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Summary
Geographic Grouping Multicast (GGCAST) is a new one-to-many com-

munication method in which receivers are determined by their geographic
positions. Applications of GGCAST include dissemination of traffic infor-
mation within relevant locations, such as passing the cause of a traffic jam
to cars running behind. The objective of this research is to propose the
architecture of GGCAST for a mobile ubiquitous computing environment.

Since, in GGCAST, a multicast group is defined by geographic domain,
its membership changes dynamically, and it is difficult to keep a logical mul-
ticast tree for data delivery. The fundamental propositions of this research
are dynamic group membership and efficient data transmission in such a
multicast group.

In this paper, GGCAST is proposed as an application layer multicast
(ALM) using a peer-to-peer (P2P) lookup algorithm with a location based
service directory. In the targeted environment, nodes are freely moving over
several ISPs. This makes ALM to be more suitable for the situation because
it doesn’t need a network layer protocol support. In GGCAST, members of
a multicast group construct a overlay network using routing information of
a P2P lookup algorithm, and a logical multicast tree is built on the overlay
network. A member is discovered with the location based service directory as
an initial node of the overlay network. The overlay network is using Chord
[1], a P2P lookup algorithm. The routing information of Chord has little
influence on the overlay network even when a node fails. Because membership
of GGCAST changes frequently, the robustness is important.

GGCAST has been implemented as an ITS-related application for eval-
uation. It has been confirmed that our directory server can process about
2,000 queries per second. It is estimated that about 4,000 servers would
be sufficient to provide a globally available version of this directory service.
Other results include that even in a case in which membership changes every
0.9 seconds, over 99% of the members can receive the multicast delivery of
information. We conclude that GGCAST realizes a practical location-based
multicast.
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修士論文要旨 2003年度 (平成 15年度)

GGCAST - A Location Based Multicast -

論文要旨
Geographic Grouping Multicast (GGCAST)は、受信者が地理位置情報

によって選択される 1対多型のコミュニケーションである。サービス例とし
て、後続の車に渋滞の原因を伝えるアプリケーションが挙げられる。本研究
の目的は、モバイルユビキタス環境下の地理位置情報に基づいたマルチキャ
ストであるGGCAST を提案することである。
地理位置情報によってマルチキャストグループが定義されるので、受信

者が動的に変化する。そのため、マルチキャストのための論理経路パスを維
持することが難しい。したがって、本研究における主題は、動的なグループ
メンバ管理とそのグループ内での効率的なデータ配送である。

GGCASTは、地理位置情報に基づいたサービスを発見するためのディレ
クトリサービスとP2Pコンテンツ発見アルゴリズムを用いたアプリケーショ
ン層マルチキャスト（ALM）から構成される。想定環境では、ノードは複数
の ISP間を自由に移動する。ALMはネットワーク層プロトコルの対応が不
要であるので、想定環境で利用するのに適している。GGCASTでは、マル
チキャストグループ内のメンバ同士がP2Pコンテンツ発見アルゴリズムによ
る経路情報を用いてオーバレイネットワークを形成する。そして、そのオー
バレイネットワーク上にマルチキャストのための論理経路パスが構築される。
この際、オーバレイネットワークに参加するための初期ノードは、提案する
ディレクトサービスを利用して発見される。なお、メンバの動的な変化に対
して強いChordアルゴリズム [1] をP2Pコンテンツ発見アルゴリズムとして
を利用した。

GGCASTは ITS関連アプリケーションとして評価を行った。評価実装を
用いて測定した結果、ディレクトリサーバは毎秒 2000クエリ程度を処理で
きることが確認された。また、4000台程度のサーバを用意すれば、世界中で
このディレクトリサービスが利用できることが算出された。また、0.9秒毎
にメンバが変化するような状態でも、メンバの 99％以上がマルチキャスト
配送を受信できることが確認された。したがって、GGCASTを用いて、地
理位置情報に基づいたマルチキャストが実現できることが分かった。

キーワード:
地理位置情報に基づいたマルチキャストグルーピング、動的メンバ

管理、ピアツーピアネットワーク、ユビキタスコンピューティング、ITS

慶應義塾大学大学院 政策・メディア研究科
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Chapter 1

Introduction

In this chapter, we introduce the background of this research. First of all, the
proposed model called Geographic Grouping Multicast (GGCAST), a loca-
tion based multicast, is defined. Next, its importance in real-world situations
is explained. Then, our objective in this research is described. At last, the
organization of this thesis is described.

1.1 Background

A number of applications such as large-scale file distribution, Internet TV,
video conferencing and shared white boards [2] [3] [4] [5] require one-to-many
message transmission to enable efficient many-to-many communication. Mul-
ticast is a communication between a single sender and multiple receivers on
a network. Together with anycast and unicast, multicast is one of the com-
munication types in the Internet.

Multicast is often used in a situation where an application needs to send
the same information to more than one destination. This is because mul-
ticasting consumes much less network resources compared to unicasting to
each destination. Network resource consumption should be considered with
higher importance in the mobile ubiquitous networking environment where
mobile hosts communicate with each other over wireless links.

Meanwhile, the needs for mobility support in the Internet has grown
significantly in recent days. For example, it is useful to connect mobile hosts
such as cars and trains to the Internet and exchange their information freely.
Probe Information Service [6] and InternetITS [7] in which our Internet CAR
Project [8], have been participating are good examples of such information
services.

The Probe Information Service utilizes automobiles as rovering sensors

1



CHAPTER 1. INTRODUCTION

scattered over many locations. Automobiles are connected to the Internet,
providing Internet connectivity to each sensor which acquires information
such as location, velocity, and movement of wipers. By collecting infor-
mation from such sensors in the automobiles via the Internet, new kind of
information, such as knowledge of a traffic congestion or the surrounding
weather constructed from collected information, can be obtained.

The derived information is always up-to-date, and is much more detailed
than what existing systems can provide. The InternetITS is a concept which
uses the Internet as the common ITS infrastructure. ITS (Intelligent Trans-
port System) [9] is a system designed to promote the advancement in the
car navigation technology to give users more effective driving supports. The
Electronic Toll Collection system (ETC) [10] is a good example of driving
supports using computer technologies which has reduced the traffic conges-
tion on toll-ways by automatically collecting the toll fees. It is expected that
several ITS services are achieved efficiently with the common infrastructure
based on Internet technologies

In this world, a lot of nodes are connected to the Internet with mobility
supports [11] [12] at all time and all places, those mobility supports allow
to keep connections alive while hosts or networks are moving around. And
they use network resources distributed ubiquitously [13]. We call this mobile
ubiquitous computing environment.

1.2 Fundamental Propositions

In order to achieve multicasting, it is required to find some way to define a
multicast group. In conventional multicasting algorithms [14], a multicast
group is considered as a collection of hosts which register to the group. In
order to receive multicast messages, a node must first join a particular group.
A distribution tree rooted at a traffic source is constructed within the group
members. When a host sends a message to the multicast group, it just
sends the message to the IP address representing the group. The message
is delivered according to the tree. All the group members then receive the
message.

Geographic Grouping Multicast (GGCAST), a location based multicast,
is one of one-to-many communication in which receivers, members of a mul-
ticast group, are determined by their geographical positions. Its applica-
tions include advertising regional information to travelers or telling the cause
of a traffic jam to cars running behind. One of the interesting feature of
GGCAST is that membership of the multicast group changes dynamically
because nodes move physically and the group is determined by their locations.

2



CHAPTER 1. INTRODUCTION

Since a member changes dynamically, this makes it difficult to maintain the
distribution tree for data delivery.

The fundamental propositions of this research are the architecture to
achieve the following:

• Dynamic group membership

• Efficient data transmission in the multicast group

1.3 Objective

Geographic Grouping Multicast (GGCAST) is one of one-to-many communi-
cation which members of a multicast group are determined with geographical
position information. The objective of this research is to propose GGCAST,
a location based multicast architecture in mobile ubiquitous networking. To
our best knowledge, there is no preceding researches in computer networking
area. Thus we believe that this research deserves serious attention.

To achieve this objective, we will analyze characteristics of the targeted
environment, and discuss appropriate approaches corresponding to the char-
acteristics based on the analysis and the opinions of existing works. We
propose a new location based multicast model based on one of the discussed
approaches, and we simulate the model in different scales for evaluation. The
simulation models an actual application in the targeted environment.

1.4 Organization

The targeted environment of this research is described in Chapter 2. In
Chapter 3, the appropriate approaches and the GGCAST architecture are
discussed. In addition, usage scenarios are introduced to clarify requirements
for the system. In Chapter 4, related works of this research are introduced,
and the differences from this research are discussed. Chapter 5 describes the
detail of GGCAST. Chapter 6 explains our implementation of the model. The
model is evaluated by simulations whose conditions and results are discussed
in Chapter 7. Chapter 8 addresses the area for future study and concludes
the paper.

3



Chapter 2

Targeted Environment

In this chapter, we describe the targeted computing environment. We define
our targeted environment as a mobile ubiquitous computing environment.
In this world, network resources are ubiquitously distributed, and Internet
nodes, e.g. Cars, laptops and PDAs, are always connected, regardless of the
changes of their locations and access points to the Internet. Meanwhile, a
lot of applications using physical information such as geographical location
information will appear.

2.1 Mobile Ubiquitous Computing

Ubiquitous Computing is Coming Up

The word “Ubiquitous” gained a lot of attention recently. The origin of the
word means that it’s omnipresent in Latin, which means that it can be used
anywhere and anytime. Ubiquitous Computing have applied this concept in
the world of computing. Mark Weiser of Xerox PARC research institute ad-
vocated this notion in 1989. His paper [13] describes a world where wirelessly
networked computers are distributed throughout the environment.

The technology of small information terminals, such as a cellular phone,
PHS and PDA, is progressing, and the attention to the ubiquitous computing
has greatly gathered in recent years.

Constant Internet Access for Mobile Hosts

As a network for realizing Ubiquitous Computing, wireless technology has a
big possibility. A cellular phone is a good example of the wireless commu-
nication tool. The mobility and coverage superior to other technology are

4



CHAPTER 2. TARGETED ENVIRONMENT

the reason why the cellular phone became popular in our life. Here, mobil-
ity means migration support and coverage means the area where service is
offered.

In recent comparison, the ratio of the data communication is increasing
by the cellular phone. As Figure 2.1 shows, number of cellular phones which
has Internet access function is increasing in Japan [15].
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Figure 2.1: Changes in number of cellular phone with and without Internet
access function in Japan

However, data traffic in the current cellular phone system requires high
cost. When transmitting even a small data packet, the system must reserve a
circuit to the destination. Thus, the method to build a network infrastructure
suitable for data communication becomes a key from now on.

Multimedia Research Institute Corporation propose to fulfill providing
the network infrastructure which combines IP technology with TD-CDMA
[16]. TD-CDMA [17] is one of the communication systems standardized as
IMT-2000 of the third generation cellular phone (3G). TD is an abbreviation
for Time Division; uplink/downlink circuit of a communication is segmented
by time. Compared to the existing Frequency Division, it is said that affinity
with data communication is higher. It is possible to build a very efficient
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and simple data communication network by combining IP technology. The
bandwidth is expected to be 100Kbps for upload and 1Mbps for download.

In the near future, there will be many wireless hotspots on the streets,
offices, trains, resorts and everywhere. These hotspots are assumed to sup-
port IP network. Therefore, the mobile hosts ubiquitously distributed in the
world can obtain the Internet connectivity anytime and anywhere.

Mobility Supports in IP Networks

Several mobility support protocols are developed to support IP nodes under
various situations. Host mobility is for a mobile host to hide movements
from the Internet. Mobile IPv6 [11] is designed to support such host mobil-
ity and is being standardized at the Internet Engineering Task Force (IETF)
[18]. Network Mobility protocol, known as NEMO, conceals movements for a
network that moves entirely. NEMO is being discussed at the NEMO work-
ing group at IETF [12]. A “mobile ad hoc network” (MANET) is an au-
tonomous system of mobile nodes connected by wireless links without a par-
ticular infrastructure. Several MANET routing protocols, such as DSR[19],
AODV[20], OLSR[21], TDBRPF[22] have been proposed for a MANET with
a dynamically changing topology.

With these mobility support protocols, mobile nodes can obtain Internet
connectivity just as any fixed nodes. Thus, the changes in communication
environment for the mobile nodes are not considered in this paper.

2.2 Practical Use of Position Information

In the future, position information sensing systems will be deployed in ev-
ery mobile node. Position information will become an information that is
as common as time; receiving input from Global Positioning System [23],
when outdoors, and from other position information providing devices, when
indoors.

