipath routes should be calculated in a distributed fashion,
where each router calculates them independently and autonomously. The distributed al-
gorithm and the protocol for the distributed computation of DAGs are left as future work.
Implementation of traffic engineering and QoS routing on top of Drouting have not been
addressed. Further simulations employing more complicated user traffic models have to be
studied, where many users located across the network change their paths independently.

It is anticipated that the Drouting architecture can be applied also at the inter-domain
routing level. Because the Drouting architecture abstracts networks in general graph struc-
tures, it can be applied to both the intra-domain level (the nodes are routers) and the inter-
domain level (the nodes are Autonomous Systems (ASes)). Many issues, such as designing
the new inter-domain routing protocol, are left as future work for the inter-domain routing
level. In particular, the multipath routing calculation method used in this chapter, MA or-
dering, is not considered appropriate because it requires the synchronization of the entire
topology among all nodes (in other words, synchronization of the entire Internet topology
among all ASes). This is not realistic, and hence we will need a new multipath routing
calculation algorithm that enables distributed computation and enforcement of AS policies.

Chapter 8

Traffic Engineering on Drouting
Architecture

8.1 Overview

Congestion in the network excessively degrades communication performance. A congested
network is not available to perform communication, therefore the traffic engineering capa-
bility is a required function to implement the highly available Internet.

Although many traffic engineering technologies have been studied (see Section 3.7),
they have insufficient failure recovery capability, assuming only a single failure and not
supporting network-wide failure recovery, thus requiring a preparation for each failures
which needs precaution.

Since Drouting architecture has a split ratio for each entry in the multipath routes, op-
timizing the split ratios against the combination of multipath routes and the given traffic
demands is possible.

The problem of routing of traffic flows on a single arbitrary path in the network graph
without splitting, in the order received, while minimizing the maximum relative load im-
posed on network links, is NP-complete. It is also known as Unsplittable Multi-Commodity
Flow (MCF) problem. However, the splittable version of this problem is known to be poly-
nomial [17].

This indicates that the splitting of the traffic and the optimization of its ratios are impor-
tant.

Assuming that the traffic demands are the union of a massive number of micro flows,
and also assuming that each of the micro flows have distinct random packet tags, Drouting
enables traffic splitting at the unit of the micro flow. The smaller the traffic size of a micro
flow becomes, the finer granularity of splitting we obtain. With these hypotheses, the traffic
engineering issue is tackled in this chapter.

110

CHAPTER 8. TRAFFIC ENGINEERING ON DROUTING ARCHITECTURE 111

A method for traffic engineering on the Drouting architecture is proposed using solving
of Linear Programming (LP) problem. An LP model is borrowed from past research, and
is modified to suit the Drouting architecture and to preserve the desired failure recovery
capability.

With traffic engineering capability, Drouting architecture with failure recovery signifi-
cantly contributes to implementing the highly available Internet. Controlling the existence
of congestions by traffic engineering means some aspects of availability control over the net-
work, thus the traffic engineering is the required function to the highly available Internet.

Section 8.2 gives a slightly modified version of the borrowed LP model. Section 8.3
presents the example optimization using the LP model. Section 8.4 tackles to preserve failure
recovery capability while executing traffic engineering. Section 8.5 summarizes this chapter.

8.2 Linear Programming Model

Network optimization problem, specifically finding of the setting of near-optimal routing
metric, was tackled [30] with comparison with optimal routing calculated by solving an
Linear Programming (LP) problem.

Here, to present the feasibility of the traffic engineering on the Drouting architecture,
the LP problem in [30] is slightly changed to fit to the Drouting architecture. The purpose
of the LP problem in [30] was to find optimal traffic splitting on each node in the base graph
structure of the network. On the other hand, the purpose here is to find the optimal traffic
split ratios in the routing graphs for each destination calculated in the Drouting architec-
ture. The routing graphs are the subset of the base network graph, and they represent the
multipath routes in the Drouting architecture. This means that multipath routes are given
in advance to the LP problem.

Network model is as follows. A directed network G = (N,A) with a capacity cap(a) for
each arc a ∈ A and a demand matrix D are given, where D tells the demand D(s, t) between
s and t for each pair (s, t) ∈ N ×N. f (s,t)

a tells how much of the traffic flow from s to t goes
over a. l(a) represents the total load on arc a, i.e., the sum of the flows going over a. Φa

is a piecewise linear cost function that is a function of the load l(a) on arc a. In Drouting
architecture, multipath routes are calculated for each destination t . The multipath routes are
represented by the directed set of links denoted as At for each t ∈ N.

Then the problem to find optimal traffic split ratio among the multipath routes are de-
fined as follows.

Minimize:

Φ = ∑
a∈A

Φa (8.1)

CHAPTER 8. TRAFFIC ENGINEERING ON DROUTING ARCHITECTURE 112

subject to

∑
x:(x,y)∈At

f (s,t)
(x,y)− ∑

z:(y,z)∈At

f (s,t)
(y,z) =

−D(s, t) if y = s,

D(s, t) if y = t ,

0 otherwise

y,s, t ∈ N, (8.2)

l(a) = ∑
(s,t)∈N×N

f (s,t)
a a ∈ A, (8.3)

Φa ≥ l(a) a ∈ A, (8.4)

Φa ≥ 3 · l(a)− 2
3
· cap(a) a ∈ A, (8.5)

Φa ≥ 10 · l(a)− 16
3
· cap(a) a ∈ A, (8.6)

Φa ≥ 70 · l(a)− 178
3

· cap(a) a ∈ A, (8.7)

Φa ≥ 500 · l(a)− 1468
3

· cap(a) a ∈ A, (8.8)

Φa ≥ 5000 · l(a)− 19468
3

· cap(a) a ∈ A, (8.9)

f (s,t)
a ≥ 0 a ∈ A;s, t ∈ N, (8.10)

f ott
y = ∑

s∈N,(y,z)∈At

f (s,t)
(y,z) t,y ∈ N, (8.11)

rt
(y,z) = (∑

s∈N
f (s,t)
(y,z))/ f ott

y (y,z) ∈ A; t ∈ N. (8.12)

Equation 8.2 indicates that, y must produce the traffic of size D(s, t) if y is the source,
y must receive the traffic of size D(s, t) if y is the destination, and otherwise y must relay
the received traffic to other nodes in order for the traffic to eventually reach its destination.
This is called flow conservation constraints, and ensures that there is no drop in forwarding
traffic. Equation 8.3 calculates the load for each arcs by summing all flows traversing the
arc a. From Equation 8.4 to 8.9 the model specifies the piecewise linear cost function in
relation to the load on the arc. Each equation determines individual piece of the function,
by specifying the slope and the y-intercept of the function for the range. The constant
coefficients appeared in these equations are determined in [30].

In Equation 8.11, the total sum of the flows destined to t traversing y, f ott
y, is calculated.

Then the total sum of the flows is used in Equation 8.12 to calculate the traffic split ratio on
y for nexthop z over the multipaths destined to t , which is denoted by rt

(y,z).
For the part from Equation 8.1 to 8.10, the only difference from LP problem in [30] is

that in Equation 8.2, the links on which the traffic can be flowed is restricted by the routing
graph, At , rather than the original A.

CHAPTER 8. TRAFFIC ENGINEERING ON DROUTING ARCHITECTURE 113

8.3 An Example of Traffic Engineering

A simple example of traffic engineering using LP is given in this section. The network
graph is generated by BRITE with configuration file shown in Figure 8.1, and is illustrated
in Figure 8.2. Note that all link bandwidth are value of 100.0. On the network graph, the
routing graph for destination node 0 by Dijkstra and MARA-MC are given in Figure 8.3, for
example. Dijkstra’s routing metric is set to minimum-hop (see Section 4.5.3 in Chapter 4).

BriteConfig

BeginModel

Name = 2 #Router Barabasi=2, AS Barabasi =4

N = 4 #Number of nodes in graph

HS = 1000 #Size of main plane (number of squares)

LS = 100 #Size of inner planes (number of squares)

NodePlacement = 1 #Random = 1, Heavy Tailed = 2

m = 2 #Number of neighboring node each new node connects to.

BWDist = 1 #Constant = 1, Uniform =2, HeavyTailed = 3, Exponential = 4

BWMin = 100.0

BWMax = 1000.0

EndModel

BeginOutput #**Atleast one of these options should have value 1**

BRITE = 1 #0 = Do not save as BRITE, 1 = save as BRITE.

OTTER = 0 #0 = Do not visualize with Otter, 1 = Visualize

DML = 0 #1/0=enable/disable output to SSFNet’s DML format

NS = 0 #1/0=enable/disable output to NS-2

Javasim = 0 #1/0=enable/disable output to Javasim

EndOutput

Figure 8.1: BRITE configuration file for traffic engineering example.

Approximate values (rounded by 1) of traffic demands created by fortz-thorup model (see
Section 4.5.5 in Chapter 4) is given in Figure 8.4. The resulting link utilizations routed by
Dijkstra and MARA-MC are shown in Table 8.1 and 8.2. ECMPs in Dijkstra and multipaths
in MARA-MC are equally split. Note that Dijkstra causes a link to be overloaded (link from
node 1 to node 3 in Figure 8.1), but MARA-MC does not, in this case.

MINOS [94] via AMPL [3] is used to solve the LP problem described in Section 8.2. The
model file is given in Figure 8.5 and 8.6, and the data file is given in Figure 8.7. The set of
nodes N in Section 8.2 corresponds to V, A corresponds to E, and ∑t∈N At corresponds to R.

Results of the link utilizations and the value of the cost function, Φ are shown and

CHAPTER 8. TRAFFIC ENGINEERING ON DROUTING ARCHITECTURE 114

0

1

2

3

Figure 8.2: Network graph structure for traffic engineering example.

