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Abstract

SensingCloud: Open and Global Sensor Network

using Distributed Aggregation Mechanism

Summary

With rapid development of both hardware and software technologies, sensing de-
vices are now dramatically smaller and able to communicate each other, which
technology is known as Sensor Network. Sensor network has made computer sys-
tems be aware of the real world. This kind of computer systems can behave without
explicit human input. However, current sensor network is not a common infrastruc-
ture like the internet. Sensor Networks are distributed all over the world and they
are closed to the others. This situation not only decreases development efficiency
but also restricts system scope.

As real-world sensing becomes more and more important in ubiquitous systems,
there is an urgent need for sensor network to be a common infrastructure. The goal
of this research is to create a platform that liberates data streams in currently
closed sensor networks and enables the other applications to utilize them.

We propose “SensingCloud”, which is a platform that interconnects sensor net-
works distributed over the world. By accessing SensingCloud, ubiquitous applica-
tions can collects sensor feeds from the membership sensor networks. In building
SensingCloud, we have organized three requirements: “transparent connectivity to
distributed sensor network,” “meta-level access to arbitrary data” and “automatic
scalability for growing number of sensors.” SensingCloud automatically scales the
system as it grows, by leveraging P2P communication to distribute its network and
task loads. We will propose a new concept vision for sensor network as well as
efficiency of sensor feed aggregation with an implementation.
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修士論文要旨 2009年度 (平成21年度)

SensingCloud：

開放型分散センサネットワーク集約機構の設計と実装

論文要旨

近年のハードウェア，およびソフトウェアにおける発展により，小型なセ
ンシング機器が相互通信を行い，高粒度の実空間データをコンピュータシス
テムに取り込むことができるセンサネットワーク技術が台頭した．この技術
により，コンピュータシステムが実空間の状況を把握し，その場に適したサー
ビス提供を行えるようになり，また，これまで人間が取得することが出来な
かったデータの観測が可能となった．しかし，現在のセンサネットワークはイ
ンターネットのようにインフラ化されておらず，個々の閉鎖的なネットワー
クが世界中に散在している状況である．既存のセンサネットワークの利用が
許されないため，サービス開発者は，センサネットワークの設置からすべて
を行わなければならないため，開発効率の低下だけでなく，サービス自体が
限られた範囲内でのみ動作する限定的なものになってしまう問題がある．今
後，コンピュータシステムにとって実空間情報の考慮が必要不可欠になって
ゆくにつれ，センサネットワークの共有インフラ化が非常に求められる．本
研究の目的は，現状，世界中に散在しているセンサネットワークのデータス
トリームを，どのようなアプリケーションからでも利用可能にするプラット
フォームを構築することである．
本論文では，私たちは世界中に散在するセンサネットワークのデータスト

リームを共有するためのプラットフォームである SensingCloudを提案する．
SensingCloudは，ユーザアプリケーションにより位置情報、およびセンサの
種類をクエリとしたリクエストを受け付けると，該当する地域に存在するセン
サのデータストリームを集約して転送する．本研究では，このプラットフォー
ムの要件を，“分散センサネットワークのための透過的アクセス”，“メタ情報
を利用したデータアクセス”そして “規模に応じた自律的スケーリング”とし，
これらの要件を満たすアーキテクチャを設計する．具体的には P2P，および
分散コンピューティング技術を用いて，ネットワークトラフィック、および集
約にかかる計算コストの分散を図る．
本研究を通じて，私たちは次世代のセンサネットワークをあり方を，その

効果的な手法と実装と共に提唱する．

キーワード
1 センサネットワーク 2 クラウドコンピューティング
3 分散コンピューティング　 4 ピア・ツー・ピア
5 ユビキタスコンピューティング

慶應義塾大学大学院 政策・メディア研究科
生天目 直哉



Contents

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . 1

1.2 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . 3

2 Sensor Network 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Sensor Network . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Applications on Sensor Network . . . . . . . . . . . . . . . . . 6