The car navigation system is a well known mobile node using GPS to
obtain position information. Figure 2.2 shows the shipping volume of car
navigation system in Japan [24]. The graph shows the total number of the
car navigation systems shipped in label y and its corresponding year in label
x. The estimated volume of shipments of the car navigation systems is 12
billion at 2004 and its volume is increasing year by year.

In the near future, all vehicles will be equipped with car navigation sys-
tems with Internet connectivity. In fact, a part of present car navigation
system is already equipped with such function, the Internet is used to up-
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Figure 2.2: Total number of the car navigation systems shipped per year in
Japan (c)JEITA

grade maps or to provide route search using the corrected road information
from the server. Thus it is expected that many car navigation systems have
Internet connectivity soon. This is a example of practical use of position
information.

GPS is introduced as a position sensing technology here, however, there
are many other position sensing technologies [25]. Details are listed in Ap-
pendix A.

As described above, position information can be used wherever even if
it is used indoor or outdoor. All devices connected to the Internet - high
spec workstations, tiny nodes, and any nodes - use a technology that best
matches their use. Thus, it is expected that every mobile computer are
connected to the Internet and equip a position information sensing system,
they use position information on a routing application.
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2.3 Summary

Ubiquitous Computing is coming up. In ubiquitous computing, nodes are
connected to the Mobility supported Internet anywhere and anytime. User
can access to various Internet services from terminal computers. This world is
defined as “Mobile Ubiquitous Computing”. Additionally, position informa-
tion can be used whether even if it is used indoor or outdoor. This research
targets on this environment (Figure 2.3).

Mobile
Internet

User Terminals

Position Sensing

Figure 2.3: Targeted Environment
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Chapter 3

GGCAST Architecture

In this chapter, we describe Geographic Grouping Multicast (GGCAST), a
location based multicast architecture. GGCAST is one to many communi-
cation model where receivers are selected using geographical position infor-
mation. This chapter also describes the scenarios of using GGCAST and
describes examples to clarify the requirements for the architecture.

3.1 Approach

Multicasting typically consists of multicast group management scheme and
multicast routing. In conventional multicasting algorithms, a multicast group
is considered as a collection of nodes which register to that group. For a
node to receive any multicast message, it must first join a particular group.
A distribution tree rooted at a traffic source is constructed within the group
members. When a node send a message to a multicast group, sending the
message to the IP address of that multicast group is all it takes. The message
is delivered according to the tree, all the group members then receive the
message.

The interesting feature of GGCAST, as shown in Figure 3.1, is that the
members in a group change dynamically according to the physical move-
ment of the nodes, since the group is formed based on geographic position
information.

A doted square in Figure 3.1 represent a multicast region. N1, N2, N3,,,N9
are mobile nodes. First, members are N1, N2, N3 and N4. Because mobile
nodes are moving around, the members are changing dynamically; members
change to N4, N5, N6, N7 and N8 in the figure.

In order to achieve dynamic group membership, we propose following
approaches. Details on each approaches are described in this section.

9



CHAPTER 3. GGCAST ARCHITECTURE

N1

N2

N3

N4

N5

N6

N7

N8

N9 N1

N2

N3

N4

N5

N6

N7

N8

N9

Region

Member
(N1, N2, N3, N4)

Member
(N4, N5, N6, N7, N8)

Figure 3.1: Multicast grouping with position information

• Multicast grouping with geographic information

• Join/Leave model

• End node organization

In order to achieve efficient data transmission in the multicast group, we
propose following approaches.

• End node Organization

• Overlay Network which has robustness when a node fails

• Less Impact of Members Failures

• Less Packet Duplication

Multicast Grouping with Geographic Information

With IP Multicast, the group is abstracted as multicast IP address. In
order to join the group, a node is required to send requests. A distribution
tree rooted at the traffic’s source is constructed based on the request. A
single packet transmitted at the source is delivered to an arbitrary number
of receivers by replicating the packet within the network at fan-out points,
routers, along a distribution tree rooted at the traffic’s source.

A multicast group of GGCAST is determined with geographic informa-
tion. Although an address is one method to specify a region of geographic
information, the region can simply be specified with longitude and latitude.
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Join/Leave Model

It is preferable that only the desired node receives multicast traffic, and not
all nodes in the region. Although a model where all nodes receive the traffic is
far easier for multicast group management scheme, it is not desirable because
the resources on mobile node are limited. Therefore, each node has to decide,
actively, which multicasting packet it receives. GGCAST divides the world
into a number of regions. Therefore, a kind of directory service is necessary
to discover the multicast group currently being offered at a certain point by
some methods.

End Node Organization

The nodes in a multicast group are connected to the Internet by various
media. For example, cellular, PHSs and Wireless LAN are used; nodes change
these medias by situation. Even if we are in the same place, we use cellular
phones of different carriers. Thus, nodes may connect with separate ISP,
even if each node is in near geographic position.

Due to the fact that communication environment changes accordingly
with the ISPs connected, inter-domain operation is difficult in most cases.
The system that requires alterations in relay nodes is hard to use. ISP
provides only the Internet connectivity. Thus only the end node should
realize the GGCAST system.

In addition, members in multicast group should perform themselves, be-
cause huge number of groups exists all over the world. Since end node or-
ganization dose not concentrate on a center system, it has advantageous in
robustness, and load distribution is also realizable.

Less Impact of Member Failures

Since members in a group change dynamically, the system should have a
robustness to member failures. When a node leaves or fails from the multicast
group, the influence on the system should have less impact.

Less Packet Duplication

Since the bandwidth of mobile nodes is limited, multi-unicast by single node
is difficult. Members should relay packets efficiently.

This discussion is going to be about make efficient logical distribution
tree for multicast delivery. In order to make “no packet duplicate” tree, high
costs, e.g. control packets and route calculation, may be required. However,
simple flooding, each node reply to their neighbor, takes long times to finish
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the deliver and occurs a lot of packet duplication. This is a tradeoff between
the costs and its efficiency.

3.2 Architecture Overview

The proposed GGCAST architecture consists of following two functionalities:

• Group management scheme

• Multicasting scheme

Group management scheme includes a directory service to find pointers
to multicast groups with location information as search key, and membership
management functions to support dynamic alteration of members. Multicas-
ting scheme includes multicast routing to enable efficient data delivery/copy
to reduce network load. The scheme is done by the end nodes, and not
concentrated on a centralized system.

Figure 3.4 shows an overview of location based multicast architecture.
The circle represents a node. A multicast group is described as a rectangle
in the figure. There is a directory service to discover the multicast group
currently offered at a certain place.

Directory Service

Node

Node

Node

Node

Multicast group

(2) Register
- Location Information
- Group Attribute (3) New node will

    join a group

(3’)

(3’’)

Multicast group(1)(a)overlay network construction
(b)logical distribution tree 
    construction

Figure 3.2: GGCAST Architecture
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3.2.1 Group Management Scheme

(1) Nodes in a rectangle organize a multicast group. A member of the group
offers a multicast service by themselves. (2) Each multicast group registers its
geographic positions and an attribute of the multicast group to the directory.
A sender node performs the registration. (3) A node discovers a multicast
group by using the directory service, and joins the multicast group.

3.2.2 Multicasting Scheme

The multicasting scheme consists of overlay network construction and mul-
ticast routing on the overlay network. The members of a multicast group
self-organize into an essentially random application-level mesh topology (a).
A multicast routing algorithm is used over the topology to construct distri-
bution trees rooted at each possible traffic source (b).

Figure 3.3 shows multicast routing in a multicast group. The circle rep-
resent a node. The arrow shows data flow.

(X) (Y)

Figure 3.3: Multicast Routing in a multicast group:

Since the bandwidth of mobile nodes is limited, (X) multi-unicast by sin-
gle node is difficult. It is desirable that the transmitting may be suboptimal
(Y).

The propositions in the operation are how to organize overlay network
which can be scalable in mobile ubiquitous environment and efficient data-
gram delivery with saving network resources.

3.2.3 Time Line of GGCAST

In order to figure out the relation between group management scheme and
multicasting scheme, we describe the time line of location based multicast.
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Figure 3.4 shows the fundamental time line of the proposed model. The figure
shows a multicast group which consists of sender and receivers. Directory in
the figure shows a directory service to find a multicast group, and N1, N2
and N3 indicate nodes.

Directory N1 N2 N3

(1)
(2)

(3)

(4) (5)

(6)

(7)

(8)

End host multicastingGroup Finding

Figure 3.4: Time Line of GGCAST

N1 creates a new multicast group. (1) N1 registers the group to the
directory with IP address, port number, the region and description. (2) N2
determines multicast group which serves a point included the region. (3)
The directory answers the group created by N1 before. (4) N2 joins the
multicast group according to a protocol of the group, members of the group
are organizing an overlay network, with IP address and port number which
answered by the directory as initial pointer. (5) N3 also determines multicast
group which serves a point included the region. (6) The directory answers
the group created by N1. (7) N3 joins the multicast group according to a
manner of the group. (8) N1 sends data gram to the group, it is delivered
by a flooding scheme.
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3.3 Scenario : Providing Traffic Information

to Cars Running Behind

A possible application of GGCAST is providing traffic information to cars
running behind. Traditionally, hazard lights are used to inform the traffic jam
to following vehicles. Although the drivers behind don’t know, exactly, what
has happened, but they could know that something has happened in front.
Thus a method of obtaining more detailed information is very convenient.

Figure 3.5 shows a situation of this application. The circle represents a
car, the two lines express a road. There is an accident in the direction of cars
movement.

Direction of Movement Accident

1.8 km behind

Figure 3.5: Application example: Providing traffic information to cars behind

A node creates a multicast group to tell the cause of this accident to cars
1.8km behind. Then, the multicast region is 1.8 km from the accident point,
and the description of this multicast group might be “TRAFFIC JAM”.
Other nodes check multicast groups serving near themselves. The nodes can
know there is the multicast group in their direction of movement by using
the directory service. The directory also returns a pointer to the multicast
group, nodes can join the group via the pointer. When nodes join to the
group, nodes receive the information about this traffic jam. Nodes will leave
the group when they pass the accident point.

When 1.8km squares region created from a accident point, the explana-
tory variables is estimated as Table 3.1. The multicast region is 1.8 km
square from the accident point. Speed is means of node’s speed (km/h), and
Time is a time a node goes through the region. Depending on the Distance
(meter) between the cars, number of nodes in the region is estimated as #
of nodes.

“Speeds” as described in the table consider following situations. 100km/h
is for highway, 60km/h for driving smoothly on streets in outskirts, 20km/h
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Table 3.1: Explanatory variables in 1.8km-square region

Speed (km/h) Time (second) Distance(meter) # of nodes

100 65 100 18
60 108 60 31
20 324 20 90
5 1296 5 360

for the streets in downtown, and 5km/h for traffic jam situations. A space
between two cars is generally defined as 1/1000 of its speed.

From this estimation, following requirements about its performance are
figured. When a traffic jam occurs;

• Number of node in the group is about 360.

• A node stays at the group about 1300 second.

• A node newly joins and leaves to the group per 5m/(5000m/h) = 3.6
seconds

3.4 Summary

GGCAST architecture consists of group management scheme and multicas-
ting scheme. Group management scheme includes a directory service to find
pointers for multicast groups with a location information as keys, and sup-
port dynamic membership. Multicasting scheme consists of overlay network
construction and multicast routing.

The following items are functional requirements for the GGCAST system.

1. Dynamic group membership

2. Directory service to discover a multicast group

3. Multicast routing realized by only end node.

4. No concentrate on a center system

5. Overlay Network which has robustness when a node fails

6. Less Impact of Members Failures

7. Less Packet Duplication
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Related Works

In this chapter, we explain related works of this research. IP Multicast is a
widely accepted concept of multicast on the Internet. However, IP multicast
has many fundamental issues, inherent in its original architecture, which need
to be changed in order to implement GGCAST. Application Layer Multicast
has argued as a more practical alternative to IP multicast, citing the end-to-
end argument. To ensure better scalability, dynamic grouping and network
fail-safe, application layer multicast has been implemented using peer-to-peer
routing algorithms. We focus mainly on this application layer multicast in
this thesis. We also describe differences between our GGCAST, a location
based multicast, and other model called “location based multicast”.

4.1 IP Multicast

The IP Multicast service [14] was proposed as an extension to the Internet
architecture to support efficient multi-point delivery at the network level.
With IP Multicast, a single packet transmitted at the source is delivered
to an arbitrary number of receivers by replicating the packet within the
network at fanout points, routers, along a distribution tree rooted at the
traffic’s source.