0

1

2

3
0

1

2

3

Figure 8.3: Dijkstra’s and MARA-MC’s routing graph for destination node 0.

0 1 2 3

0 1 18 6 17

1 4 54 30 120

2 0 15 10 30

3 3 68 24 33

Figure 8.4: Traffic demands for traffic engineering example.

CHAPTER 8. TRAFFIC ENGINEERING ON DROUTING ARCHITECTURE 115

Table 8.1: Link utilizations routed by Dijkstra.

EdgeId s t Load BW Util

0 0 1 18.139 100.000 0.181
1 1 0 3.885 100.000 0.039
2 0 2 18.121 100.000 0.181
3 2 0 15.058 100.000 0.151
4 1 2 41.679 100.000 0.417
5 2 1 29.770 100.000 0.298
6 3 0 14.941 100.000 0.149
7 0 3 32.170 100.000 0.322
8 3 1 79.770 100.000 0.798
9 1 3 134.948 100.000 1.349

Util: routing-100: max: 1.349481 min: 0.038855 med: 0.694168 avg: 0.388480 std: 0.377667

Table 8.2: Link utilizations routed by MARA-MC.

EdgeId s t Load BW Util

0 0 1 59.483 100.000 0.595
1 1 0 93.773 100.000 0.938
2 0 2 38.960 100.000 0.390
3 2 0 22.414 100.000 0.224
4 1 2 20.840 100.000 0.208
5 2 1 22.414 100.000 0.224
6 3 0 47.355 100.000 0.474
7 0 3 99.644 100.000 0.996
8 3 1 47.355 100.000 0.474
9 1 3 67.474 100.000 0.675

Util: routing-200: max: 0.996436 min: 0.208397 med: 0.602417 avg: 0.519713 std: 0.269169

CHAPTER 8. TRAFFIC ENGINEERING ON DROUTING ARCHITECTURE 116

/* #Nodes, |V| */

param N >= 2;

/* set of vertices */

set V := {0..(N-1)};

/* set of edges */

set E within V cross V;

/* set of routing sub-graphs */

set R within V cross E;

/* there must be no loops in E */

check{(i,j) in E}: i != j;

/* there must be no loops in R */

check{(t,i,j) in R}: i != j;

/* there must be no edge from t in R */

check{(t,i,j) in R}: i != t;

param cap{E} default 0;

param D{V,V} default 0;

var F{V,V,E} >= 0, default 0.0;

var l{E} >= 0, default 0.0;

var u{E} >= 0, default 0.0;

var phi{E} >= 0, default 0.0;

var Phi >= 0;

/* ratio */

var r{V,E} >= 0, default 0.0;

var fot{V,V} >= 0, default 0.0;

var vari{V,E} >= 0, default 0.0;

var equality >= 0, default 0.0;

Figure 8.5: AMPL model file for traffic engineering example.

CHAPTER 8. TRAFFIC ENGINEERING ON DROUTING ARCHITECTURE 117

/* Objective */

minimize PHI: Phi;

subject to CALCPHI: sum{(x,y) in E} phi[x,y] <= Phi;

subject to FLOWSRCOUT{s in V, t in V : s != t}:

sum{(t,s,x) in R} F[s,t,s,x] = D[s,t];

subject to FLOWDSTIN {s in V, t in V : s != t}:

sum{(t,x,t) in R} F[s,t,x,t] = D[s,t];

subject to FLOWRESERV{t in V, y in V: t != y}:

sum{s in V, (t,x,y) in R : s != y} F[s,t,x,y] -

sum{s in V, (t,y,z) in R : s != y} F[s,t,y,z] = 0;

subject to GETLOAD{(x,y) in E}:

sum{s in V, t in V} F[s,t,x,y] <= l[x,y];

subject to GETUTIL{(x,y) in E}:

l[x,y] / cap[x,y] <= u[x,y];

subject to PHI1{(x,y) in E}: phi[x,y] >= l[x,y];

subject to PHI2{(x,y) in E}: phi[x,y] >= 3 * l[x,y] - 2/3 * cap[x,y];

subject to PHI3{(x,y) in E}: phi[x,y] >= 10 * l[x,y] - 16/3 * cap[x,y];

subject to PHI4{(x,y) in E}: phi[x,y] >= 70 * l[x,y] - 178/3 * cap[x,y];

subject to PHI5{(x,y) in E}: phi[x,y] >= 500 * l[x,y] - 1468/3 * cap[x,y];

subject to PHI6{(x,y) in E}: phi[x,y] >= 5000 * l[x,y] - 19468/3 * cap[x,y];

subject to GETFLOWTOTAL{t in V, y in V: t != y}:

sum{s in V, (t,y,z) in R: s != t} F[s,t,y,z] = fot[t,y];

subject to GETRATIO{(t,y,z) in R}:

(sum{s in V: s != t} F[s,t,y,z]) / fot[t,y] = r[t,y,z];

Figure 8.6: AMPL model file for traffic engineering example (continue).

CHAPTER 8. TRAFFIC ENGINEERING ON DROUTING ARCHITECTURE 118

data;

param N := 4;

set E :=

(0,1) (0,2) (0,3) (1,0) (1,2)

(1,3) (2,0) (2,1) (3,0) (3,1)

;

param cap :=

[0,1] 100.000000,

[1,0] 100.000000,

[0,2] 100.000000,

[2,0] 100.000000,

[1,2] 100.000000,

[2,1] 100.000000,

[3,0] 100.000000,

[0,3] 100.000000,

[3,1] 100.000000,

[1,3] 100.000000,

;

param D : 0 1 2 3 :=

0 0.62 18.14 6.10 17.34

1 3.89 54.33 29.66 120.12

2 0.23 14.94 10.19 29.65

3 2.92 67.75 24.05 32.81

;

set R :=

(0,1,0) (0,2,0) (0,2,1) (0,3,0) (0,3,1)

(1,0,1) (1,2,0) (1,2,1) (1,3,0) (1,3,1)

(2,0,2) (2,1,0) (2,1,2) (2,3,0) (2,3,1)

(3,0,3) (3,1,0) (3,1,3) (3,2,0) (3,2,1)

;

Figure 8.7: AMPL data file for traffic engineering example.

CHAPTER 8. TRAFFIC ENGINEERING ON DROUTING ARCHITECTURE 119

compared in Table 8.3. Dijkstra and MARA-Equal are the same with Table 8.1 and 8.2.
MARA-LP is the result of solving the LP problem in Section 8.2 on the Drouting architecture.
Optimal shows the optimal network that may not be obtained in hop-by-hop network,
calculated by the LP problem in [30]. Note that the worst link utilization is 1.349 in Dijkstra,
0.996 in MARA-Equal, while 0.9 in MARA-LP and Optimal.

Table 8.3: Link utilizations comparison after solving LP.

s t Dijkstra MARA-Equal MARA-LP Optimal

0 1 0.181 0.595 0.245033 0.245033
0 2 0.181 0.390 0.3015 0.3015
0 3 0.322 0.996 0.7711 0.7711
1 0 0.039 0.938 0.3401 0.333333
1 2 0.417 0.208 0.2966 0.303367
1 3 1.349 0.675 0.9 0.9
2 0 0.151 0.224 0.2988 0.305567
2 1 0.298 0.224 0.1494 0.1494
3 0 0.149 0.474 0.333333 0.333333
3 1 0.798 0.474 0.613867 0.613867

Φ 919.757 919.08

The split ratios among multipaths calculated by the LP solving (var r in Figure 8.5) are
shown in Table 8.4. The split ratios in Table 8.4 do not indicate the use of significant variety
of paths within multipaths. This deficiency is tackled in the next section.

8.4 Challenge to Equalize Split Ratio

The split ratios in Table 8.4 do not indicate the use of significant variety of paths within
multipaths. Even if multipaths are calculated by MARA-MC, when the split ratio is 0 the
path would not be used. This may affect the failure recovery property of Drouting architec-
ture adversely. Since the failure recovery property is the primal objective for the purpose of
the highly available Internet, a challenge to distribute split ratio equally is necessary.

In order to search the possibility of realizing the network optimization with more equally
distributed split ratio without excessively sacrificing the link utilizations, and to distribute
the split ratio equally over the unused multipaths, variances of ratios are calculated.

Let Aty denote the set of links included in At and incident from y. Let σ2
ty denote the

variance of the split ratios for the destination t on the node y, from the equal split rt
(y,z) =

1.0/|Aty|. Followings are added to the LP model.

CHAPTER 8. TRAFFIC ENGINEERING ON DROUTING ARCHITECTURE 120

Table 8.4: Split ratio calculated by LP.

Node Destination Nexthop Split Ratio

0 1 1 1
0 2 2 1
0 3 3 1

1 0 0 1
1 2 0 0
1 2 2 1
1 3 0 0.250749
1 3 3 0.749251

2 0 0 1
2 0 1 0
2 1 0 0
2 1 1 1
2 3 0 1
2 3 1 0

3 0 0 1
3 0 1 0
3 1 0 0.0939237
3 1 1 0.906076
3 2 0 1
3 2 1 0

CHAPTER 8. TRAFFIC ENGINEERING ON DROUTING ARCHITECTURE 121

Minimize:

Φ+100 · ∑
(t,y)∈N×N

σ2
ty (8.13)

subject to

σ2
ty = ∑

(y,z)∈Aty

1
|Aty|

(rt
(y,z)− rt

(y,z))
2. (8.14)

Since sum of the variances of split ratios is small, it is scaled by 100 in Equation 8.13.
This may sacrifices φ (and thus Φ) when link utilization is low.