2.3.1 Environmental Monitoring . . . . . . . . . . . . . . . . 6

2.3.2 Context Aware Service . . . . . . . . . . . . . . . . . . 7

2.3.3 Life Log Service . . . . . . . . . . . . . . . . . . . . . 8

2.4 Architecture of Sensor Network Application . . . . . . . . . . 8

2.5 SensingCloud . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Requirements for SensingCloud . . . . . . . . . . . . . 11

2.5.2 Utilization Scenario . . . . . . . . . . . . . . . . . . . 12

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Related Works 14

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 HPC Based Architecture . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 SensorWeb . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Sensor Andrew . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Cloud Based Architecture . . . . . . . . . . . . . . . . . . . . 19

i



CONTENTS

3.3.1 Sensor-Cloud Integration . . . . . . . . . . . . . . . . 19

3.4 Grid Based Architecture . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Global Sensor Network . . . . . . . . . . . . . . . . . . 20

3.4.2 TomuDB . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.3 IrisNet . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.4 Sensor Grid . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 SensingCloud 26

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Design Principle . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Transpaerent Cross Domain Communication . . . . . 27

4.3.2 Meta-Level Request Processing . . . . . . . . . . . . . 29

4.3.3 Distributed Data Aggregation . . . . . . . . . . . . . . 33

4.4 System Architecture . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Hardware Architecture . . . . . . . . . . . . . . . . . . 39

4.4.2 Software Architecture . . . . . . . . . . . . . . . . . . 40

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Implementation 44

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Data Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.2 SensorFeed . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.3 SensorData . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Distributed Process Client . . . . . . . . . . . . . . . . . . . . 46

5.3.1 Software Implementation . . . . . . . . . . . . . . . . 47

5.3.2 Aggregation Manager . . . . . . . . . . . . . . . . . . 48

5.3.3 Aggregation Process . . . . . . . . . . . . . . . . . . . 50

5.3.4 Feed Manager . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.5 Feed Process . . . . . . . . . . . . . . . . . . . . . . . 51

ii



CONTENTS

5.3.6 Feed Subscriber . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Sensor Index Server . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.1 Database Design . . . . . . . . . . . . . . . . . . . . . 53

5.4.2 Sensor Resolver . . . . . . . . . . . . . . . . . . . . . . 55

5.4.3 Update Manager . . . . . . . . . . . . . . . . . . . . . 57

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Evaluation 59

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Purpose of Evaluation . . . . . . . . . . . . . . . . . . . . . . 59

6.2.1 Environment Settings . . . . . . . . . . . . . . . . . . 60

6.2.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 64

6.4 Scalability Evaluation . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Conclusion and Future Works 67

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2.1 Serverless Architecture . . . . . . . . . . . . . . . . . . 69

7.2.2 Security and Restriction . . . . . . . . . . . . . . . . . 69

iii



List of Figures

2.1 node for Smart Dust . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 concept of smart dust . . . . . . . . . . . . . . . . . . . . . . 5

2.3 airy note sensor . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 airynotes system . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 architecture for senor network application . . . . . . . . . . . 9

2.6 over view of SensingCloud . . . . . . . . . . . . . . . . . . . . 10

3.1 a) HPC Based, b) Cloud Based, c) Grid Based Architecture . 14

3.2 Screendump of SensorMap . . . . . . . . . . . . . . . . . . . . 15

3.3 3D data distribution . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Architecture of the SenseWeb system . . . . . . . . . . . . . . 17