In his seminal work in 1989 [14], Deering argues that this second consider-
ation should prevail and multicast should be implemented at IP layer. This
view so far has been widely accepted. IP Multicast is the first significant
feature that has been added to the IP layer since its original design and most
routers today implement IP Multicast.

IP Multicast has been studied for many years now. Yet, IP multicast de-
ployment has been slowed by difficult issues related to scalable inter-domain
routing protocols, charging models, robust congestion control schemes and
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so forth [26] [27] [28].
IP Multicast has several drawbacks that have so far prevented the service

from being widely deployed. First, IP Multicast requires routers to main-
tain per group state, which not only violates the “stateless” architectural
principle of the original design, but also introduces high complexity and se-
rious scaling constraints at the IP layer. Second, the current IP Multicast
model allows for an arbitrary source to send data to an arbitrary group. This
makes the network vulnerable to flooding attacks by malicious sources, and
complicates network management and provisioning. Third, IP Multicast re-
quires every group to dynamically obtain a globally unique address from the
multicast address space and it is difficult to ensure this in a scalable, dis-
tributed and consistent fashion. Fourth, IP Multicast is a best effort service.
Providing higher level features such as reliability, congestion control, flow
control, and security has been shown to be more difficult than in the unicast
case. Finally, IP Multicast calls for changes at the infra-structural level, and
this slows down the pace of deployment. While there have been attempts
to partially address some of the issues at the IP layer [29] [30], fundamental
concerns “stateful” architecture of IP Multicast and support for higher layer
functionality have remained unresolved. Following it the above summary,
several drawbacks of IP multicast.

• IP Multicast requires routers to maintain per group state.

• IP multicast model allows for an arbitrary source to send data to an
arbitrary group.

• IP Multicast requires every group to dynamically obtain a globally
unique address.

• IP multicast is a best effort service.

• IP Multicast calls for changes at the infra-structural level.

When implementing GGCAST on IP multicast, we face on other prob-
lems additionally. First, IP multicast itself has no functionality to assign a
multicast address to the location based group. In IP multicast, every group
obtain a multicast address, a globally unique address. The address typically
assigned manually by administrators. Since there are large number of multi-
cast groups in the world, the management of multicast addresses is difficult.
Second, IP multicast is not necessarily effective. A comparatively few num-
ber of nodes form a multicast group and the nodes are distributed in two or
more ISP. The case which IP multicast is most effective is that there is a lot
of receivers in a ISP.
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• No functionality to assign a multicast address.

• Not necessarily effective in mobile ubiquitous networking.

For the above reasons, IP Multicast is not suitable for GGCAST.

4.2 Application Level Multicast

Because of the problems facing the deployment of a network level multi-
cast service as described at previous section, many recent research proposals
have argued for an application level multicast service [26] [27] [31] and have
described designs for such a service and its applications.

The majority of these proposed solutions (for example [27], [31] and Re-
layCast [32]) typically involve having the members of a multicast group self-
organize into an essentially random application level mesh topology. In order
to construct distribution trees rooted at each possible traffic source, a tra-
ditional multicast routing algorithm, such as DVMRP [14], is used over the
topology.

Such routing algorithms require every node to periodically announce its
estimated distance from every possible destination to its local neighbors and
hence every node maintains state for every other node in the topology. Fur-
ther, in the case of a change in the topology, every node must learn about
this change and update its routing table if required. Hence, although these
proposed solutions are well suited to their targeted applications, their use
of global routing algorithm limits their ability to scale to large (more then
a thousand nodes) group sizes and to operate under conditions of dynamic
group membership.

To ensure better scalability and handling of dynamic groups and network
failures, application level multicast has been implemented using peer-to-peer
routing algorithms. For example, Bayeux [33] is implemented on top of
Tapestry, and organizes multicast receivers into a distribution tree routed
at the source. In Bayeux, nodes explicitly join and leave a multicast session
by notifying the source node. The service model is limited to a single source.

SelectCast [34] is a peer-to-peer publish/subscribe routing service, built
on Astrolabe, a peer-to-peer domain aggregation service. Both SelectCast
and Astrolabe are heterogeneity-aware, but at the cost of some increased
management overhead when compared to other peer-to-peer protocols. Al-
though these services do not rely on any special-purpose servers, they can
leverage asymmetries between hosts and between network connections. Se-
lectCast is also restricting the service model to a single traffic source.
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[35] has proposed an application level multicast scheme capable of scal-
ing to large group sizes without restricting the service model to a single
source. Their scheme leverages recent work on Content-Addressable Net-
works (CANs) [36]. Briefly, a Content-Addressable Network is an application-
level network whose constituent nodes can be thought of as forming a virtual
d-dimensional Cartesian coordinate space. Every node is a CAN “owns” a
portion of the total space. For example, Figure 4.1 shows a 2-dimensional
CAN occupied by 5 nodes. A CAN is scalable, fault-tolerant and completely
distributed. Such CANs are useful for a range of distributed applications
and services. For example, in [35] they focus on the use of a CAN to provide
hash table-like functionality on Internet-like scales - a function useful for in-
dexing in peer-to-peer applications, large-scale storage management system,
the construction of wide-area name resolution services and so forth.

A B

C D E

0.0 1.0

1.0
Node’s virtual coordinate zone
  A(0-0.5,0-0.5)
  B(05.-1.0,0.0-0.5)
  C(0.0-0.5,0.5-1.0)
  D(0.5-0.75,0.5-1.0)
  E(0.75-1.0,0.5-1.0)

Figure 4.1: Example 2-d coordinate overlay with 5 nodes

Table 4.1 shows comparisons with another researches on application layer
multicast. This paper looks into the question of how the deployment of such
P2P distributed infrastructures might be utilized to support multicast ser-
vices and application. We outline the design of an application level multicast
scheme built using a Chord routing algorithm. Our design shows that ex-
tending the Chord framework to support multicast comes at trivial additional
cost in terms of complexity and added protocol mechanism. A key feature
of our scheme is that because we exploit the well-defined structured nature
of Chord topologies we can eliminate the need for a multicast routing algo-
rithm to construct distribution trees. This allows our Chord-based multicast
scheme to scale to large group size.

4.3 Location Based Multicast in Geocasting

The term “location based multicast” is also used in the area of mobile ad hoc
networking. A geocast [37] is delivered data grams to nodes by using geo-
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graphical information. The location based multicast algorithms, geocasting,
is delivered to the set of nodes within a specified geographical area. That
indicates another meaning as we focus on location based multicast. Unlike
the traditional multicast schemes, the multicast group (or geocast group) is
implicitly defined as the set of nodes within a specified area. The set of nodes
in the multicast region is the location based multicast group.

[38] discussed the problem of geocasting - broadcasting to every node in
a specified geographical area- in mobile ad hoc environments. In [38], the
specified geographical area is called the multicast region, and the set of nodes
that reside within the specified multicast region is called a location-based
multicast group. They propose two location-based multicast algorithms in
geocasting. The proposed algorithms limit the forwarding space for a mul-
ticast packet to the so-called forwarding zone. Simulation results indicate
that proposed algorithms result in lower message delivery overhead, as com-
pared to multicast flooding. As simulation results show, while reducing the
message overhead significantly, it is possible to achieve accuracy of multicast
delivery comparable with multicast flooding. They also discuss how the basic
location-based multicast schemes may be optimized to improve performance.
As evaluation of these traditional multicast algorithms shows, it is possible
to implement a location-based multicast by maintaining a multicast tree. A
comparison between the algorithms presented in this paper and the alter-
native approach of maintaining a multicast tree is also a topic for further
work.

Consider a node S that needs to multicast a message to all nodes that are
currently located within a certain geographical region. This specific area is
the “Multicast Region”. The multicast region would be represented by some
closed polygon such as a circle or a rectangle(see Figure 4.2). Assume that
node S multicasts a data packet at time t0, and three nodes (X, Y and Z) are
located within the multicast region at that time. Then, the multicast group,
from the viewpoint of node S at time t0, would be have three members that
are expected to receive the multicast data packet sent by node S. Accuracy
of multicast delivery can be defined as ratio of the number of group members
that actually receive the multicast packet, and the number of group members
which were in the multicast region at the time when the multicast is initiated.
For example, if only node X among three members of the multicast group
actually gets a multicast packet, accuracy of delivery for the multicast packet
will be 33.33%.
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Figure 4.2: Location Based Multicast in Geocasting

4.4 Summary

In mobile ubiquitous networking, nodes are freely moving over several do-
mains, thus IP multicast is not necessarily effective. In contrast, application
layer multicast is recognized for the fact that it does not require network
layer multicast protocol.

Otherwise, application layer multicasts using a peer-to-peer routing al-
gorithm have been proposed to ensure better scalability and handling of
dynamic groups and network failures. In this paper, we propose a applica-
tion layer multicast using the Chord routing algorithm with a location based
service directory.
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Table 4.1: Comparison with other research on application layer multicast

End host discovery Overlay network
construction

multicast routing

Relay
Cast

N/A. They assume
that nodes know the
rendezvous points.

Everyone maintains
state for every oth-
ers, the topology is
optimized with Met-
ric.

DVMRP or PIM-
SM/CBT or Shortest
widest path algo-
rithm.

Select
Cast

Everyone knows the
root domain’s router.

Hosts are organized
in a domain hierar-
chy, and each domain
has a set of attribute.
every nodes maintain
state of every others.

distribution tree
rooted at the root
domain’s router.
Senders specify
the set of intended
destination hosts
through the use of
SQL condition.

CAN
based
appli-
cation
layer
multi-
cast

A CAN has an asso-
ciated DNS domain
name, and that this
resolves to the IP
address of one or
more CAN bootstrap
nodes.

A node maintains
the IP addresses of
its neighbor that
hold coordinate
zones adjoining its
own zone.

Flooding based on
CAN routing table.

Bayeux N/A. They assume
that nodes know at
least one node par-
ticipating the net-
work.

Each node maintains
a number of neigh-
bors with a common
matching prefix.

They organize mul-
ticast receivers into
a distribution tree
routed at the source
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Design

In this chapter, we discuss the details of GGCAST. We describe the overview
of our design first, an application layer multicast using a peer-to-peer lookup
algorithm and combined with a location based service directory. Next, the
details of each function is discussed.

5.1 Overview

Geographic Group Multicast (GGCAST) consists of two-level hierarchical
peer-to-peer (P2P) overlay networks. The upper overlay network is a di-
rectory to find a multicast group. The lower overlay network constructs an
application layer multicast (ALM) service.

The overview of GGCAST is shown in Figure 5.1. The circle represent a
node in the multicast group. The double circle shows a server which organize
the directory.

A GGCAST multicast group determined by geographic positions orga-
nizes an overlay network to construct a logical multicast tree. Nodes use this
directory to find the pointer to the group in which they decide to join.

ALM typically consists of end host discovery, overlay network construc-
tion and multicast routing. In GGCAST, member of a multicast group con-
struct a overlay network by using the Chord lookup algorithm [1], and a log-
ical multicast tree for data delivery is built on the overlay network. A node
finds a member of the overlay network as the initial pointer to the group from
a location based service directory. For the detail of Chord lookup algorithm,
refer to Appendix B.

Details of the functionalities are described in the following subsections.

• Location based service directory with peer-to-peer lookup protocol us-
ing consistent hashing
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Multicast Service

Directory Service

lookup/register

Overlay network
constraction

multicast tree
constraction

Figure 5.1: GGCAST using Hierarchical P2P System

• Overlay network construction using Chord lookup information

• Flooding on the overlay network

5.1.1 Location Based Service Directory

The location based service directory provides a lookup service, using geo-
graphic position (location) as search keys. The service returns pointers to a
multicast groups (services) as values.

There may be a huge number of multicast groups in the world. Therefore,
the system has to process a vast number of queries to registrate or find
groups. The centralize system is typically weak at its root. In contrast,
P2P systems has an advantage to balance load because P2P systems are
distributed systems without any centralized control. This is the reason that
the location based service directory consists of P2P systems.

Especially, GGCAST uses a P2P lookup algorithm which assigns keys to
nodes with consistent hashing [39], [40], which has several desirable proper-
ties. The use of hash function will balance the load with high probability,
therefore, all nodes receive roughly the same number of keys.

5.1.2 Overlay Network Construction

A member of a multicast group constructs an overlay network, and constructs
a logical multicast tree on the overlay network. There is a possibility that
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the overlay network breaks into fragments, when a member fails. Thus a
fundamental proposition is how to build the overlay network which is robust
in the face of partially incorrect routing information.

We focus on overlay networks designed for P2P lookup algorism. In par-
ticular we use Chord [1] algorithm. It is our conjecture that similar results
would be obtained through other P2P lookup algorism such as CAN [36],
Pastry [41] and Tapestry [42]. However Chord has the advantage that its
correctness is robust in the face of partially incorrect routing information.
Chord lookup algorithm has little influence even if node’s failure occurs.