Corresponding addition of AMPL model file is shown in Figure 8.8. vari[t,y] corre-
sponds to σ2

ty, and equality corresponds to 100 ·∑(t,y)∈N×N σ2
ty.

var vari{V,V} >= 0, default 0.0;

var equality >= 0, default 0.0;

/* Objective */

minimize PHI: Phi + equality;

subject to GETVARI{t in V, y in V: t != y}:

(sum{(t,y,z) in R} ((r[t,y,z] - (1.0 / card{ setof{(t,y,n) in R} n}))**2))

/ (card{ setof{(t,y,n) in R} n})

<= vari[t,y];

subject to GETEQLTY:

(sum {t in V, y in V: t != y} vari[t,y]) * 100 <= equality;

Figure 8.8: Addition to AMPL model file for equalization of split ratios.

Results on link utilizations are shown in Table 8.5. MARA-LP-EQUALIZED is the result
of the modified LP problem. It decreases the sum of the variances of split ratio by slightly
sacrificing the Φ without degrading the worst link utilization 0.9. Split ratios calculated
by the modified LP problem are given in Table 8.6, with comparison to previous MARA-
LP. Significant improvement is observed for the split ratios among the multipaths. Further
equalization of split ratios may be achieved by increasing the scale parameter (i.e., 100 in
Figure 8.8) although it sacrifices Φ.

CHAPTER 8. TRAFFIC ENGINEERING ON DROUTING ARCHITECTURE 122

Table 8.5: Link utilizations comparison of modified LP problem.

s t MARA-LP MARA-LP-EQUALIZED Optimal

0 1 0.245033 0.333333 0.245033
0 2 0.3015 0.264767 0.3015
0 3 0.7711 0.7711 0.7711
1 0 0.3401 0.395358 0.333333
1 2 0.2966 0.333333 0.303367
1 3 0.9 0.9 0.9
2 0 0.2988 0.310432 0.305567
2 1 0.1494 0.137768 0.1494
3 0 0.333333 0.31801 0.333333
3 1 0.613867 0.62919 0.613867

Φ 919.757 948.229 919.08
100 ·∑(t,y)∈N×N σ2

ty 172.702 68.4735

Table 8.6: Split ratio calculated by modified LP problem.

MARA-LP MARA-LP-EQUALIZED
Node Destination Nexthop Split Ratio Node Destination Nexthop Split Ratio

0 1 1 1 0 1 1 1
0 2 2 1 0 2 2 1
0 3 3 1 0 3 3 1

1 0 0 1 1 0 0 1
1 2 0 0 1 2 0 0.0379087
1 2 2 1 1 2 2 0.962091
1 3 0 0.250749 1 3 0 0.268122
1 3 3 0.749251 1 3 3 0.731878

2 0 0 1 2 0 0 0.50345
2 0 1 0 2 0 1 0.49655
2 1 0 0 2 1 0 0.276355
2 1 1 1 2 1 1 0.723645
2 3 0 1 2 3 0 0.903832
2 3 1 0 2 3 1 0.0961679

3 0 0 1 3 0 0 0.573
3 0 1 0 3 0 1 0.427
3 1 0 0.0939237 3 1 0 0.163315
3 1 1 0.906076 3 1 1 0.836685
3 2 0 1 3 2 0 0.792651
3 2 1 0 3 2 1 0.207349

CHAPTER 8. TRAFFIC ENGINEERING ON DROUTING ARCHITECTURE 123

8.5 Summary

For the highly available Internet, congestion avoidance is mandatory. Furthermore, in order
for Drouting architecture to be employed in large scale ISPs, the traffic engineering capabil-
ity is imperative.

The traffic engineering on Drouting architecture is studied and is shown to be feasible in
this chapter. By solving the LP problem described in this chapter and by applying the result-
ing split ratios among multipaths on routers, traffic engineering on Drouting architecture
can be achieved.

Traffic engineering capability with failure recovery in Drouting contributes to implement
the highly available Internet.

Chapter 9

Conclusion

Today, the ability to communicate on the Internet is essential to human life. Internet failures
can impact our health and safety by interrupting communication such as emergency phone
calls. These Internet failures must be avoided, and the Internet must be constructed as a
highly available communication infrastructure.

Individual solutions for each type of failure, such as fault tolerant systems and link
protection mechanisms, have been researched. However, there are still significant number
of failures that cannot be avoided, such as mis-configuration of network operator, software
bugs, and partial and complex hardware failures that deceive the current failure detection
functions. Such failures cannot be avoided in the current Internet, and the resulting outages
are sometimes long.

This dissertation targets the removal of these kinds of failures, and the improvement in
the availability of the Internet. The goal was defined in Chapter 2 as the “highly available
Internet”, where network administrators can increase the network availability by investment
in network resources. Then each component required to implement the highly available
Internet was provided in this research.

A new routing simulator, called SimRouting, was described in Chapter 4 to provide a
method to calculate the network availability considering the method and state of the routing
system in simulations, and to evaluate a routing system. Estimation of Internet availability
is important because it reveals where and how Internet availability can be increased.

BGP Flap Damping technology was applied to OSPF routing system in Chapter 5, to
show an example of stabilizing a routing system. To increase the availability of the Internet,
which requires stability, each network component such as a routing system, must also be
stable. One deficiency of OSPF routing protocol that has been its vulnerability to oscillation
problems, and a flexible method to stabilize the distributed system were shown.

A family of new multipath routing algorithms, called Maximum Alternative Routing
Algorithm (MARA), was presented to provide maximum alternative routes among the entire

124

CHAPTER 9. CONCLUSION 125

network. The new problem of maximizing a minimum maximum flow among all nodes in
the network to the destination was defined as the “all-to-one max-flow routing problem”,
and its connectivity version as the “all-to-one maximum connectivity routing problem”.
MARA was proven to be optimal for both the “all-to-one max-flow routing problem” and
the “all-to-one maximum connectivity routing problem” in Chapter 6.

A newmultipath routing architecture, called Drouting architecture, was shown to enable
avoidance of many kinds of failures using MARA. To bind a communication session to a
network path stably, it utilizes the mapping between packet tag and a communication path.
The Drouting architecture was compared with related work and evaluated in terms of failure
recovery property, in Chapter 7.

True Internet availability also requires adequate performance on the network path, and
therefore network optimization and traffic engineering are important work. A Linear Pro-
gramming (LP) problem which models the network optimization problem on Drouting archi-
tecture was given, and Chapter 8 showed that traffic engineering on Drouting is feasible by
solving the LP problem. It indicates that we can gain adequate communication performance
on Drouting architecture.

This dissertation provides the most basic functions required to achieve the highly avail-
able Internet, and presents the feasibility of, and a strategy toward, the highly available
Internet. Approaching the highly available Internet certainly indicates an advancement in
approaching the Dependable Internet. This dissertation contributes to improve the avail-
ability of the Internet by providing a new routing architecture.

Chapter 10

Future Prospects

This chapter discusses the other issues in employing the highly available Internet, and the
missing parts and future work necessary for the realization of the highly available Internet.

10.1 Failure Detection

Although failure detection is left as being outside scope of this research, it is a very impor-
tant function because if it takes much time to detect failure, the Expected Time to Repair
(ETR) of the Internet communication reachabilities becomes larger, and hence the Internet
availability degrades.

There are works which try to minimize the time taken to detect failures. Bidirectional
Forwarding Detection (BFD) [41] intends to utilize a Hello packet mechanism with millisec-
ond interval. BFD is used for current routing protocol such as OSPF and BGP, and can be
used as the failure detection in the Drouting architecture as well. Another technology that
is used for fast failure detection is SONET alarm [39]. It can raise an alarm within 10-20
milliseconds from loss of connectivity.

There are two desirable properties in Drouting architecture related to failure detection.
First, the failure detection can be implemented in any element along with the commu-

nication path. Because changing the packet tag changes the communication path stochasti-
cally, any of application software at end host, transport protocol at end host, gateway router,
edge router, and core router can implement failure detection function and triggers switching
of communication path by changing the packet tag. SCTP [96] is an example of transport
protocol that may implement the failure detection. It can handle multiple communication
sessions, possibly with each different packet tag. SCTP may offer the best communication
path out of multiple sessions to the application software, and may change the communica-
tion path transparently to application software.

Second is that we can construct an individual failure detection function for each appli-

126

CHAPTER 10. FUTURE PROSPECTS 127

cation service. One application may consider a communication interruption of 30 minutes
interval as a failure, while another application may consider 300 milliseconds of communi-
cation delay or jitter as a failure. Another application can define complex Quality of Service
(QoS) check function to decide when to change communication path. Estimating Round Trip
Time (RTT) or the bandwidth (by Packet Pair [51], for example) may be used for the QoS
check. The possibility of constructing an customized individual failure detection function
for each application enables complex and flexible failure detection. It is free to decide a
failure detection function by the application itself. They must only decide when to change
the packet tag in the Drouting architecture.

10.2 Simultaneous Redundant Packet Transmission

The multiple duplicated packet transmission may be implemented on the Drouting archi-
tecture, to satisfy a certain probability of packet arrival. When some copies of a packet (for
example, 5 copies) are transmitted simultaneously and redundantly with distinct packet tags,
the probability of packet arrival can be increased, similar to the failure recovery simulation
results presented in Chapter 7. Given the network model including the network graph struc-
ture and the failure probability of each network element, the probability of success of one of
the packet arrival out of randomly chosen 5 packet tags, can be easily calculated. Given this
estimated probabilities for n-copies, we can achieve a certain packet arrival probability (and
hence availability) by controlling the number of copy, n.

10.3 Issues in Traffic Engineering Method

Although traffic engineering using LP presented in Chapter 8 can calculate optimal solution,
generally solving the LP problem may take long time, and cannot be applied to real network
in a real-time fashion. Hence, faster calculation such as by heuristic approaches must be
studied.

Network optimization against exact traffic demands is known to fail when there are
some errors in estimating the traffic matrix [6]. Traffic engineering that is tolerant to errors
and changes in traffic matrix must be studied also for the Drouting architecture.

10.4 Relation with MPLS Technology

This section discusses how the Drouting architecture conforms to the existing MPLS tech-
nologies. The Drouting architecture has not been discussed regarding the relation with

CHAPTER 10. FUTURE PROSPECTS 128

MPLS, which is an important technology that is already deployed. This section presents
three possibilities of interaction between MPLS and Drouting.

First, MPLS provides a virtual circuit that is to be used as an IP link. In other words,
MPLS paths only define layer-2 topology of the network. In this case, Drouting architecture
is constructed on the layer-2 topology. Traffic engineering using MPLS path setup is not
executed and the traffic engineering function must be done within the Drouting architecture.

Second, MPLS computes the path for each communication session (or for each aggre-
gated bulk communication session) considering the state of network such as link’s band-
width in order to execute MPLS traffic engineering, irrespective to layer-3 routes. The path
computed by MPLS or its corresponding path computation algorithm has nothing to do with
the multipath routes calculated by the Drouting architecture. When MPLS path setup fails,
packet forwarding or path setup can be directed along with the layer-3 routes. In this case
multipath routes calculated by the Drouting architecture are used, only as an emergency
exit.

Third is the case where MPLS traffic engineering is built upon the layer-3 routing by
Drouting architecture. During MPLS traffic engineering, MPLS path is setup for each com-
munication session considering the state of network such as link’s bandwidth, for example,
by RSVP or OSPF. In this case the MPLS path may be constructed on the one of the path
from the multipath routes provided by the Drouting architecture. This means the reduction
of CPU-time consumption and computing complexity of MPLS path computation, because
MPLS path can be computed from a restricted graph structure (multipath routing sub-graph
calculated by the Drouting architecture) rather than the original base graph structure.

Further interaction betweenMPLS and Drouting, such as state distribution on the Drout-
ing architecture that is similar to OSPF-TE, is open to research.

10.5 Network Operation and Debugging

Network operation and network debugging would become slightly complex than the current
Internet, in the Drouting architecture. In Drouting architecture, it will become harder to
find a network failure, since different packet tags may keep the communication from being
interrupted by the failure. This means that a user or a network administrator may or may
not see the failure, depending on the packet tag. It complicates locating the network failure
and to determine the source of the failure.

The network administrators must use ping and/or traceroute with a specification of a
packet tag, to quickly notice a problem. Hence the network administrators must execute
huge number of ping and/or traceroute in order to be assured of the network state. This is
the trade-off for the increased network availability.

Other network operation processes are expected to remain the same.

CHAPTER 10. FUTURE PROSPECTS 129

10.6 Migration and Transition Issues

Migration from existing network to that of Drouting architecture is not simple.

The multipath routing graphs calculate by MARAs are not consistent with the shortest
path tree calculated by the existing Dijkstra algorithm, except for the MARA-SPE. Hence,
coexistence of routers that perform shortest path routing and routers that perform the Drout-
ing may provide routing loops. There are, however, some methods that is expected to enable
the coexistence.

First is the dual stack approach. As shown in Chapter 7, if a dominant rule is possible
such as to specify that a packet tag of value 0 indicates the shortest path routing, and other
value indicates routing in Drouting architecture, then making the Drouting router also ca-
pable of shortest path routing will enable the coexistence of both routers. This approach,
however, is not realistic since it strictly forces the existing router and end hosts to use the
0-valued packet tags.

Second is the overlay approach. Like migration to IPv6,the Drouting network is con-
structed separately from the current network, using physically different network and/or
layer-3 tunnels to overlay the Drouting network on the existing network. Drouting routers
must be aware of Drouting capability of neighboring routers, and be confident that there
would be no routing loops when to forward packets to non-Drouting capable routers. This
is similar to the relation between current IPv4 and IPv6 network, and is relatively realistic
in that Drouting routers would be aware of neighboring router’s Drouting capability, since
there would be some sort of routing protocol for Drouting architecture that runs only among
Drouting routers.

When Drouting network is enabled by either approach, there would be no problems in
inter-domain routing because inter-domain routing is performed by another routing proto-
col, BGP, in another level. Performing the Drouting or Drouting-like routing in inter-domain
routing level is another story, and is discussed in Section 10.7.

When the entire AS supports Drouting architecture, the AS may gain some benefit, even
in inter-domain level without any help of neighboring ASes. Deflection [109] insists that
intra-domain multipath routing that changes entire network path, such as Deflection and
Drouting, can change the exit of the AS itself, hence it is likely to change the successive
AS level path. This is plausible, since with the permission of the BGP routing, there may
be multiple possible exit point for certain destinations outside the AS. Drouting also can be
used to distribute the BGP’s multiple routes, and enable end hosts and routers to switch
to the other AS exit point. Hence, supporting the multipath routing mechanism such as
Drouting is beneficial also in terms of utilization of AS-level alternative paths.

CHAPTER 10. FUTURE PROSPECTS 130

10.7 Inter-domain Routing

As mentioned in Section 7.7 in Chapter 7, Implementing Drouting or Drouting-like routing is
difficult in inter-domain routing level, since MARA requires a complete graph of the entire
network to calculate routes and to synchronize the graph with all the other nodes in the
network, to guarantee loop-free multipath routes. This seems impossible, since the complete
graph of the Internet seems impossible to both obtain and synchronize, even in the unit of
AS.

A new breakthrough in technology is required, such as a completely new multipath
routing algorithm, or a method to guarantee a loop-freeness of all possible multipath routes
with only local knowledge, in order to enable multipath routing in the inter-domain routing
level. It is a really challenging task and is open to research.

10.8 Improving the Routing Algorithm

One of the most short-term technical improvement that is possible would be to extend
MARA to other objectives. Currently MARA only aims to maximize the minimum con-
nectivity and the minimum maximum-flow to the destination in the network. There may be
many candidates in deciding node orderings and edge orientation where any of candidates
is allowed. Determining another preference on those candidates may contribute to improve
the network performance. Other objectives for MARA are possible, such as maximizing re-
liability, minimizing delay and jitter, and the combinations of these and original objectives,
namely, connectivity and bandwidth. Extending MARA is a future work.

10.9 The Distributed Routing Protocol

The discussion on Drouting architecture in this dissertation has been advanced without
considering the actual distributed routing protocol that executes MARA. The Drouting ar-
chitecture is assumed to utilize a link state family routing protocol such as OSPF and IS-IS,
with synchronizing the network maps in a flooding procedure and each router executes the
routing algorithm independently.

Link state routing protocol’s correctness depends strictly on the synchronization of the
link state database. A conflict in the link state database may introduce routing loops, and
hence, link state routing protocols have a risky property in nature, in that if a router in
the network goes out of order and advertise a faulty information, whole network may be
adversely affected. In contrast, vector-based routing protocols such as distance vector’s RIP
and path-vector’s BGP are free to reject a routing message, thus they seem to have a desired

CHAPTER 10. FUTURE PROSPECTS 131

property in terms of reliability, since each router can watch and evaluate the feasibility of
other routers and routes.

The improvement of routing protocols for the highly available Internet is also a future
work.

Appendix A

Theory of Reliability

Network availability can be calculated as a system reliability of a coherent system [11]. The
theory of system reliability regarding network availability is summarized below. The theory
is used to calculate the availability of a real network in Chapter 4.

A.1 Systems of components

For all components in the system, a binary variable xi is assigned to indicate the state of i-th
component in the system:

xi =

1 if component i is functioning,

0 if component i is failed.
(A.1)

We assume the states of the components are statistically independent.
The binary variable φ which indicates the state of the system is determined completely

from the states of components. Hence,

φ = φ(x), (A.2)

where x = (x1, . . . ,xn) and n is the number of components in the system. The function φ(x)
is called the structure function, and we denote the structure also by φ as in “structure φ”.

1 2 n…1 2 n…11 22 nn…

Figure A.1: A series structure.

The function of a series structure (Figure A.1) is given such as:

φ(x) =
n∏

i=1

xi. (A.3)

132

APPENDIX A. THEORY OF RELIABILITY 133

This means that all components must be functioning for the system to function.

:
:

1

2

n

:
:

1

2

n

:
:

1

2

n

:
:

111

222

nnn

Figure A.2: A parallel structure.

∐
is defined to calculate the reliability of a parallel structure (Figure A.2), such that:

n∐
i=1

xi ≡ 1−
n∏

i=1

(1− xi).

Then the function state of a parallel structure is:

φ(x) =
n∐

i=1

xi. (A.4)

This means that at least one of the components must be functioning for the system to func-
tion.

A.2 Coherent system

A particular set of components C is coherent if:

1. its structure function φ is increasing (i.e., non-decreasing), and

2. each component is relevant.

“Increasing” in 1 means that improving the performance of a component i always contributes
(i.e., does not affect adversely) to the function state of the system φ(x). “Relevant” in 2
means that components whose states are irrelevant to the system state are not considered in
x. A coherent system is denoted by (C,φ).

Most common systems, including communication networks, are coherent.