5.1.3 Multicast Routing

A logical multicast tree is being constructed on the overlay network. Because
members of a multicast group change frequently, the topology of the overlay
network may be subject to frequent changes. Thus, the fundamental propo-
sition is how to build the logical multicast tree which is robust in the face of
partially incorrect routing information. Since all members of the overlay net-
work should receive multicast datagrams, a flooding scheme could be used.
This is a similar situation in MANET.

Many protocols for MANET propose construction of routes reactively
using flooding. The advantage hereof is that no prior assumption of the
network topology is required in order to provide routing between any pair of
nodes in the network. In mobile ad-hoc networks, where the topology may
be subject to frequent changes, this is a particularly attractive property.

The total overhead incurred by a routing protocol consists of two ele-
ments: overhead in form of control traffic generated by the protocol, as well
as overhead from data traffic forwarded through non-optimal routes. Such
non-optimal routes brings a non-negligible overhead that is proportional to
the data load of the network.

Any flooding method could be used on the overlay network of GGCAST.
It should be chosen in consideration of the characteristic of a overlay network;
e.g. a number of members, a rate of change of topology and density of a
topology.

The characteristic of the overlay network is not studied yet in this re-
search. We cannot evaluate the flooding schemes. Thus, the architectonics
of the flooding scheme is out of scope in this thesis.
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5.2 The Location Based Service Discovery Al-

gorithm

5.2.1 Overview

The overview of the location based service directory is shows in Figure 5.2.
There are server and client. Server application constructs a directory service
using the Chord lookup algorithm. Client application is a resolver of the
directory, ALM application on other hand, basically performs lookup() and
register() on the mobile hosts.

Server

Client

Client

Client

Database

register()

lookup()

lookup()

Location Based Service Directory

Figure 5.2: Overview of The Location Based Service Directory

The directory distribute the database across numerous servers. Clients
search multicast groups with geographical position by using lookup(). When
lookup() is called, the client sends a query to a server of the directory service.
The client is assumed to know at least one of the servers in the directory.
Server which receives the query searches the data location of the key, and
sends a internal-registration query to the location. The lookup operation is
performed according to an algorithm discussed in Section 5.2.5.
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When a client first creates a new multicast group, register() will be called.
Then, the client sends a registration query to the server within its region,
lifetime and description.

5.2.2 Keys and Values

This directory provides a lookup service, with location information as search
keys and it returns a pointer to a multicast group as values. The location
information is simply specified by a certain specific geographic position.

The pointer is assumed to be a set of IP address and port number. If we
use an application by a fixed port, it becomes impossible to use two or more
location based multicast applications. When a geographic position is given
as search key into the directory, the directory will return a list of pointers to
multicast groups which included the geographic position.

The directory also reply with the region of the multicast group and the
description of the group. For example, the region specified will be used to
tell when to leave the multicast group as mobile node is moving out of the
region. It is not necessary that a case that a node join all multicast group.
The node makes judgments whether to join the group or not, by using the
descriptions.

The summary is shown in Table 5.1.

Table 5.1: Key and Values of the location based service directory

Key Values

a geographic position a pointer to the multicast group
geographical region

description
lifetime

5.2.3 Load Balancing

In order to lookup or register multicast groups, there are vast number of
queries. Thus load balancing between servers organizing the directory service
is important.

The consistent hash function assigns each node and key an m-bit iden-
tifier using SHA-1 . Since a server to store a key is determined according
to the obtained identifier, a key is being distributed with high probability.
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Likewise, the lookup() and register() queries are being distributed with high
probability.

5.2.4 The method to specify a multicast region

In order to specify a multicast region, we need a common measuring method.
GGCAST uses latitude and longitude for specifying a region. As explained in
Chapter 2, mobile nodes are assumed into be capable of obtaining their geo-
graphic position. Any position sensing device maybe used since the position
can be convertible into latitude and longitude.

Since the earth is a flat rotative ellipsoid in a direction, the length of
latitude 1 minute becomes long as it goes north. Moreover, it becomes short
as it goes to a pole, since the length of longitude 1 minute is the length of the
width which cut the earth into wedges. Near Japan, 1 second in longitude
is from 21 to 28m, and 1 second in latitude is about 31m. The surface in
Japan is split by the square of about 30m around. The receiving region is
expressed by this squares.

Figure 5.3 shows the example. A map is a matrix which records the
multicast region of the multicast group. The multicast region are represented
as black boxes in the figure. The x-axis represents longitude, the y-axis
represents latitude. Each map has a identifier, and the length of the identifier
is defined as m bits.

1st map 2nd map

Multicast Region

x

y

m’th map

Figure 5.3: Maps which stores the location information of a multicast group

All receiving regions are shown in this way, and the directory stores this
information. Since there are huge number of multicast groups all over the
world, distributed processing is required. To be solved here is how can we
distribute and search data efficiently.
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5.2.5 Data Location and Lookup Algorithm

The lookup algorithm is an extension of the Chord algorithm. In this section,
the method to store a key and the lookup algorithm is discussed.

Data Location

A map is divided into regions based on a geographic position information,
and each piece is stored into an array as described in Figure 5.4. Here the
arrays of (x1, y1), (x2, y2) and (x’, y) are shown in the figure. When a group
is registered and the identifier of the group is obtained by hashing a pointer
to the multicast group, a bit corresponding to the identifier is set.

0 0 1 01

1st
map

2nd
map

3rd
map

mth
map

(x1, y1)

0 1 0 10(x2, y2)

(x’,y’)

x

y
1st map

2nd map

0 1 0 10(x’, y’)

Lookup

Figure 5.4: array for each point

Lookup: lookup()

When (x’, y’) is given as a search key, the directory first searches the array
corresponding to the location given by the search key. Next, the identifier of
map which is set to 1 is searched from the array.

The lookup() is then performed according to the algorithm described in
Figure 5.5. When a lookup() is called, the corresponding array is searched
using Chord lookup algorithm, which is shown as get array from directory()
in the figure. The system searches the registered identifiers of map from the
array. Finally, pointers to the map will be returned.
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// check the (x’, y’) bit of array

lookup (key) {

array = get_array(key);

for i = 1 upto m

if ( array[i] )

return a pointer to [i]’th map;

}

get_array(key) {

array = get_array_from_directory(key);

return array;

}

Figure 5.5: scalable search for the array

Registration: register()

The registration query includes the information discussed in Section 5.2.2. A
server which received the query searches the data location from the multicast
regions. When the location is determined, internal-registration queries are
generated and transmitted. An identifier of a map is obtained by hashing
the IP address and port number.

The case when a map includes (x1, y1), (x2, y2), (x3, y3), (x4, y4) and
(x5, y5) is considered as an example. Since it is inefficient if the client
sends 5 queries for the registration, a client sends a registration query to the
directory. When the server receives the map information, the directory try
to divide the map to five queries, (x1, y1), (x2, y2), (x3, y3), (x4, y4) and
(x5, 5). Then the server sends 5 internal-registration queries.

5.3 Overlay Network Construction

5.3.1 Overview

To construct an overlay network, each nodes has to maintain information
about other nodes, that is “routing” information. As described in Section
4, there is an approach which requires the information all other nodes to
be maintained, and other approach which requires a number of other node
information. Although maintaining information of all other nodes improve
correctness, it also occurs less availability to reflect newly joined nodes as
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well as node failures.
GGCAST uses the Chord lookup algorithm, which is a peer-to-peer DHT

lookup algorithm to construct overlay network. Chord has the advantage,
because its correctness is robust in the face of partially incorrect routing
information.

5.3.2 Dynamic Operations

Here, we describe the pseudocode for joins and stabilization. When node
n′ first starts, it calls n.join(n′), where n′ is any known Chord node, or
n.create() to create a new Chord network. The join() function asks n′ to
find the immediate successor of n. By itself, join() does not make the rest of
the network aware of n.

Every node runs stabilize() periodically to learn about newly joined
nodes. Each time node n runs stabilize(), it asks its successor for the succes-
sor’s predecessor p, and decides whether p should be n’s successor instead.
This would be the case if node p recently joined the system. In addition,
stabilize() notifies node n’s successor of n’s existence, giving the successor
the chance to change its predecessor to n. The successor does this only if it
know of no closer predecessor than n.

Each node periodically calls fix fingers to make sure its finger table entries
are correct; this is how new nodes initialize their finger tables, and it is how
existing nodes incorporate new nodes into their finger tables. Each node also
runs check predecessor periodically, to clear the node’s predecessor pointer
if n.predecessor has failed; this allows it to accept a new predecessor in notify.

Details of the Chord lookup algorithm is mentioned in Appendix B.

5.3.3 Robustness

Figure 5.6 shows affection when a node has failed in Chord network. A circle
is a node, an arrow indicate a virtual path between nodes.

When a node has failed, only O(logN) fractions would happen, because
each node maintains only O(logN) routing information. Only one piece
of information per node need be correct in order for Chord to guarantee
correct routing of queries. That’s why Chord has good performance despite
continuous failure and joining of nodes.
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Each node maintains O(logN) information

When a node failed, only O(logN) fractions happened

Figure 5.6: Affection when a node has failed

5.3.4 Multiple registration of pointers to the multicast
group

In order to keep the connectivities between multicast groups and directory
service, the multicast group keeps an ordered list of the candidates pointer
to this group. This list is sent periodically to the directory service. When a
pointer node fails, the first regular node in the list becomes the pointer node
and registers to the directory service.

5.4 Summary

Our location based multicast model consists of hierarchical P2P overlay net-
work, upper overlay network is a directory service to find a multicast group,
lower one is overlay network for application layer multicast. Both overlay
networks are constructed using Chord lookup algorithm.

In our model, the world is divided into a grid based on longitude and lati-
tude. A receiving region of multicast is shown as the grid. These information
is divided for every grip and registered to the directory. Meanwhile, a logical
trees for multicasting is built using Chord routing tables. The forwarding
algorithm send the message to each node in the finger table, but adjusts the
region of multicast before sending to limit the number of duplicate messages.
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Implementation

In this chapter, we describe the implementation of GGCAST. We describe the
overview of our implementation first. Next, we explain the data structures
and the application libraries used in GGCAST. Finally, we introduce the
user interfaces.

6.1 Overview

Our implementation consists of following five targets.

• The Chord library: This provides the basic functionality of Chord. It
maintains routing tables and is able to evaluate find successor.

• The Directory library: This provides the DHash object which provides
the directory service in a Chord network.

• The Directory server daemon (dsd): dsd is the daemon which imple-
ments the Chord and directory protocols.

• The Mcast library: This library provides the application layer multicast
object.

• The Mcast server daemon (msd): msd is the daemon which provides
multicast service.

Figure 6.1 shows the overview of our implementation. The rectangle in
the figure represents a modules, there are three modules, (1) overlay network
module, (2) directory module and (3) mcast modules. The dsd consists of
(1) and (2), and the msd consists of (1), (2) and (3).
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Overlay Network
Module

Directory Module

Overlay Network
Module

Directory Module

Overlay Network
Module

Directory Module

Overlay Network
Module

Directory Module

Mcast Module

Overlay Network
Module

Directory Module

Mcast Module

Overlay Network
Module

Directory Module

Mcast Module

Directory Service

Mcast Group
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(a) (a)

(b)(b)

(c) (c) (c)
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(f) (f) (f)

Sender Application Receiver Application Receiver Application

(g)

(h) (h)

(i) (i)

dsd

msd

dsddsd

msdmsd

Figure 6.1: GGCAST Implementation Modules
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(a) The overlay network module exchanges the routing information be-
tween each other. (b) The directory modules communicate each other and
construct the directory service. (c) A resolver included at the directory mod-
ule sends a lookup or registration query, the directory modules process the
request. At the those operations, routing information maintaining by overlay
network is used via the Chord library (d).

(e) The lookup and registration operations are performed via the direc-
tory library. The mcast module uses the routing information via the Chord
library (f). When a sender application sends data grams (g), the data grams
are transmitted according to the routing information (h) and Receiver appli-
cation receives the data gram (i).

6.2 Library

Table 6.1 shows the Chord library, an interface to use overlay network mod-
ules.

Table 6.1: The Chord Library

Name Description

create() Create a new Chord ring
join(struct sockaddr *n) Join a Chord ring containing n
stabilize() Called periodically. verifies n’s imme-

diate successor, and tells the successor
about n, notify(n).

notify(struct sockaddr *n) n thinks it might be our predecessor.
fix fingers() Called periodically. refreshes finger ta-

ble entries. next stores the index of the
next finger to fix.

check predecessor() Called periodically. check whether pre-
decessor has failed.

find successor(struct id *id) Ask node n to find the successor of id.