APPENDIX A. THEORY OF RELIABILITY 134

A.3 Paths and cuts

A path vector is a vector x such that φ(x) = 1. Let y < x mean yi ≤ xi(i = 1, . . . ,n), with
yi < xi for some i. Then, aminimal path vector is a path vector x such that y < x⇒ φ(y)= 0.
The corresponding path set C1(x) = {i |xi = 1}, called a minimal path set, constitutes a
minimal set of elements whose functioning insures the functioning of the system. We denote
the j-th minimal path set as Pj, where j = 1, . . . , p, and p is the number of minimal path
sets of φ . Since the system functions if all components in the minimal path set function, the
minimal path set can be thought as a series structure. A binary function

p j(x) =
∏
i∈Pj

xi, (A.5)

tests if all components in the path set function. Since the system functions if and only if at
least one of the minimal path structures is functioning, the state of the system can be written
as

φ(x) ≡
p∐

j=1

p j(x) ≡
p∐

j=1

∏
i∈Pj

xi. (A.6)

This is a parallel arrangement of the minimal path series structures.
A cut vector is a vector x such that φ(x) = 0. A minimal cut vector is a cut vector x

such that for all y > x ⇒ φ(y) = 1. The corresponding cut set C0(x) = {i |xi = 0}, called
a minimal cut set, is a minimal set of elements whose failure causes the system to fail. We
denote the j-th minimal cut set as K j, where j = 1, . . . ,k, and k is the number of minimal cut
sets of φ . Since the system fails if all components in the minimal path set fail, the minimal
cut set can be thought as a parallel structure. A binary function

k j(x) =
∐
i∈K j

xi, (A.7)

takes the value 0 if all components in the cut set fail, and 1 otherwise. Since the system
functions if and only if all the minimal cut sets function, the state of the system can be
written as

φ(x) ≡
k∏

j=1

k j(x). ≡
k∏

j=1

∐
i∈K j

xi. (A.8)

This is a series arrangement of the minimal cut parallel structures.

A.4 System reliability

Now we extend the discussion from the state to the probability that a component functions.
Suppose that the state Xi of the i-th component is random with

P[Xi = 1] = pi = EXi for i = 1, . . . ,n, (A.9)

APPENDIX A. THEORY OF RELIABILITY 135

where EX denotes the expected value of the random variable X . pi is the probability that i
functions, i.e., the reliability of i. The reliability of the system is given by:

P[φ(X) = 1] = h = Eφ(X). (A.10)

The system reliability h is a function of component reliabilities:

h = h(p). (A.11)

h(p) is referred to as reliability function of structure φ . The series structure φ(x) =
∏n

i=1 xi

has reliability function

h(p) =
n∏

i=1

pi, (A.12)

and the parallel structure φ(x) =
∐n

i=1 xi has reliability function

h(p) =
n∐

i=1

pi ≡ 1−
n∏

i=1

(1− pi). (A.13)

The system reliability can be computed simply by expanding the system function state
represented by minimal path or cut sets into the xi’s multinomial expressions, using the
idempotency of xi (that is, x2

i = xi), and taking the expectation; that is:

h(p) = E
p∐

j=1

∏
i∈Pj

Xi (A.14)

and

h(p) = E
k∏

j=1

∐
i∈K j

Xi. (A.15)

An example of reliability computation for a complex system where minimal path sets
share some common links follows.

3

4 5

1 2

3

4 5

1 2

3

4 54 5

1 21 2

Figure A.3: An example of reliability computation by minimal path sets.

APPENDIX A. THEORY OF RELIABILITY 136

In the system of Figure A.3, the minimal path sets are:

P1 = {1,2},P2 = {1,3,5},P3 = {4,3,2},P4 = {4,5}.

Structure function is:

φ(x) =
p∐

j=1

∏
i∈Pj

xi

= 1− (1− x1x2)(1− x1x3x5)(1− x4x3x2)(1− x4x5)

= x1x2 + x1x3x5 + x4x5 + x2x3x4

−x1x2
2x3x4 − x2

1x2x3x5 − x1x2x4x5 − x1x3x4x2
5 − x2x3x2

4x5

−x1x2x2
3x4x5 + x1x2x2

3x2
4x2

5

+x1x2
2x3x2

4x5 + x2
1x2x3x4x2

5

+x2
1x2

2x2
3x4x5 − x2

1x2
2x2

3x2
4x2

5

= x1x2 + x1x3x5 + x4x5 + x2x3x4

−x1x2x3x4 − x1x2x3x5 − x1x2x4x5 − x1x3x4x5 − x2x3x4x5

−x1x2x3x4x5 + x1x2x3x4x5

+x1x2x3x4x5 + x1x2x3x4x5

+x1x2x3x4x5 − x1x2x3x4x5 (idempotency)

= x1x2 + x1x3x5 + x4x5 + x2x3x4

−x1x2x3x4 − x1x2x3x5 − x1x2x4x5 − x1x3x4x5 − x2x3x4x5

+2x1x2x3x4x5. (A.16)

A vector term such as x1x2x4x5 is called a Boolean product. A Boolean product representing
a minimal path set or a minimal cut set, such as x1x2, is called minproduct.

The reliability can be derived by applying the probability in Equation A.16:

h(p) = Eφ(x)

= p1 p2 + p1 p3 p5 + p4 p5 + p2 p3 p4

−p1 p2 p3 p4 − p1 p2 p3 p5 − p1 p2 p4 p5 − p1 p3 p4 p5 − p2 p3 p4 p5

+2p1 p2 p3 p4 p5. (A.17)

A.5 Sum of disjoint products approach

Computing the system reliability by Equation A.14 involves computation of O(2p) terms,
which is computationally intractable. To address the problem, numerical researches have
been proposed including the Sum of Disjoint Products (SDP) approach [80]. Some of the

APPENDIX A. THEORY OF RELIABILITY 137

SDP methods utilize Multiple Variable Inversion (MVI) techniques, where a cube represents
a state of components that indicates aggregation of multiple events. A cube A = a1a2 . . .an,
where

ai =

1 if xi is true,

x if xi does not matter,

0u if ai is involved in grouped zeros labeled by u.

This indicates a state that at least one component in the group u fail.

(A.18)

0u enables the inversion on multiple variables (MVI). For example, the cube A = a1a2a3a4a5a6a7 =
011021021x indicates a probability of some event Ei of which the state probability is repre-
sented by P(E) = (1− p1)p2 p4 p6(1− p3 p5). In this example, a1 = 01 and there is no 0u

where u = 1, the probability regarding x1 is (1− p1). For x2, x4, and x6, ai = 1, hence the
probability is p2 p4 p6. For x3 and x5, ai = 02, thus the probability is (1− p3 p5) (i.e., grouped
inversion). x7 does not matter because a7 = x. The cube A is 0 if the resulting probability is
0.

Let E j be the event that all components in a minimal path set Pj function (i.e., the path Pj

operates). Let E j denote the complement of event E j, and P(E j) be the probability function
of event E j. Then reliability function is

h(p) = P(E1)+P(E1E2)+ · · ·+P(E1E2 . . .Ep−1Ep). (A.19)

In this equation the reliability is calculated by adding the probability of Pi operates with all
P1,P2, . . . ,Pi−1 fail. Notice that these events are mutually disjoint.

Equation A.19 can be translated as

h(p) = P(E1)+P(E2 ·E1)+P((E3 ·E1) ·E2)+ · · ·+P((. . .((Ep ·E1) ·E2) · . . .) ·Ep−1).
(A.20)

Hence calculation of cubes A ·B is important. Note that B can have only 1,x (i.e., cannot
have 0u) because B is an original minproduct. Hence A = {ai |ai ∈ {1,x,0u}}, B = {bi |bi ∈
{1,x}}.

Improved version of Veeraraghavan-Trivedi (VT), called I_VT [101], develops a new op-
erator \ (pronounced ‘little’) for cubes to incrementally compute the disjoint state after some
events. P(E1\E2) computes P(E1 ·E2).

The operator \ requires classifying the relation of two operand cubes, A,B, into four
classes: subset, disjoint, x1, and split-recursive.

1. subset

A is a subset of B if for all i either ai = bi or (if ai , bi) bi = x. In this case, A ⊆ B,
hence A ·B = 0.

APPENDIX A. THEORY OF RELIABILITY 138

2. disjoint

A and B are disjoint if there exist u such that for all ai = 0u, the bi = 1. In this case,
A ·B = A.

3. x1

A and B are in x1 relation if there is an index i such that ai = x and bi = 1, and for
all the other index j, if there exist j such that a j = 0u and b j = x. This differs from
subset relation only in that there is a coordinate pair (ai = x,bi = 1). In this case
A ·B = C. C can be obtained by slightly limiting the range of case that A represents,
by substituting ai = x in A with ai = 0u where (ai = x,bi = 1).

C = c1c2 . . .cn, where

ci =

0(γ+1) if ai = x, bi = 1,

ai otherwise.
(A.21)

γ indicates the largest label of grouped zeros in the corresponding cube. (γ +1) means
the assignment of a new label to the new grouped zeros.

4. split-recursive

A and B are in split-recursive relation if there is a coordinate pair (ai = 0u,bi = 1)
at index i, and for every 0u in cube A there is a coordinate pair (a j = 0u,b j = x) at
index j , i. Then the 0u part in the A is split to 1 and x, so that A = A1 + Ax. A1 is
obtained from A by setting all ai that have (ai = 0u,bi = 1) pairs to 1. Ax is obtained
from A by setting all ai that have (ai = 0u,bi = x) pairs to x. The corresponding
Boolean expression is A = x1x2 = x1x2 + x1. Since Ax and B constitute a disjoint
relation, A ·B = (A1 ·B)+(Ax ·B) = (A1 ·B)+Ax. All 0vs other than 0u are handled
recursively by (A1 ·B).

The operator \ is defined by:

A\B =

0 if subset relation holds,

A if disjoint relation holds,

C if x1 relation holds,

(A1 ·B)+Ax if split-recursive relation holds.

(A.22)

(A1 ·B) in split-recursive relation is expanded by the operator \ further, recursively.

Appendix B

Simulations and analysis on other
topologies

The result of failure recovery simulations and path analysis on the topology of Sprint, Ebone,
Tiscali, Exodus, Abovenet, BA-100-invcap and BA-100-minhop are given here. The simu-
lation method and the meaning of the path analysis are described in Chapter 7. For each
topology, the illustration of the topology, failure recovery simulation results for a single
failure and 10 failures, the distribution of the number of nexthops and paths, and the distri-
bution of the average and the maximum path length among nodes are given.

The topology of Sprint is a large network graph. The comparisons of paths in such
a large network is hard, because calculating the number of path in Drouting involves the
enumeration of all paths (see Section 7.5.2), which does not terminate in polynomial time.
Hence, the comparison of paths on Sprint is omitted. Here only the result of the failure
recovery simulation is shown for Sprint.

Figure B.1: The Sprint’s network topology.

139

APPENDIX B. SIMULATIONS AND ANALYSIS ON OTHER TOPOLOGIES 140

Figure B.2: The Ebone’s network topology.

Figure B.3: The Tiscali’s network topology.

Figure B.4: The Exodus’s network topology.

APPENDIX B. SIMULATIONS AND ANALYSIS ON OTHER TOPOLOGIES 141

Figure B.5: The Abovenet’s network topology.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10

Fr
ac

tio
n

of
 F

ai
lu

re
 C

as
es

Number of Retries

Deflect-1
Deflect-2
Deflect-3
Drouting

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10

Fr
ac

tio
n

of
 F

ai
lu

re
 C

as
es

Number of Retries

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure B.6: The fraction of failures, successfully recovered by different systems on the Sprint
topology for 1 failure (left) and 10 failures (right).

APPENDIX B. SIMULATIONS AND ANALYSIS ON OTHER TOPOLOGIES 142

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10

Fr
ac

tio
n

of
 F

ai
lu

re
 C

as
es

Number of Retries

Deflect-1
Deflect-2
Deflect-3
Drouting

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 2 4 6 8 10

Fr
ac

tio
n

of
 F

ai
lu

re
 C

as
es

Number of Retries

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure B.7: The fraction of failures, successfully recovered by different systems on the Ebone
topology for 1 failure (left) and 10 failures (right).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Number of Nexthops

Deflect-1
Deflect-2
Deflect-3
Drouting

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Number of Paths

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure B.8: The fraction of source-destination pairs on the Ebone topology, having more
than x nexthops and paths.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Average Path Length in Nodes

Deflect-1
Deflect-2
Deflect-3
Drouting

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Maximum Path Length in Nodes

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure B.9: The fraction of source-destination pairs on the Ebone topology, having path
length more than x in average and in maximum.

APPENDIX B. SIMULATIONS AND ANALYSIS ON OTHER TOPOLOGIES 143

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10

Fr
ac

tio
n

of
 F

ai
lu

re
 C

as
es

Number of Retries

Deflect-1
Deflect-2
Deflect-3
Drouting

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10

Fr
ac

tio
n

of
 F

ai
lu

re
 C

as
es

Number of Retries

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure B.10: The fraction of failures, successfully recovered by different systems on the
Tiscali topology for 1 failure (left) and 10 failures (right).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Number of Nexthops

Deflect-1
Deflect-2
Deflect-3
Drouting

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Number of Paths

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure B.11: The fraction of source-destination pairs on the Tiscali topology, having more
than x nexthops and paths.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Average Path Length in Nodes

Deflect-1
Deflect-2
Deflect-3
Drouting

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Maximum Path Length in Nodes

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure B.12: The fraction of source-destination pairs on the Tiscali topology, having path
length more than x in average and in maximum.

APPENDIX B. SIMULATIONS AND ANALYSIS ON OTHER TOPOLOGIES 144

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10

Fr
ac

tio
n

of
 F

ai
lu

re
 C

as
es

Number of Retries

Deflect-1
Deflect-2
Deflect-3
Drouting

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 2 4 6 8 10

Fr
ac

tio
n

of
 F

ai
lu

re
 C

as
es

Number of Retries

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure B.13: The fraction of failures, successfully recovered by different systems on the
Exodus topology for 1 failure (left) and 10 failures (right).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Number of Nexthops

Deflect-1
Deflect-2
Deflect-3
Drouting

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Number of Paths

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure B.14: The fraction of source-destination pairs on the Exodus topology, having more
than x nexthops and paths.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Average Path Length in Nodes

Deflect-1
Deflect-2
Deflect-3
Drouting

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Maximum Path Length in Nodes

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure B.15: The fraction of source-destination pairs on the Exodus topology, having path
length more than x in average and in maximum.

APPENDIX B. SIMULATIONS AND ANALYSIS ON OTHER TOPOLOGIES 145

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

Fr
ac

tio
n

of
 F

ai
lu

re
 C

as
es

Number of Retries

Deflect-1
Deflect-2
Deflect-3
Drouting

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10

Fr
ac

tio
n

of
 F

ai
lu

re
 C

as
es

Number of Retries

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure B.16: The fraction of failures, successfully recovered by different systems on the
Abovenet topology for 1 failure (left) and 10 failures (right).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Number of Nexthops

Deflect-1
Deflect-2
Deflect-3
Drouting

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Number of Paths

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure B.17: The fraction of source-destination pairs on the Abovenet topology, having more
than x nexthops and paths.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Average Path Length in Nodes

Deflect-1
Deflect-2
Deflect-3
Drouting

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

Fr
ac

tio
n

of
 S

ou
rc

e-
D

es
tin

at
io

n
P

ai
rs

Maximum Path Length in Nodes

Deflect-1
Deflect-2
Deflect-3
Drouting

Figure B.18: The fraction of source-destination pairs on the Abovenet topology, having path
length more than x in average and in maximum.

Bibliography

[1] Intermediate system to Intermediate system routeing information exchange proto-
col for use in conjunction with the Protocol for providing the Connectionless-mode
Network Service (ISO 8473). ISO/IEC 10589:2001.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[3] ampl.com. AMPL Modeling Language for Mathematical Programming. <http://
www.ampl.com/>.

[4] Analytical Graphics, Inc. Analytical Graphics, Inc. (AGI), analysis software for land,
sea, air, and space. <http://www.agi.com/>.

[5] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay net-
works. In SOSP ’01: Proceedings of the 18th ACM Symposium on Operating Systems
Principles, pp. 131–145, New York, NY, USA, 2001. ACM.

[6] D. Applegate and E. Cohen. Making Intra-Domain Routing Robust to Changing and
Uncertain Traffic Demands: Understanding Fundamental Tradeoffs. In SIGCOMM
’03: Proceedings of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications, pp. 313–324, New York, NY, USA, 2003.
ACM Press.

[7] A. Atlas and A. Zinin. Basic specification for IP fast-reroute: loop-free alternates.
Technical report, Mar. 2007. draft-ietf-rtgwg-ipfrr-spec-base-06.txt.

[8] A. Aviz̆ienis, J.-C. Laprie, and B. Randell. Fundamental Concepts of Dependability.
Research Report 1145, LAAS-CNRS, 2001.

[9] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus. Requirements for
Traffic Engineering Over MPLS. rfc 2702, Sept. 1999.

[10] D. O. Awduche. MPLS and traffic engineering in IP networks. Communications
Magazine, IEEE, 37(12):42–47, Dec. 1999.

146

BIBLIOGRAPHY 147

[11] R. Barlow and F. Proschan. Statistical theory of reliability and life testing: probability
models. Holt, Rinehart and Winston, New York, 1975.

[12] A. Basu, A. Lin, and S. Ramanathan. Routing Using Potentials: A Dynamic Traffic-
Aware Routing Algorithm. In SIGCOMM ’03: Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer communica-
tions, pp. 37–48, New York, NY, USA, 2003. ACM Press.

[13] I. V. Beijnum. BGP. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2002.

[14] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden, B. Davie,
J. Wroclawski, and E. Felstaine. A Framework for Integrated Services Operation over
Diffserv Networks. rfc 2998, Nov. 2000.

[15] K. Cho. The Design and Implementation of the ALTQ Traffic Management System.
PhD thesis, Keio University, Jan. 2001.

[16] Cisco Systems. Advanced topics in MPLS-TE deployment. White paper, 2001.

[17] R. Cohen and G. Nakibly. On the Computational Complexity and Effectiveness of
N-hub Shortest-Path Routing. In INFOCOM, 2004.

[18] R. Coltun, D. Ferguson, and J. Moy. OSPF for IPv6. rfc 2740, Dec. 1999.

[19] D. E. Comer. Principles, Protocols, and Architectures. In Internetworking with
TCP/IP, volume 1. Prentice Hall PTR, Upper Saddle River, NJ, USA, fourth edition,
2000.

[20] S. Cowley. Level 3, Cogent resolve peering spat, renew deal. IDG News Ser-
vice, Oct 28 2005. <http://www.networkworld.com/edge/news/2005/102805
-cogent-level3.html>.

[21] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick. A Framework for QoS-based
Routing in the Internet. rfc 2386, Aug. 1998.

[22] G. B. Dantzig and D. R. Fulkerson. On the max flow min cut theorem of networks.
The RAND Corporation, Santa Monica, California, 1955. Paper P-826.

[23] E. W. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematik, 1:269–271, 1959.

[24] E. W. Dijkstra and C. S. Scholten. Termination Detection for Diffusing Computations.
Inf. Process. Lett., 11(1):1–4, 1980.

BIBLIOGRAPHY 148

[25] E. A. Dinits. Algorithm for Solution of a Problem of Maximum Flow in a Network
with Power Estimation. Soviet Mathematics-Doklady, 11(5):1277–1280, 1970.

[26] J. Duffy. Cisco routers caused major outage in Japan: report. Network World,
May 16 2007. <http://www.networkworld.com/news/2007/051607-cisco-
routers-major-outage-japan.html>.

[27] J. Ellson and E. Gansner. Graphviz. <http://www.graphviz.org/>.

[28] A. Elwalid, C. Jin, S. Low, and I. Widjaja. MATE: multipath adaptive traffic engineer-
ing. Comput. Networks, 40(6):695–709, 2002.