Table 6.2 shows the directory library, an interface to use the directory
service.

Table 6.3 shows the multicast library, an interface to use application layer
multicast.
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Table 6.2: The Directory Library

Name Description

lookup(struct position *xy) Ask node n to find multicast groups.
add(struct range *xyxy, Register a new multicast group.

struct sockaddr *pointer,
int lifetime,
void *description,
size t length)

Table 6.3: The Mcast Library

Name Description
msend(int s, const void *msg, transmit a message to another nodes

size t len, int flags) in a group via mcast server.
mrecv(int s, void *buf, receive message from mcast server.

size t len, int flags)

6.3 Variables

NUM BITS is identifier length, and AVG PKT DELAY is average latency of
a packet between any two nodes in the system, the latency is exponentially
distributed. RROC REQ PERIOD is average interval between two invoca-
tion of the process request() procedure. The duration of this interval is uni-
formally distributed in [0.5*PROC REC PERIOD, 1.5*PROC REC PERIOD).
STABILIZE RERIOD is average interval between two invocations of the
stabilization() procedure. The duration of this interval is uniformly dis-
tributed in [.5*STABILIZDE REC PERIOD, 1.5*STABILIZE PERIOD).
TIME OUT is timeout to detect a node failure. A node eliminates a fin-
ger from its finger table if it doesn’t hear an answer within TIME OUT
ms after it has sent a query. HASH SIZE is size of hash table used to
maintain all nodes. DEFAULT NUM FINGERS is finger table size. DE-
FAULT NUM SUCCS is number of successors maintained by each node;
these are the first NUM SUCC nodes in the finger table.
DEFAULT MAX LOCATION CACHE is size of cache for NUM SUCCS and
NUM FINGER.

37



CHAPTER 6. IMPLEMENTATION

6.4 User interface

In this section, we describe the user interface of GGCAST. This application
consists of two parts, Directory Service (dsd) and Multicast Service (msd).

6.4.1 Directory Service

The directory service takes a group of confusing options on the command
line. The directory service daemon is named dsd. Run it with no options
just to make sure the build went right (Figure 6.2) .

¶ ³
% ./dsd

Usage: dsd -d -j hostname:port -p port ...
µ ´

Figure 6.2: Running Directory Service

When a node joins a Directory Service Network, based on Chord routing
protocol, it must contact a well-known, or bootstrap node. Any node, once
running, can serve as a bootstrap node. However, the first node run as part
of a Chord network must bootstrap itself. All this really means is that when
starting the node one must specify a port (rather than letting Chord choose
one) and set the bootstrap node to itself.

Figure 6.3 illustrates this process as it might be run on a host named
wanwan.sfc.wide.ad.jp (the command line options will be described in detail
in a later section). The important fact to note is that this node has speci-
fied a port number and specified itself (wanwan.sfc.wide.ad.jp:10000) as the
bootstrap node.

When starting additional (non-bootstrap nodes) the port argument is
optional, and the address of a running node should be specified after the -j
parameter. If no port is specified, dsd will choose an unused port (Figure
6.4).

6.4.2 Multicast Service

The multicast service takes a group of confusing options on the command
line. The directory service daemon is named msd. Run it with no options
just to make sure the build went right 6.5.

When a node joins a multicast group network, based on Chord routing
protocol, it must contact a well-known, or bootstrap node. Any node, once
running, can serve as a bootstrap node. However, the first node run as part

38



CHAPTER 6. IMPLEMENTATION

¶ ³
% ./dsd -j wanwan.sfc.wide.ad.jp:10000 -p 10000

Chord: running on 18.26.4.29:10000

init_chordID: my address: 18.26.4.29.10000.0

1004828619:637146 myID is

caa42d5de473ac83e5be5cd96cdcaa6f7b85da56

dsd: insert: caa42d5de473ac83e5be5cd96cdcaa6f7b85da56

1004828622:099189 stabilize:

caa42d5de473ac83e5be5cd96cdcaa6f7b85da56

stable! with estimate # nodes 1
µ ´

Figure 6.3: Starting a bootstrap node

¶ ³
% ./dsd -j wanwan.sfc.wide.ad.jp:10000

init_chordID: my address: 18.26.4.29.2496.0

1004829020:385471 myID is

b678329a53d1a0a3e54fcd7a46d0d09d097fee34

dsd: insert: b678329a53d1a0a3e54fcd7a46d0d09d097fee34

1004829027:570355 stabilize:

b678329a53d1a0a3e54fcd7a46d0d09d097fee34

stable! with estimate # nodes 12
µ ´

Figure 6.4: Starting additional nodes

¶ ³
% ./msd

Usage: msd -j hostname:port -p port -s hostname:port -r range

-m description -l lifetime ...
µ ´

Figure 6.5: Running multicast server
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of a Chord network must bootstrap itself. All this really means is that when
starting the node, one must specify a port (rather than letting Chord choose
one) and set the bootstrap node to itself. The first node must register the
new multicast group to the directory service, it must contact a well-known
node which serves Directory Service.

Figure 6.6 illustrates this process as it might be run on a host named
wanwan.sfc.wide.ad.jp (the command line options will be described in detail
in a later section). The important fact to note is that this node has speci-
fied a port number and specified itself (wanwan.sfc.wide.ad.jp:10000) as the
bootstrap node.

¶ ³
% ./msd -j modena.sfc.wide.ad.jp -p 55555

-s wanwan.sfc.wide.ad.jp:10000

-r 123124,451342,123131,451542

-m ‘‘traffic jam’’ -l 3600

chord: running on 87.65.43.21:55555

init_chordID: my address: 87.65.43.21.55555.0

10048286120:756387 myID is

0d7608a18e27aa936b5302cd2ac8723f2fb14683

msd: create multicast socket as /tmp/msd-socket.0

msd: insert: 0d7608a18e27aa936b5302cd2ac8723f2fb14683

10048286125:127934 stabilize:

0d7608a18e27aa936b5302cd2ac8723f2fb14683

stable! with estimete # nodes 1
µ ´

Figure 6.6: Running multicast server

When a node search a multicast service at a certain point, it must contact
a well-known directory service node. The directory service will return a list
of multicast group. Figure 6.7 shows this process.

When starting additional (non-bootstrap nodes) the port argument is
optional, and the address of a running node should be specified after the -j
parameter. If no port is specified, msd will choose an unused port (Figure
6.8). msd creates socket, an endpoint for multicasting.

Figure 6.9 shows the user interface to send datagrams. The socket is
connected to the socket of receiver. In the figure, the characters is inputted.

Figure 6.10 shows the user interface to receive datagrams. When a re-
ceiver application opens the socket, the receiver will receive the characters
inputted at the sender.
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¶ ³
% ./msd -s wanwan.sfc.wide.ad.jp:10000 -r 123130,451382

Contacting wanwan.sfc.wide.ad.jp:10000 at 123130,451382

..........!

Got the answer:

hostname:port description lifetime(sec)

range

---------------------------------------------------------

modena.sfc.wide.ad.jp:10000 traffic jam 3600

(123124,451342)-(123131,451542)
µ ´

Figure 6.7: Finding multicast group

¶ ³
% ./msd -j modena.sfc.wide.ad.jp:10000

init_chordID: my address: 12.34.56.78.2498.0

10048286139:432409 myID is

ccbe9a171b14a12d9c53d91d588903c588366990

msd: create multicast socket as /tmp/msd-socket.0

msd: insert: ccbe9a171b14a12d9c53d91d588903c588366990

10048286149:412349 stabilize:

ccbe9a171b14a12d9c53d91d588903c588366990

stable! with estimete # nodes 12
µ ´

Figure 6.8: Joining a multicast group

¶ ³
% echo ‘‘this is test message.’’ > test

% cat test > /tmp/msd-socket.0
µ ´

Figure 6.9: Sending datagram to the multicast group

¶ ³
% cat /tmp/msd-socket.0

this is test message.
µ ´

Figure 6.10: Receiving datagram
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Evaluation

GGCAST is evaluated as an application related to Intelligent Transporta-
tion System (ITS), and it has been confirmed that our implementation can
provide enough capability for use with in the ITS. From our evaluation, the
directory service was found to be realizable with about 4000 servers, each
server processing about 2000 query per seconds. It was also found that over
99% of the members are able to receive multicast packets even under condi-
tions were a node joins or leaves a multicast group every 0.9 seconds.

7.1 Group Search Performance

In this section, we evaluate the performance of searches for multicast groups.
In doing so, we compare the Chord algorithm, a peer-to peer DHT lookup
algorithm, with a distribution tree model, both as a method for the directory
service. Figure 1 shows the search flows for both the Chord ring model and
the distribution tree model.

Both finding performances are described as Formula 7.1. Tsearch is the
search time. H is expected number of hop to complete the lookup. RTT is
round trip time of between servers. LP is time of internal processing at a
server for the lookup.

Tsearch =
H∑

k=1

(RTTk + LPk) (7.1)

The LP is explained as Formula 7.2. Tlookup is the time required to lookup
the entry from the database. TQueryProc is the time required to process the
lookup query.

LP = Tlookup + TQueryProc (7.2)
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Searcher

Search Flow

Distribution Tree Ring

Figure 7.1: Search flow by using distribution tree model and ring model

7.1.1 Experiment 1: Database Lookup

In order to evaluate Tlookup, the following experiment was conducted using
our implementation. Figure 7.2 shows the experiment.

(1) In the first of the experiment, Query Generator generates random
queries to register groups. The number of queries is set to 1000 to 10000 by
1000s and from 10000 by multiples of two up to 1280000. IP address, port
number, and the multicast region are generated by using the rand() function
of Standard C Library. The seed for a sequence of pseudo-random numbers
is reset at regular intervals. When a multicast group is meshed in more than
one cell, registration are processed for each cell. The lifetime of the multicast
groups is set to 300 seconds and the description is set as “TRAFFIC JAM”.
This queries are directly inputted to the dsd program without a network.

(2) Second, the queries to find a group which selected at random. The
number of query is 1000. The queries were also generated by the rand()
function. For this experiment, the time required to lookup an entry were
measured by using the CPU clock conter.

Table 7.1 shows the specification of the PC used for this experiment.
The experiment was performed 1000 times. The result is shown in Figure

7.3. The graph shows the processing time per a lookup in label y and the
number of the entries held at the lookup in label x. The mark X represents
the average.

The average lookup times was 150 usec. This has no influence in the
performance e even if the number of entries increases.
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(2) Finding of groups
    which made at random
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Node

Figure 7.2: Experiment to measure the lookup performance

Table 7.1: Specification of experiment PC

CPU Intel Pentium III Processor 846MHz
Memory 512MB RAM

HDD IDE 40GB 4200rpm
Network Intel PRO/100+ MiniPCI

OS NetBSD 1.6.1-Release

7.1.2 Experiment 2: Query Processing

The following experiment was conducted in order to evaluate TQueryProc, using
our implementation. Figure 7.4 shows the experiment. (1) Packet Generator
generates random queries to register random groups. (2) Packet Generator
generates random queries to search for groups. The number of queries for
each experiment is 1000. The queries are transmitted by a unit of 1 time.
The processing time of lookup from database is deducted. The experiment
was performed 1000 times.

Table 7.2 shows the result. To process a finding query, it takes 524 usecs
on average.

7.1.3 Conclusion

As above these results of the two experiments, Formula 7.3 is verified.
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Figure 7.3: Lookup performance at a server

RTT >>> LP (7.3)

Therefore, Tsearch is greatly depending to H, which is the number of hop.
In a distribution tree model, the hop is number of level. For example, if

the levels are root level, degree level and minute level, it takes 4 hops. In
contrast, the path length is expected 2 - 9 hops in our model; this is the
result shown in [1].

A distribution tree model and our model has the similar performance. Our
proposal is excellent in the point which load distribution is equally carried
out among the servers.

7.2 Required Number of Directory Servers

In this section, we evaluate the number of servers required archive the GGCAST
directory service.

The total number of server is described as Formula 7.4. Nserver is total
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Figure 7.4: Experiment to measure the query processing performance

Table 7.2: A query processing performance at a server

Average Max Min Stdev

524 usec 673 usec 375 usec 211 usec

number of server. Ctotal, Total processing cost is the total amount of the
lookup/registration queries and the management cost. The management
costs are caused by operations described in Section 5.3.2. The costs are
expected not big than the costs caused by processing the queries, because we
assume that those sever are stable. Pserver is performance per one server.

Nserver =
Ctotal

Pserver

(7.4)

For example, when each person make one group, there are 5 billon multi-
cast groups in the world. From the estimation described as Table 3.1, a node
sends the query every 65 seconds. Then, 5billon/65seconds = 76923075.9,
the directory should process about 80 million query per second (qps).

The performance of the server is measured in the same environment as the
one in Figure 7.4. The expected number of entries is registered beforehand.
The search queries and registration queries were generated randomly.

Figure 7.5 shows the result. The graph shows the processing performance
(queries per seconds) in label y, and the number of the entries already held
in label x.
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Figure 7.5: Processing Performance at a server

From the graph, we can see that the server has the performance to server
about 2000 qps. As above preliminary estimate, there is about about 80
million qps totally. Therefore, we can estimate that about 4000 servers is
needed to provide this directory services.

7.3 Modeling of Dynamic Group Memberships

In order to evaluate the robustness of GGCAST, dynamic group memberships
should be modeling. In this research, the memberships consists of tree phases,
shown as Table 7.3.

Phase 1 can be shown as Formula 7.5. G is growth rate, and t is the time
past after the group is created.

Nmember = G ∗ t (1 < t < T ) (7.5)

Phase 2 can be shown as Formula 7.6. N is the number of members at
time t. Because the number of members fluctuates at around G ∗ T , it’s
convenient to use the average of the queries of the deviations about G ∗ T .
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Table 7.3: Dynamic Group Memberships

Phase 1: Growth period The number of members grows up at a in-
creasing rate until reach a saturation point;
the number of members in a multicast range
has upper threshold.

Phase 2: Maturation period The number of members may fluctuate
around a point of saturation. Member
comes in and out at a rate

Phase 3: Decline period The number of members becomes fewer.

The average is taken over a time interval T −T ′ that’s much longer than the
period of the fluctuations.

Nmember =
1

T ′ − T

∫ T ′−T

0
(N −G ∗ T )2dt (T < t < T ′) (7.6)

Formula 7.7 shows Phase 3 mathematically.

Nmember = G ∗ T −G ∗ (t− T ) (T ′ < t < T ′′) (7.7)

7.4 Robustness of the Overlay Network

The robustness of the overlay network is verified according to the dynamic
group memberships model described in Section 7.3. The robustness indicates
the number of whole connections which still being maintained when members
change.

7.4.1 Experiment 3: Overlay Network Construction

In order to figure out the number of connections, Phase 1 and Phase 2 as
described in Table 7.3 were simulated. The saturation point grants 350 nodes.

• Case 1: The middle of Phase1. About 150 nodes join to the multicast
group. A node joins per 0.9 (Case 1-1), 1.8 (Case 1-2), 3.6 (Case 1-3),
7.2 (Case 1-4), 14.4 (Case 1-5), 28.8 (Case 1-6) seconds. Case 1-7 is in
the best state.

• Case 2: The end of Phase1. A node joins per 0.9 (Case 2-1), 1.8 (Case
2-2), 3.6 (Case 2-3), 7.2 (Case 2-4), 14.4 (Case 2-5), 28.8 (Case 2-6)
seconds. Case 2-7 is in the best state.
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• Case 3: The end of Phase2. A node joins per 0.9 (Case 3-1), 1.8 (Case
3-2), 3.6 (Case 3-3), 7.2 (Case 3-4), 14.4 (Case 3-5), 28.8 (Case 3-6)
seconds. Case 3-7 is in the best state.

Table 7.4 shows the environment variables in the simulation. The vari-
ables are defined in Section 6.3.

Table 7.4: Environment variables

NUM BITS 24
AVG PKT DELAY 50 ms
PROC REQ PERIOD 500 ms
STABILIZE PERIOD 30000 ms
TIME OUT 500 ms
HASH SIZE 10000
DEFAULT NUM FINGERS 20
DEFAULT NUM SUCCS 5
DEFAULT MAX LOCATION CACHE 25

This simulation was performed 100 times for each scenario, changing the
speed of a random generator for each test.

7.4.2 Topology

Figure 7.6 shows the topology of Case 1-2. The box represents a node, the
number is node’s id. The line represents a virtual connection between two
nodes. We define the following cases;

Virtual connections between each node construct a fully meshed network
as shown in Figure 7.6. The network constructed withholds the robustness
against dynamic changes in number and of location of the nodes inside.

7.4.3 The number of connections

Figure 7.7 shows the number of virtual connections. The graph shows the
number of connections in label y and the testing cases in label x. The X
mark represents the average. The maximum of a line shows maximum values
and the minimum shows the minimum value.

Although the fluctuation in number of connection is wide, minimum 1
and maximum 25, nodes hold, in average, a number of connections: e.g. 19
connections at Case 2-1. Therefore, the communication scheme using overlay
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Figure 7.6: Topology of a overlay network
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network can be considered robust in the situation where the membership of
multicast group changes dynamically.

Figure 7.8 shows the rate of reachable nodes. The number of hops repre-
sents in label x and percentage of reachable nodes in label y.
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Figure 7.8: Rate of reachable nodes

Over 99 % of nodes could receive a datagram in only 3 hops. From this
evaluation, GGCAST multicasting scheme can be considered practical since
the scheme provides connectivity to 360 nodes within 3 hops range.

Table 7.5 shows the number and the percentage of unnecessary packets
in flooding. The table shows the result of Case 2.

From the table, it can be seen that the percentage of unnecessary packets
are about 40at nodes which are 2 hops away from the sender. If the range is
extended to 3 hops, the percentage of unnecessary packets increase to 99

The result indicates that there’s a need for better flooding scheme to
realize efficient multicast communication using overlay network.
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Table 7.5: Unnecessary Packets

Case 2hops (percentage) 3hops (percentage)

2-1 66 (40) 1857 (89)
2-2 69 (24) 4694 (97)
2-3 125 (29) 7466 (99)
2-4 216 (40) 8141 (99)
2-5 236 (42) 8499 (99)
2-6 255 (44) 8866 (99)

7.5 Summary

GGCAST has been implemented as an ITS-related application for evalu-
ation. It has been confirmed that our directory server can process about
2,000 queries per second. It is estimated that about 4,000 servers would
be sufficient to provide a globally available version of this directory service.
Other results include that even in a case in which membership changes every
0.9 seconds, over 99members can receive the multicast delivery of information
in only 3 hops by simple flooding method.
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Conclusion and Future Works

8.1 Conclusion

Geographic Grouping Multicast (GGCAST), newly introduced in this re-
search, is one of the one-to-many communication methods in which receivers
are determined by their geographic positions. Applications of GGCAST in-
clude dissemination of traffic information within relevant locations, such as
passing the cause of a traffic jam to cars running behind. The objective of this
research is to propose the architecture of GGCAST for a mobile ubiquitous
computing environment.

Since, in GGCAST, a multicast group is defined by geographic domain,
its membership changes dynamically, and it is difficult to keep a logical mul-
ticast tree for data delivery. The fundamental propositions of this research
are dynamic group membership and efficient data transmission in such a
multicast group.

In order to achieve dynamic group membership, following approaches
are proposed; Multicast grouping with geographic information, Join/Leave
model and End node organization. In addition, to achieve efficient data
transmission in a multicast group, following approaches are proposed; End
node organization, Overlay network which has robustness when a node fails,
and Less packet duplication.

In this paper, GGCAST is proposed as an application layer multicast
(ALM) using a peer-to-peer (P2P) lookup algorithm with a location based
service directory. In the targeted environment, nodes are freely moving over
several ISPs. This makes ALM to be more suitable for the situation because
it doesn’t need a network layer protocol support. In GGCAST, members of
a multicast group construct a overlay network using routing information of
a P2P lookup algorithm, and a logical multicast tree is built on the overlay
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network. A member is discovered with the location based service directory as
an initial node of the overlay network. The overlay network is using Chord
[1], a P2P lookup algorithm. The routing information of Chord has little
influence on the overlay network even when a node fails. Because membership
of GGCAST changes frequently, the robustness is important.

GGCAST has been implemented as an ITS-related application for eval-
uation. It has been confirmed that our directory server can process about
2,000 queries per second. It is estimated that about 4,000 servers would
be sufficient to provide a globally available version of this directory service.
Other results include that even in a case in which membership changes every
0.9 seconds, over 99% of the members can receive the multicast delivery of
information in only 3 hops by simple flooding method.

We conclude that GGCAST realizes a practical location-based multicast
architecture.

8.2 Status and Future Directions

The directory service balances the load on the servers equally with high
probability by using consistent hashing, and a query may be sent to the server
which is far from the client. As described in Section 7.3, the performance
of the directory service is greatly depending on the number of hops and
the round trip time between servers. Thus, the performance degradation
is caused in such situation. [43] has proposed an effective P2P distributed
content location mechanism using content-relationship. In order to realize the
locality of contents, their system assigns a hierarchical identifier according
to content-relationship. The realization of contents locality may provide
performance improvements.

As discussed in Section 5.1.3, a flooding method should be chosen in
consideration of the characteristic of the overlay network. the architectonics
of the flooding scheme is out of scope in this thesis. This will be studied
further as one of the next steps in this research.
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Current Position Sensing
Technologies

Table A.1, Table A.2 and Table A.3 shows current major position sensing
technologies and its characteristics [25].

A position system can provide two kind of information, physical and sym-
bolic. GPS provides physical positions. For example, our campus, Shonan
Fujisawa Campus of Keio University, is located on 35o20′38′′N by 139o29′7′′.
In contrast, symbolic position encompasses abstract ideas of where something
is: in the kitchen, in Kalamazoo, next to a mailbox, on a train approaching
Denver.

An absolute position system uses a shared reference grid for all located
objects. For example, all GPS receivers use latitude, longitude, and altitude
- or their equivalents, such as Universal Transverse Mercator coordinates -
for reporting location. Two GPS receivers placed at the same position will
report equivalent position readings, and 47o39′17′′ N by 122o18′23′′ W refers
to the same place regardless of GPS receiver.

A position system should report positions accurately and consistently
from measurement to measurement. Some inexpensive GPS receivers can
locate positions to within 10 meters for approximately 95 percent of mea-
surements. More expensive differential units usually do much better, reach-
ing 1- to 3-meter accuracies 99 percent of the time. There distances denote
the accuracy, or grain size, of the position information GPS can provide.
The percentages denote precision, or how often we can expect to get that
accuracy.

A position sensing system may be able to locate objects worldwide, within
a metropolitan area, throughout a campus, in a particular building, or within
a single room. Further, the number of objects the system can locate with a
certain amount of infrastructure or over a given time may be limited. For
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example, GPS can serve an unlimited number of receivers worldwide using 24
satellites plus three redundant backups. On the other hand, some electronic
tag readers can not read any tag if more the one is within region.

For applications that need to recognize or classify located objects to take
a specific action based on their location, an automatic identification mech-
anism is needed. For example, a modern airport baggage handling system
needs to automatically route outbound and inbound luggage to the correct
flight or claim carousel. A proximity-location system consisting of tag scan-
ners installed at key locations along the automatic baggage conveyers makes
recognition a simple matter of printing the appropriate destination codes
on the adhesive luggage check stickers. In contrast, GPS satellites have no
inherent mechanism for recognizing individual receivers.

We can assess the cost of a position-sensing system in several ways. Time
costs include factors such as the installation process’s length and the system’s
administration needs. Space costs involve the amount of installed infrastruc-
ture and the hardware’s size and form factor.