[29] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the In-
ternet topology. In SIGCOMM ’99: Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer communication, pp. 251–262,
New York, NY, USA, 1999. ACM Press.

[30] B. Fortz and M. Thorup. Internet traffic engineering by optimizing OSPF weights. In
IEEE INFOCOM, volume 2, pp. 519–528, Mar 2000.

[31] B. Fortz and M. Thorup. Optimizing OSPF/IS-IS Weights in a Changing World. IEEE
J. Selected Areas in Communications, 20(4):756–767, 2002.

[32] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM, 34(3):596–615, 1987.

[33] A. Fumagalli and L. Valcarenghi. IP Restoration vs. WDM Protection: Is There an
Optimal Choice ? IEEE Network, 14(6), Dec. 2000.

[34] R. Govindan and A. Reddy. An Analysis of Internet Inter-Domain Topology and
Route Stability. In INFOCOM ’97: Proceedings of the INFOCOM ’97. 16th Annual
Joint Conference of the IEEE Computer and Communications Societies. Driving the
Information Revolution, p. 850, Washington, DC, USA, 1997. IEEE Computer Society.

[35] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths problem and interdo-
main routing. IEEE/ACM Trans. Netw., 10(2):232–243, 2002.

[36] D. Harrington, R. Presuhn, and B. Wijnen. An Architecture for Describing Simple
Network Management Protocol (SNMP) Management Frameworks. rfc 3411, Dec.
2002.

[37] C. Huitema. Routing in the Internet. Prentice Hall PTR, Upper Saddle River, NJ, USA,
second edition, 2000.

BIBLIOGRAPHY 149

[38] G. Huston. CIDR Report. <http://www.cidr-report.org/>.

[39] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot. Feasibility of IP restora-
tion in a tier 1 backbone. IEEE Network, 18(2):13–19, 2004.

[40] G. Iannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot. Analysis of
link failures in an IP backbone. In IMW ’02: Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment, pp. 237–242, New York, NY, USA, 2002. ACM
Press.

[41] IETF bfd working group. Bidirectional Forwarding Detection (bfd). <http://www.
ietf.org/html.charters/bfd-charter.html>.

[42] IETF manet working group. Mobile Ad-hoc Networks (manet). <http://www.ietf.
org/html.charters/manet-charter.html>.

[43] Internet Systems Consortium, Inc. ISC Internet Domain Survey. <http://www.isc.
org/ops/ds/>.

[44] Internet World Stats. Internet Growth Statistics - Global Village Online. <http://
www.internetworldstats.com/emarketing.htm>.

[45] M. Jain and C. Dovrolis. Ten fallacies and pitfalls on end-to-end available bandwidth
estimation. In IMC ’04: Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement, pp. 272–277, New York, NY, USA, 2004. ACM Press.

[46] P. Jalote. Fault Tolerance in Distributed Systems. Prentice Hall, Englewood Cliffs,
NJ, USA, 1994.

[47] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope: responsive yet
stable traffic engineering. SIGCOMM Comput. Commun. Rev., 35(4):253–264, 2005.

[48] T. Kenyon. High Performance Data Network Design. Digital Press, Elsevier Science
Ltd., The Boulevard, England, 2001.

[49] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental Study of Internet Stability
and Wide-Area Backbone Failures. Technical Report CSE-TR-382-98, University of
Michigan, 1998.

[50] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental Study of Internet Stability and
Backbone Failures. In FTCS ’99: Proceedings of the Twenty-Ninth Annual Interna-
tional Symposium on Fault-Tolerant Computing, pp. 278+, Washington, DC, USA,
1999. IEEE Computer Society.

BIBLIOGRAPHY 150

[51] K. Lai and M. Baker. Measuring link bandwidths using a deterministic model of
packet delay. In SIGCOMM ’00: Proceedings of the conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, pp. 283–
294, New York, NY, USA, 2000. ACM Press.

[52] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chuah. Proactive vs Reactive
Approaches to Failure Resilient Routing. In INFOCOM, 2004.

[53] L. Li, D. Alderson, W. Willinger, and J. Doyle. A first-principles approach to un-
derstanding the internet’s router-level topology. In SIGCOMM ’04: Proceedings of
the 2004 conference on Applications, technologies, architectures, and protocols for
computer communications, pp. 3–14, New York, NY, USA, 2004. ACM Press.

[54] G. Malkin. RIP Version 2. rfc 2453, Nov. 1998.

[55] E. Mannie and D. Papadimitriou. Recovery (Protection and Restoration) Terminology
for Generalized Multi-Protocol Label Switching (GMPLS). rfc 4427, Mar. 2006.

[56] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and C. Diot. Char-
acterization of failures in an IP backbone network. In INFOCOM, 2004.

[57] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: an approach to universal
topology generation. MASCOTS, 00:0346, Aug. 2001.

[58] J. T. Moy. OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley, 1998.

[59] J. T. Moy. OSPF version 2. rfc 2328, Apr. 1998.

[60] B. Murray. GTNetS - Home. <http://www.ece.gatech.edu/research/labs/
MANIACS/GTNetS/index.html>.

[61] H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs and ca-
pacitated graphs. SIAM J. Discret. Math., 5(1):54–66, 1992.

[62] H. Nagamochi and T. Ibaraki. Graph connectivity and its augmentation: applications
of MA orderings. Discrete Appl. Math., 123(1-3):447–472, 2002.

[63] A. Nakao, L. Peterson, and A. Bavier. A routing underlay for overlay networks. In
SIGCOMM ’03: Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, pp. 11–18, New York,
NY, USA, 2003. ACM.

[64] T. Nolle. What we should learn from the AT&T outage. Network World, 15:73, May 4
1998.

BIBLIOGRAPHY 151

[65] ns-2 project. The Network Simulator - ns-2. <http://www.isi.edu/nsnam/ns/>.

[66] NTT-EAST. About the circumstances where FLET’S service and Hikari phones can-
not be used (final report) (Japanese). <http://www.ntt-east.co.jp/release/
0705/070516b.html>.

[67] Y. Ohara. Zebra OSPFv3. <http://www.sfc.wide.ad.jp/˜yasu/research/
ospf-v3.html>.

[68] Y. Ohara, H. Imaizumi, A. Kato, O. Nakamura, and J. Murai. A Load Balancing Routing
Algorithm Tolerant to Wide Range of Traffic Demands (Japanese). IPSJ, 48(4):1627–
1640, 2007.

[69] OMNeT++ Community Site. OMNeT++ Community Site. <http://www.omnetpp.
org/>.

[70] OneSAF. OneSAF Public Site. <http://www.onesaf.net/>.

[71] OPNET Technologies, Inc. OPNET Technologies, Inc. <http://www.opnet.com/>.

[72] P. Pan, G. Swallow, and A. Atlas. Fast Reroute Extensions to RSVP-TE for LSP Tun-
nels. rfc 4090, May 2005.

[73] R. Perlman. Interconnections: Bridges and Routers. Addison Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1992.

[74] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for introducing disrup-
tive technology into the Internet. SIGCOMM Comput. Commun. Rev., 33(1):59–64,
2003.

[75] T. C. Piliouras. Network Design: Management and Technical Perspectives. Auerbach
Publications, Boston, MA, USA, 2004.

[76] J. B. Postel. User Datagram Protocol. rfc 0768, Aug. 1980.

[77] J. B. Postel. Internet Protocol. rfc 0791, Sept. 1981.

[78] J. B. Postel. Transmission Control Protocol. rfc 0793, Sept. 1981.

[79] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker. On selfish routing in internet-like
environments. IEEE/ACM Trans. Netw., 14(4):725–738, 2006.

[80] S. Rai, M. Veeraraghavan, and K. S. Trivedi. A Survey of Efficient Reliability Compu-
tation Using Disjoint Products Approach. Networks, 25(3):147–163, 1995.

BIBLIOGRAPHY 152

[81] J. Rajahalme, A. Conta, B. Carpenter, and S. Deering. IPv6 flow label specification.
rfc 3697, Mar. 2004.

[82] Y. Rekhter, T. Li, and S. Hares. A border gateway protocol 4 (BGP-4). rfc 4271, Jan.
2006.

[83] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Architecture.
rfc 3031, Jan. 2001.

[84] E. C. Rosen. Vulnerabilities of network control protocols: an example. SIGCOMM
Comput. Commun. Rev., 11(3):10–16, 1981.

[85] L. Sahasrabuddhe, S. Ramamurthy, and B. Mukherjee. Fault management in IP-over-
WDM networks: WDM protection versus IP restoration. IEEE Journal on Selected
Areas in Communications, 20(1), Jan. 2002.

[86] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The end-to-end effects
of Internet path selection. In SIGCOMM ’99: Proceedings of the conference on Ap-
plications, technologies, architectures, and protocols for computer communication,
pp. 289–299, New York, NY, USA, 1999. ACM Press.

[87] Scalable Network Technologies. Scalable Network Technologies: Creators of QualNet
Network Simulator Software. <http://www.scalable-networks.com/>.

[88] A. Schmid and C. Steigner. Avoiding Counting To Infinity In Distance Vector Routing.
Telecommunication Systems, 19(3–4):497–514, 2002.

[89] R. Sedgewick. Algorithms in C. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[90] J. Sellens. System and Network Administration for Higher Reliability. The USENIX
Association, Berkeley, CA, USA, 2001.

[91] J. L. Sobrinho. Network routing with path vector protocols: theory and applications.
In SIGCOMM ’03: Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, pp. 49–60, New York, NY,
USA, 2003. ACM Press.

[92] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP topologies with
Rocketfuel. IEEE/ACM Trans. Netw., 12(1):2–16, 2004.

[93] A. Sridharan, R. Guérin, and C. Diot. Achieving near-optimal traffic engineering
solutions for current OSPF/IS-IS networks. IEEE/ACM Trans. Netw., 13(2):234–247,
2005.

BIBLIOGRAPHY 153

[94] Stanford Business Software, Inc. MINOS 5.5. <http://www.sbsi-sol-optimize.
com/asp/sol_product_minos.htm>.

[95] J. A. Stankovic. Reliable Distributed System Software. IEEE Computer Society Press,
Los Alamitos, CA, USA, 1985.

[96] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina,
M. Kalla, L. Zhang, and V. Paxson. Stream control transmission protocol. rfc 2960,
Oct. 2000.

[97] R. E. Tarjan. Testing graph connectivity. In STOC ’74: Proceedings of the sixth
annual ACM symposium on Theory of computing, pp. 185–193, New York, NY, USA,
1974. ACM.

[98] The NetBSD Project. The NetBSD Project. <http://www.netbsd.org/>.

[99] The Zebra Project. GNU Zebra. <http://www.zebra.org/>.

[100] M. To and P. Neusy. Unavailability Analysis of Long-Haul Networks. IEEE JSAC,
12:100–09, Jan. 1994.

[101] L. Tong and K. S. Trivedi. An improved algorithm for coherent-system reliability.
IEEE Transaction on Reliability, 47(1):73–78, 1998.

[102] UCLA Parallel Computing Laboratory. UCLA Parsec Programming Language.
<http://pcl.cs.ucla.edu/projects/parsec/>.

[103] C. Villamizar, R. Chandra, and R. Govindan. BGP Route Flap Damping. rfc 2439,
Nov. 1998.

[104] S. Vutukury and J. J. Garcia-Luna-Aceves. A simple approximation to minimum-
delay routing. In SIGCOMM ’99: Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer communication, pp. 227–238,
New York, NY, USA, 1999. ACM Press.

[105] S. Vutukury and J. J. Garcia-Luna-Aceves. An algorithm for multipath computation
using distance-vectors with predecessor information. In Proceedings of 8th Interna-
tional Conference on IEEE Computer Communications and Networks, pp. 534–539,
Oct 1999.

[106] S. Vutukury and J. J. Garcia-Luna-Aceves. MDVA: A Distance-Vector Multipath Rout-
ing Protocol. In INFOCOM, pp. 557–564, 2001.

[107] WIDE Project. WIDE PROJECT. <http://www.wide.ad.jp/>.

BIBLIOGRAPHY 154

[108] X. Xiao, A. Hannan, B. Bailey, and L. M. Ni. Traffic Engineering with MPLS in the
Internet. Network, IEEE, 14(2):28–33, Mar/Apr 2000.

[109] X. Yang and D. Wetherall. Source selectable path diversity via routing deflections. In
SIGCOMM ’06: Proceedings of the 2006 conference on Applications, technologies,
architectures, and protocols for computer communications, pp. 159–170, New York,
NY, USA, 2006. ACM Press.

[110] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: a library for parallel simulation of
large-scale wireless networks. In PADS ’98: Proceedings of the twelfth workshop on
Parallel and distributed simulation, pp. 154–161, Washington, DC, USA, 1998. IEEE
Computer Society.

[111] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast accurate computation of
large-scale IP traffic matrices from link loads. In SIGMETRICS ’03: Proceedings of the
2003 ACM SIGMETRICS international conference on Measurement and modeling
of computer systems, pp. 206–217, New York, NY, USA, 2003. ACM.

Research History

Publications

Journals

1. Yasuhiro Ohara, Hideaki Imaizumi, Akira Kato, Osamu Nakamura, and Jun Murai, “A
Load Balancing Routing Algorithm for Wide Range of Traffic Demands”, Transactions
of Information Processing Society of Japan (IPSJ), Special Issue on User-centered De-
sign andManagement of Distributed Systems and the Internet, Vol. 48, No. 4, pp. 1627–
1640 (Apr. 2007) (Japanese)

2. Yasuhiro Ohara, Hiroyuki Kusumoto, Osamu Nakamura, and Jun Murai, “Drouting
Architecture: Improvement of Failure Avoidance Capability using Multipath Rout-
ing,” The Institute of Electronics, Information and Communication Engineers (IEICE),
2008. (To be published)

3. Yasuhiro Ohara, Masaki Minami, Osamu Nakamura, and Jun Murai, “SimRouting: A
Routing Simulation Tool,” The Information Processing Society of Japan (IPSJ), 2008.
(In submission)

International Conference

1. Yasuhiro Ohara, Manav Bhatia, Osamu Nakamura, and Jun Murai, “Route flapping
effects on OSPF,” In SAINT-03: Proceedings of the 2003 Symposium on Applications
and the Internet Workshops (SAINT’03 Workshops), pp. 232–237, Washington, DC,
USA, IEEE Computer Society, 2003.

Miscellaneous

Software

• “Zebra ospf6d,” <http://www.sfc.wide.ad.jp/˜yasu/research/ospf-v3.html>

155

RESEARCH HISTORY 156

• “SimRouting,” <http://www.simrouting.net/>

Presentations at IETF

• “Status of OSPFv3 implementation for Zebra,” The 49th Internet Engineering Task
Force, IPng working group, San Diego USA, dec 2000.

• “Implementation of OSPFv3 in Zebra,” The 48th Internet Engineering Task Force,
OSPF working group, Pittsburgh USA, jul 2000.

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Contributions of This Work
	1.3 Interpretation of This Work
	1.4 Organization of This Dissertation

	2 Highly Available Internet
	2.1 Terminologies and Definitions
	2.2 Illustration of Network Availability
	2.3 Definition of the Highly Available Internet
	2.4 Problem Statement
	2.5 Objective of This Dissertation
	2.6 Basic Principle of the Approach
	2.6.1 Multipath Provisioning
	2.6.2 Multipath Retry

	2.7 Perspective
	2.7.1 Network Planning
	2.7.2 Availability Calculation
	2.7.3 Maintenance of Network Elements
	2.7.4 Problem Detection
	2.7.5 Recovery from Problem
	2.7.6 Traffic Engineering
	2.7.7 Service Protection

	2.8 Strategy
	2.9 Summary

	3 The Current Internet Routing
	3.1 The Internet Topology
	3.2 Intra-domain Routing Protocols
	3.2.1 RIP
	3.2.2 OSPF and IS-IS
	3.2.3 EIGRP

	3.3 Inter-domain Routing and BGP
	3.4 Network Failures
	3.5 Failure Recovery Methods
	3.6 Network Administration
	3.7 Traffic Engineering
	3.7.1 Routing Metric Optimization
	3.7.2 Circuit-based Traffic Engineering

	4 SimRouting: A Tool for Availability Calculation and Routing Evaluation
	4.1 Overview
	4.2 Need for Routing Simulation
	4.3 Requirements for the Simulation Tool
	4.4 Existing Simulation Tools
	4.5 Design and Implementation of SimRouting
	4.5.1 Command Line Invocation and Scenario Files
	4.5.2 Network Graph Definition
	4.5.3 Routing Metric Definition
	4.5.4 Routing Algorithm and Routes
	4.5.5 Traffic Definition
	4.5.6 Network State

	4.6 Example Simulation
	4.7 Availability Calculation
	4.8 Evaluation
	4.8.1 Number of Methods to Construct Network Graphs
	4.8.2 Achievement of Required Features

	4.9 Summary

	5 OSPF Flap Damping
	5.1 Overview
	5.2 Effects of Route Flaps
	5.2.1 Network Configuration
	5.2.2 OSPF Behavior
	5.2.3 Experiment Result

	5.3 Application of Flap Damping to OSPF
	5.3.1 Flap Damping Algorithm
	5.3.2 Experiment Result

	5.4 Summary

	6 MARA: Maximum Alternative Routing Algorithm
	6.1 Overview
	6.2 Related Work
	6.3 Problem Definitions
	6.3.1 All-to-one Maximum Connectivity Routing Problem
	6.3.2 All-to-one Max-flow Routing Problem
	6.3.3 All-to-one Maximum Shortest Path Alternatives Problem

	6.4 Algorithms
	6.4.1 MA Ordering
	6.4.2 MARA-MC
	6.4.3 MARA-MMMF
	6.4.4 MARA-SPE

	6.5 Evaluation
	6.5.1 Number and Length of Paths
	6.5.2 Computational Complexity
	6.5.3 Computation Time

	6.6 Summary

	7 Drouting Architecture: A Multipath Routing Architecture
	7.1 Overview
	7.2 Related Work
	7.3 Deflection Architecture
	7.4 Drouting Architecture
	7.4.1 Overview of Drouting Architecture
	7.4.2 Multipath Route Calculation
	7.4.3 Tag Forwarding
	7.4.4 Differences from Deflection

	7.5 Evaluation
	7.5.1 Failure Recovery Simulation Method
	7.5.2 Interpretation of path comparison
	7.5.3 Simulation and Analysis on Telstra (AS1221)

	7.6 Observations
	7.7 Summary

	8 Traffic Engineering on Drouting Architecture
	8.1 Overview
	8.2 Linear Programming Model
	8.3 An Example of Traffic Engineering
	8.4 Challenge to Equalize Split Ratio
	8.5 Summary

	9 Conclusion
	10 Future Prospects
	10.1 Failure Detection
	10.2 Simultaneous Redundant Packet Transmission
	10.3 Issues in Traffic Engineering Method
	10.4 Relation with MPLS Technology
	10.5 Network Operation and Debugging
	10.6 Migration and Transition Issues
	10.7 Inter-domain Routing
	10.8 Improving the Routing Algorithm
	10.9 The Distributed Routing Protocol

	A Theory of Reliability
	A.1 Systems of components
	A.2 Coherent system
	A.3 Paths and cuts
	A.4 System reliability
	A.5 Sum of disjoint products approach

	B Simulations and analysis on other topologies
	Bibliography
	Research History