Some systems will not function in certain environments. One difficulty
with GPS is that receivers usually cannot detect the satellites. This limita-
tion has implications for the kind of applications we can build using GPS.
For example, because most wired phones are located indoors, even if its ac-
curacy and precision were high enough to make it conceivable, GPS does
not provide adequate support for an application that routes phone calls to
the land-line phone nearest the intended recipient. A possible solution that
maintains GPS interaction yet works indoors uses a system of GPS repeaters
mounted at the edges of buildings to rebroadcast the signals inside.
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Table A.1: Current Position Sensing Technologies 1

Technology Technique Physical Symbolic Absolute Relative
GPS Radio time-of-flight

lateration
o o

Active
Badges

Diffuse infrared cel-
lular proximity

o o

Active
Bats

Ultrasound time-of-
flight lateration

o o

MotionStar Scene analysis, later-
ation

o o

VHF
Omini-
directional
Ranging

Angulation o o

Cricket Proximity, lateration o o o
MSR
RADAR

802.11 RF scene
analysis and trian-
gulation

o o

PinPoint
3D-ID

RF lateration o o

Avalanche
Transceivers

Radio signal
strength proxim-
ity

o o

Easy Liv-
ing

Vision, triangulation o o

Smart
Floor

Physical contact
proximity

o o

Automatic
ID System

Proximity o o o

Wireless
Andrew

802.11 proximity o o

E911 Triangulation o o
SpotON Ad hoc lateration o o
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Table A.2: Current Position Sensing Technologies 2

Technology Accuracy and preci-
sion if available

Scale

GPS 1-5 meters 95-99% 24 satellites worldwide
Active
Badges

Room size 1 base per room, badge per base per 10 sec

Active
Bats

9 cm 95% 1 base per 10 square meters, 25 computa-
tions per room per sec

MotionStar 1 mm, 1 ms, 0.1o

VHF
Omini-
directional
Ranging

1o radial Several transmitters per metropolitan area

Cricket 4x4 ft. regions 1 beacon per 16 square ft.
MSR
RADAR

3-4.3m 50% 3 bases per floor

PinPoint
3D-ID

1-3m Several bases per building

Avalanche
Transceivers

Variable, 60-80 me-
ter range

1 transceiver per person

Easy Liv-
ing

Variable 3 cameras per small room

Smart
Floor

Spacing of pressure
sensors

Complete sensor grip per floor

Automatic
ID System

Range of sensing
phenomenon

Sensor per position

Wireless
Andrew

802.11 cell size Many bases per campus

E911 150-300 m Density of cellular infrastructure
SpotON Depends on cluster

size
Cluster at least 2 tags
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Table A.3: Current Position Sensing Technologies 3

Technology Cost Limitations
GPS Expensive infrastructure $100

receivers
Not indoors

Active
Badges

Administration cost, cheap tags
and bases

Sunlight and fluorescent light
interfere with infrared

Active
Bats

Administration costs, cheap
tags and sensors

Required ceiling sensor grid

MotionStar Controlled senses, expensive
hardware

Control unit tether, precise in-
stallation

VHF
Omini-
directional
Ranging

Expensive infrastructure, inex-
pensive aircraft receivers

30-140 nautical miles, line of
sight

Cricket $10 beacons and receivers No central management re-
ceiver computation

MSR
RADAR

802.11 network installation, =
$100 wireless NICs

Wireless NICs required

PinPoint
3D-ID

Infrastructure installation, ex-
pensive hardware

Proprietary 802.11 interference

Avalanche
Transceivers

$200 per transceiver Short radio range unwanted sig-
nal attenuation

Easy Liv-
ing

Processing power, installation
cameras

Ubiquitous public cameras

Smart
Floor

Installation of sensor grid, cre-
ation of footfall training dataset

Recognition may not scale to
large populations

Automatic
ID System

Installation, variable hardware
costs

Must know sensor locations

Wireless
Andrew

802.11 deployment Wireless NICs required, RF cell
geometries

E911 Upgrading phone hardware of
cell infrastructure

Only where cell coverage exists

SpotON $30 per tag, no infrastructure Attenuation less accurate then
time-of-flight
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The Chord Protocol

This section describes the Chord protocol. The Chord protocol specifies how
to find the locations of keys, how new nodes join the system, and how to
recover from the failure (or planned departure) of existing nodes. In this
paper we assume that communication in the underlying network is both
symmetric (if A can route to B, then B can route to A), and transitive (if A
can route to B and B can route to C, then A can route to C).

B.1 Overview

At its heart, Chord provides fast distributed computation of a hash function
mapping keys to nodes responsible for them. Chord assigns keys to nodes
with consistent hashing [39], [40], which has several desirable properties.
With high probability the hash function balances load (all nodes receive
roughly the same number of keys). Also with high probability, when an Nth
node joins (or leaves) the network, only a O(1 = N) fraction of the keys
are moved to a different location - this is clearly the minimum necessary to
maintain a balanced load.

Chord improves the scalability of consistent hashing by avoiding the re-
quirement that every node know about every other node. A Chord node
needs only a small amount of “routing” information about other nodes. Be-
cause this information is distributed, a node resolves the hash function by
communicating with other nodes. In an N -node network, each node main-
tains information about only O(logN) other nodes, and a lookup requires
O(logN) messages.
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B.2 Consistent Hashing

The consistent hash function assigns each node and key an m-bit identifier
using SHA-1 [44] as a base hash function. A node’s identifier is chosen by
hashing the node’s IP address, while a key identifier is produced by hashing
the key. We will use the term “key” to refer to both the original key and its
image under the hash function, as the meaning will be clear from context.
Similarly, the term “node” will refer to both the node and its identifier under
the hash function. The identifier length m must be large enough to make the
probability of two nodes or keys hashing to the same identifier negligible.

Consistent hashing assigns keys to nodes as follows. Identifiers are or-
dered on an identifier circle modulo 2m. Key k is assigned to the first node
whose identifier is equal to or follows (the identifier of) K in the identi-
fier space. This node is called the successor node of key k, denoted by
successor(k). If identifiers represented as a circle of numbers from 0 to 2m−1,
then successor(k) is the first node clockwise from k. In the remainder, we
will also refer to the identifier circle as the Chord ring.

Figure B.1 shows a Chord ring with m = 6. The Chord ring has 10 nodes
and stores five keys. The successor of identifier 10 is node 14, so key 10 would
be located at node 14. Similarly, keys 24 and 30 would be located at node
32, key 38 at node 38, and key 54 at node 56.

N1

N8

N14

N21

N32
N38

N42

N48

N51

N56
K10

K24

K30K38

K54

Figure B.1: An identifier circle (ring) consisting of 10 nodes storing five keys

Consistent hashing is designed to let nodes enter and leave the network
with minimal disruption. To maintain the consistent hashing mapping when
a node n joins the network, certain keys previously assigned to n’s successor
now become assigned to n. When node n leaves the network, all of its assigned
keys are reassigned to n’s successor. No other changes in assignment of keys
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to nodes need occur. In the example above, if a node were to join with
identifier 26, it would capture the key with identifier 24 from the node with
identifier 32.

The following results are proven in the papers that introduced consistent
hashing [39], [40]:

TheoremIV.1: For any set of N nodes and K keys, with high probability:

1. Each node is responsible for at most (1+ ∈)K/N keys.

2. When an (N + 1)st node joins or leaves the network, responsibility for
O(K/N) keys changes hands (and only to or from the joining or leaving
node).

When consistent hashing is implemented as described above, the theorem
proves a bound of ∈= O(longN). The consistent hashing paper shows that
∈ can be reduced to an arbitrarily small constant by having each node run
Ω(logN) virtual nodes, each with its own identifier. In the remainder of this
paper, we will analyze all bounds in terms of work per virtual node. Thus,
if each real node runs v virtual nodes, all bounds should be multiplied by v.

The phrase “with high probability” bears some discussion. A simple
interpretation is that the nodes and keys are randomly chosen, which is
plausible in a non-adversaria model of the world. The probability distribution
is then over random choices of keys and nodes, and says that such a random
choice is unlikely to produce an unbalanced distribution. A similar model
is applied to analyze standard hashing. Standard hash functions distribute
data well when the set of keys being hashed is random. When keys are not
random, such a result cannot be guaranteed - indeed, for any hash function,
there exists some key set that is terribly distributed by the hash function
(e.g., the set of keys that all map to a single hash bucket). In practice, such
potential bad sets are considered unlikely to arise. Techniques have also been
developed [45] to introduce randomness in the hash function; given any set
of keys, we can choose a hash function at random so that the keys are well
distributed with high probability over the choice of hash function. A similar
technique can be applied to consistent hashing; thus the “high probability”
claim in the theorem above. Rather than select a random has function we
make use of the SHA-1 hash which is expected to have good distributional
properties.

Of course, once the random hash function has been chosen, an adversary
can select a badly distributed set of keys for that hash function. In our
application, an adversary can generate a large set of keys and insert into the
Chord ring only those keys that map to a particular node, thus creating a
badly distributed set of keys. As with standard hashing, however, we expect
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that a non-adversaria set of keys can be analyzed as if it were random. Using
this assumption, we state many of our results below as “high probability”
results.

B.2.1 Simple Key Location

This section describes a simple but slow Chord lookup algorithm. Succeeding
sections will describe how to extend the basic algorithm to increase efficiency,
and how to maintain the correctness of Chord’s routing information.

Lookups could be implemented on a Chord ring with little per-node state.
Each node need only know how to contact its current successor node on the
identifier circle. Queries for a given identifier could be passed around the
circle via these successor pointers until they encounter a pair of nodes that
straddle the desired identifier; the second in the pair is the node the query
maps to.

Figure B.2 (a) shows pseudocode that implements simple key lookup. Re-
mote calls and variable references are preceded by the remote node identifier,
while local variable references and procedure calls omit the local node. Thus
n.foo() denotes a remote procedure call of procedure foo on node n, while
n.bar, without parentheses, is an RPC to fetch a variable bar from node
n. The notation (a; b] denotes the segment of the Chord ring obtained by
moving clockwise from (but not including) a until reaching (and including)
b.

Figure B.2 (b) shows an example in which node 8 performs a lookup for
key 54. Node 8 invokes find successor for key 54 which eventually returns
the successor of that key, node 56. The query visits every node on the circle
between nodes 8 and 56. The result returns along the reverse of the path
followed by the query.

B.2.2 Scalable Key Location

The lookup scheme presented in the previous section uses a number of mes-
sages linear in the number of nodes. To accelerate lookups, Chord maintains
additional routing information. This additional information is not essential
for correctness, which is achieved as long as each node knows its correct
successor.

As before, let m be the number of bits in the key/node identifiers. Each
node n maintains a routing table with up to m entries (we will see that in
fact only O(logn) are distinct), called the fingertable. The ith entry in the
table at node n contains the identity of the first node s that succeeds n
by at least 2i−1 on the identifier circle, i.e., s = successor(n + 2i−1), where
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N1

N8

N14

N21

N32
N38

N42

N48

N51

N56K54
//ask node n to find the successor of id
n.find_sucessor(id)
  if(id    (n,sucessor])
    return sucessor,
  else
    // forward the query around the circle
    return sucessor.find_sucessor(id);

lookup(K54)

(a)

(b)

Figure B.2: (a)Simple(but slow) pseudocode to find the successor node of
an identifier id. Remote procedure calls and variable lookups are proceeded
by the remote node. (b)The path taken by a query from node 8 for key 54,
using the pseudocode in (a)

1 ≤ i ≤ m (and all arithmetic is modulo 2m). We call nodes the ith finger
of node n, and denote it by n.finger[i] (see Table I). A finger table entry
includes both the Chord identifier and the IP address (and port number) of
the relevant node. Note that the first finger of n is the immediate successor
of n on the circle; for convenience we often refer to the first finger as the
successor.

The example in Figure B.3 (a) shows the finger table of node 8. The first
finger of node 8 points to node 14, as node 14 is the first node that succeeds
(8 + 20) mod 26 = 9. Similarly, the last finger of node 8 points to node 42,
as node 42 is the first node that succeeds (8 + 25) mod 26 = 40.

This scheme has two important characteristics. First, each node stores
information about only a small number of other nodes, and knows more
about nodes closely following it on the identifier circle than about nodes
farther away. Second, a node’s finger table generally does not contain enough
information to directly determine the successor of an arbitrary key k. For
example, node 8 in Figure B.3 (a) cannot determine the successor of key 34
by itself, as this successor (node 38) does not appear in node 8.

Figure B.4 shows the pseudocode of the find successor operation, extended
to use finger tables. If id falls between n and its successor, findsuccessor
is finished and node n returns its successor. Otherwise, n searches its finger
table for the node n’ whose ID most immediately precedes id, and then
invokes findsuccessor at n’. The reason behind this choice of n’ is that the
closer n’ is to id, the more it will know about the identifier circle in the region
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N1

N8

N14

N21

N32
N38

N42

N48

N51

N56

N1

N8

N14

N21

N32
N38

N42

N48

N51

N56

Finger table
N8+1 ... N14
N8+2 ... N14
N8+4 ... N14
N8+8 ... N21
N8+16... N32
N8+32... N42

lookup(54)

Figure B.3: (a)The finger table entries for node 8. (b) The path a query for
key 54 starting at node 8, using the algorithm in Figure ??

of id.

//ask node n to find the successor of id
n.find_sucessor(id)
  if(id    (n,sucessor])
    return sucessor;
  else
    n’ = closest_preceding_node(id);
    return sucessor.find_sucessor(id);

// search the local table for the highest predecessor of id
n.closest_preceding_node(id)
  for i = m downto 1
    if(finger[i]    (n, id))
      return finger[i];
  return n;

Figure B.4: Scalable key lookup using the finger table

As an example, consider the Chord circle in Figure B.4 (b), and suppose
node 8 wants to find the successor of key 54. Since the largest finger of node
8 that precedes 54 is node 42, node 8 will ask node 42 to resolve the query. In
turn, node 42 will determine the largest finger in its finger table that precedes
54, i.e., node 51. Finally, node 51 will discover that its own successor, node
56, succeeds key 54, and thus will return node 56 to node 8.

Since each node has finger entries at power of two intervals around the
identifier circle, each node can forward a query at least halfway along the
remaining distance between the node and the target identifier. From this
intuition follows a theorem:
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TheoremIV.2 : With high probability, the number of nodes that must be
contacted to find a successor in an N -node network is O(logN).

Proof : Suppose that node n wishes to resolve a query for the successor
of k. Let p be the node that immediately precedes k. We analyze the number
of query steps to reach p.

Recall that if n 6= p, then n forwards its query to the closest predecessor
of k in its finger table. Consider the i such that node p is in the interval
[n + 2i−1, n + 2i). Since this interval is not empty (it contains p), node n will
contact its ith finger, the first node f in this interval. The distance (number of
identifiers) between n and f is at least 2i, which means the distance between
them is at most 2i−1. This means f is closer to p than to n, or equivalently,
that the distance from to is at most half the distance from n to p.

If the distance between the node handling the query and the predecessor
p halves in each step, and is at most 2m initially, then within m steps the
distance will be one, meaning we have arrived at p.

In fact, as discussed above, we assume that node and key identifiers are
random. In this case, the number of forwarding necessary will be O(logN)
with high probability. After 2logN forwardings, the distance between the
current query node and the key k will be reduced to at most 2m/N2. The
probability that any other node is in this interval is at most 1/N , which is
negligible. Thus, the next forwarding step will find the desired node.

In the section reporting our experimental results (Section V), we will
observe (and justify) that the average lookup time is 1

2
logN .

Although the finger table contains room for m entries, in fact only O(logN)
fingers need be stored. As we just argued in the above proof, no node is likely
to be within distance 2m/N2 of any other node. Thus, the ith finger of the
node, for any i ≤ m−2logN , will be equal to the node’s immediate successor
with high probability and need not be stored separately.

B.2.3 Dynamic Operation and Failures

In practice, Chord needs to deal with nodes joining the system and with nodes
that fail or leave voluntarily. This section describes how Chord handles these
situations.

Node Joins and Stabilization

In order to ensure that lookups execute correctly as the set of participating
nodes changes, Chord must ensure that each node’s successor pointer is up
to date. It does this using a “stabilization” protocol that each node runs
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periodically in the background and which updates Chord’s finger tables and
successor pointers.

Figure B.5 shows the pseudocode for joins and stabilization. When node
n first starts, it calls n.join(n′), where n′ is any known Chord node, or
n.create() to create a new Chord network. The join() function asks n′ to
find the immediate successor of n. By itself, join() dose not make the rest
of the network aware of n.

// create a new Chord ring
n.create()
  predecessor = nil;
  sucessor = n;
// join a Chord ring containing node n’
n.join(n’)
  predecessor = nil;
  successor = n’.find_successor(n);
// called periodically. veryifies n’s immediate successor, 
// and tells the sucessor about n
n.stabilize()
  x = successor.predecessor;
  if(x    (n, successor))
    successor = x;
  successor.notify(n);
// n’ thinks it might be our predecessor
n.notify(n’)
  if(predecessor is nil or n’    (predecessor, n))
    predecessor = n’;
// called periodically. refreshes finger table entries.
// next stores the index of the next finger to fix.
n.fix_fingers()
  next = next + 1;
  if(next > m)
    next = 1
  finger[next] = find_successor(n+2    );
// called periodically. checks whether predecessor has faild.
n.check_predecessor()
  if(predecessor has failed)
    predecessor = nil;

ext-1

Figure B.5: Pseudocode for stabilization

Every node runs stabilize() periodically to learn about newly joined
nodes. Each time node n runs stabilize(), it asks its successor for the suc-
cessor’s predecessor p, and decides whether p should be n’s existence, giving
the successor the chance to change its predecessor to n. The successor does
this only if it knows of no closer predecessor than n.

Each node periodically calls fixf ingers() to make sure its finger table
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entries are correct; this is how new nodes initialize their finger tables, and it is
how existing nodes incorporate new nodes into their finger tables. Each node
also runs checkpredecessor() periodically, to clear the node’s predecessor
pointer if n.predecessor has failed; this allows it to accept a new predecessor
in notify().

As a simple example, suppose node n joins the system, and its ID lies
between nodes np and ns. In its call to join(), n acquires ns as its successor.
Node ns, when notified by n, acquires n as its predecessor. When np next run
stabilize(), its asks ns for its predecessor (which is now n); np then acquires
n as its successor. Finally, np notifies n, and n acquires np as its predecessor.
At this point, all predecessor and successor pointers are correct. At each
step in the process, ns is reachable from np using successor pointers; this
means that lookups concurrent with the join are not disrupted. Figure B.6
illustrates the join procedure, when n’s ID is 26, and the IDs of ns and np

are 21 and 32, respectively.

N21

N32

N21

N32

N21

N32

N21

N32

K24

K30

successor(N21)

N26 N26 N26

K24

K30

K24

K30

K24

K30

(a) (b) (c) (d)

Figure B.6: Example illustrating the join operation. Node 26 joins the system
between nodes 21 and 32. The arcs represent the successor relationship. (a)
Initial state: node 21 points to node 32; (b) node 26 finds its successor (i.e.
node32) and points to it; (c) node 26 copies all keys less than 26 from 32;
(d) the stabilize procedure updates the successor of node 21 to node 26.

As soon as the successor pointers are correct, calls to findsuccessor()
will reflect the new node. Newly-joined nodes that are not yet reflected
in other nodes’ finger tables may cause findsuccessor() to initially under-
shoot, but the loop in the lookup algorithm will nevertheless follow successor
(finger[1]) pointers through the newly-joined nodes until the correct prede-
cessor is reached. Eventually fixf ingers() will adjust finger table entries,
eliminating the need for these linear scans.

The following result, proved in [46], shows that the inconsistent state
caused by concurrent joins is transient.
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TheoremIV.3 : If any sequence of join operations is executed interleaved
with stabilizations, then at some time after the last join the successor pointers
will form a cycle on all the nodes in the network.

In other words, after some time each node is able to reach any other node
in the network by following successor pointers.

Our stabilization scheme guarantees to add nodes to a Chord ring in a way
that preserves reachability of existing nodes, even in the face of concurrent
joins and lost and reordered messages. This stabilization protocol by itself
won’t correct a Chord system that has split into multiple disjoint cycles, or
a single cycle that loops multiple times around the identifier space. These
pathological cases cannot be produced by any sequence of ordinary node
joins. If produced, these cases can be detected and repaired by periodic
sampling of the ring topology [46].

Impact of Node Joins on Lookups

In this section, we consider the impact of node joins on lookups. We first
consider correctness. If joining nodes affect some region of the Chord ring, a
lookup that occurs before stabilization has finished can exhibit one of three
behaviors. The common case is that all the finger table entries involved in the
lookup are reasonably current, and the lookup finds the correct successor in
O(logN) steps. The second case is where successor pointers are correct, but
fingers are inaccurate. This yields correct lookups, but they may be slower.
In the final case, the nodes in the affected region have incorrect successor
pointers, or keys may not yet have migrated to newly joined nodes, and the
lookup may fail. The higher-layer software using Chord will notice that the
desired data was not found, and has the option of retrying the lookup after
a pause. This pause can be short, since stabilization fixes successor pointers
quickly.

Now let us consider performance. Once stabilization has completed, the
new nodes will have no effect beyond increasing the N in the O(logN) lookup
time. If stabilization has not yet the N in the O(logN) lookup time. If
stabilization has not yet the new nodes. The ability of finger entries to carry
queries long distances around the identifier ring does not depend on exactly
which nodes the entries point to; the distance halving argument depends only
on ID-space distance. Thus the fact that finger table entries may not reflect
new nodes does not significantly affect lookup speed. The main way in which
newly joined nodes can influence lookup speed is if the new nodes’ IDs are
between the targeted predecessor and the target. In that case the lookup
will have to be forwarded through the intervening nodes, one at a time. But
unless a tremendous number of nodes joins the system, the number of nodes
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between two old nodes is likely to be very small, so the impact on lookup is
negligible. Formally, we can state the following result. We call a Chord ring
stable if all its successor and finger pointers are correct.

TheoremIV.4 : If we take a stable network with N nodes with correct
finger pointers, and another set of up to N nodes joins the network, and
all successor pointers (but perhaps not all finger pointers) are correct, then
lookups will still take O(logN) time with high probability.

Proof : The original set of fingers will, in O(logN) time, bring the query
to the old predecessor of the correct node. With high probability, at most
O(logN) new nodes will land between high probability, at most O(logN) new
nodes will land between traversed along successor pointers to get from the
old predecessor to the new predecessor.

More generally, as long as the time it takes to adjust fingers is less than
the time it takes the network to double in size, lookups will continue to take
O(logN) hops. We can achieve such adjustment by repeatedly carrying out
lookups to update our fingers. It follows that lookups perform well so long
as ω(log2N) rounds of stabilization happen between any N node joins.

Failure and Replication

The correctness of the Chord protocol relies on the fact that each node knows
its successor. However, this invariant can be compromised if nodes fail. For
example, in Figure B.3, if nodes 14, 21, and 32 fail simultaneously, node 8
will not know that node 38 is now its successor, since it has no finger pointing
to 38. An incorrect successor will lead to incorrect lookups. Consider a query
for key 30 initiated by node 8. Node 8 will return node 42, the first node it
knows about from its finger table, instead of the correct successor, node 38.

To increase robustness, each Chord node maintains a successorlist of size
r, containing the node’s first r successors. If a node’s immediate successor
does not respond, the node can substitute the second entry in its successor
list. All r successors would have to simultaneously fail in order to disrupt
the Chord ring, an event that can be made very improbable with modest
values of r. Assuming each node fails independently with probability p, the
probability that all r successors fail simultaneously is only pr. Increasing r
makes the system more robust.

Handling the successor list requires minor changes in the pseudocode in
Figures B.4 and B.5. A modified version of the stabilize procedure in Figure
B.5 maintains the successor list. Successor lists are stabilized as follows:
node n reconciles its list with its successor s by copying s’s successor list,
removing its last entry, and prepending s to it. If node n notices that its
successor has failed, it replaces it with the first live entry in its successor list
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and reconciles its successor list with its new successor. At that point, n can
direct ordinary lookups for keys for which the failed node was the successor
to the new successor. As time passes, fixf ingers and stabilize will correct
finger table entries and successor list entries pointing to the failed node.

A modified version of the closestpreceding node procedure in Figure B.4
searches not only the finger table but also the successor list for the most im-
mediate predecessor of id. In addition, the pseudocode needs to be enhanced
to handle node failures. If a node fails during the findsuccessor procedure,
the lookup proceeds, after a timeout, by trying the next best predecessor
among the nodes in the finger table and the successor list.

The following results quantify the robustness of the Chord protocol, by
showing that neither the success nor the performance of Chord lookups is
likely to be affected even by massive simultaneous failures. Both theorems
assume that the successor list has length r = ω(logN).

TheoremIV.5 : if we use a successor list of length r = ω(logN) in a
network that is initially stable, and then every node fails with probability 1/2,
then with high probability findsuccessor returns the closest living successor
to the query key.

Proof : Before any nodes fail, each node was aware of its r immediate
successors. The probability that all of these successors fail is (1/2)r, so with
high probability every node is aware of its immediate living successor. As
was argued in the previous section, if the invariant that every node is aware
of its immediate successor holds, then all queries are routed properly, since
every node except the immediate predecessor of the query has at least one
better node to which it will forward the query.

TheoremIV.6 : In a network that is initially stable, if every node then
fails with probability 1/2, then the expected time to execute findsuccessor()
is O(logN).

Proof : Due to space limitations we omit the proof of this result, which
can be found in the technical report [46].

Under some circumstances the preceding theorems may apply to malicious
node failures as well as accidental failures. An adversary may be able to make
some set of nodes fail, but have no control over the choice of the set. For
example, the adversary may be able to affect only the nodes in a particular
geographical region, or all the nodes that use a particular access link, or all
the nodes that have a certain IP address prefix. As was discussed above,
because Chord node IDs are generated by hashing IP addresses, the IDs
of these failed nodes will be effectively random, just as in the failure case
analyzed above.

The successor list mechanism also helps higher-layer software replicate
data. A typical application using Chord might store replicas of the data
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associated with a key at the k nodes succeeding the key. The fact that a
Chord node keeps track of its r successors means that it can inform the higher
layer software when successors come and go, and thus when the software
should propagate data to new replicas.
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