3.5 The Sensor Andrew architecture . . . . . . . . . . . . . . . . 18

3.6 A framework of Sensor-Cloud Integration . . . . . . . . . . . 19

3.7 The TomuDB architecture . . . . . . . . . . . . . . . . . . . . 22

3.8 The IrisNet architecture . . . . . . . . . . . . . . . . . . . . . 22

3.9 The IrisNet OA Hierachy . . . . . . . . . . . . . . . . . . . . 23

3.10 The SPRING framework . . . . . . . . . . . . . . . . . . . . . 24

4.1 System Overview of SensingCloud . . . . . . . . . . . . . . . 27

4.2 architecture of sensor data processing . . . . . . . . . . . . . 30

4.3 architecture image for common sensor network platform . . . 32

4.4 Centralized Model . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Distributed Model . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Pure P2P Model . . . . . . . . . . . . . . . . . . . . . . . . . 36

iv



LIST OF FIGURES

4.7 Hybrid P2P Model . . . . . . . . . . . . . . . . . . . . . . . . 36

4.8 Procesures of SensingCloud Scaling Mechanism . . . . . . . . 37

4.9 Location of Slave Client and Master Client . . . . . . . . . . 38

4.10 Horizontal Scaling . . . . . . . . . . . . . . . . . . . . . . . . 39

4.11 Vertical Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.12 Hardware Structure of SensorCloud . . . . . . . . . . . . . . . 40

4.13 Software Architecture of SensorCloud . . . . . . . . . . . . . 41

4.14 Distributed Task Processer . . . . . . . . . . . . . . . . . . . 42

5.1 Class Diagrams for Common Models . . . . . . . . . . . . . . 45

5.2 Screen Dump for Distributed Process Client . . . . . . . . . . 46

5.3 Class Diagram for Distributed Process Client . . . . . . . . . 47

5.4 Class Diagram for AggregationManager . . . . . . . . . . . . 48

5.5 Class Diagram for AggregationProcess . . . . . . . . . . . . . 50

5.6 Class Diagram for FeedManager . . . . . . . . . . . . . . . . . 52

5.7 Class Diagram for FeedProcess . . . . . . . . . . . . . . . . . 52

5.8 Class Diagram for FeedSubscriber . . . . . . . . . . . . . . . . 53

5.9 Class Diagram for Sensor Index Server . . . . . . . . . . . . . 54

5.10 Relationship between tables . . . . . . . . . . . . . . . . . . . 55

5.11 PostGIS query for resolving network from meta condition . . 56

5.12 Sequence diagram for task assignation . . . . . . . . . . . . . 56

5.13 Tasks and communications after SensorResolver tasks . . . . 57

6.1 Evaluation Environment Settings . . . . . . . . . . . . . . . . 60

6.2 Evaluation Settings . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Sequence Diagram for SensingCenter . . . . . . . . . . . . . . 62

6.4 Result on Performance Evaluation . . . . . . . . . . . . . . . 64

6.5 Result on Scalability Evaluation . . . . . . . . . . . . . . . . 65

v



List of Tables

4.1 Operation Set for Data Aggregation . . . . . . . . . . . . . . 34

4.2 comparison of centralized and distributed computing . . . . . 35

4.3 comparison of Pure P2P and Hybrid P2P . . . . . . . . . . . 36

5.1 Table list for SensingCloud database . . . . . . . . . . . . . . 54

6.1 Specification of Hardware . . . . . . . . . . . . . . . . . . . . 61

vi



Chapter 1

Introduction

This chapter introduces background information of the field of sensor net-

work and describes a research motivation and a research goal.

1.1 Background and Motivation

Sensing real-space information has become very important in ubiquitous ap-

plications. Context-aware systems utilize real-space information to provide

an appropriate service to appropriate users at appropriate timing. Also,

various fields of researches or services leverage the contribution for detailed

environmental analysis or human activity recognition using real-space infor-

mation. These services that provide new value to the world are contributions

of Sensor Networks. This technology shifts the existing computer system to

the next paradigm.

Although sensor networks proved such a great potential in computer

system society, they have not yet been established as true “infrastructure”.

Infrastructure should be open and able to be accessed by any users just like

the Internet. On the other hand, current sensor networks are closed and

still remain as private “tools”. In current situation, one can utilize a sensor

network only if he/she owns it.

In such situation, the applications are isolated in the private network.

For example, a life-log application can only subscribe to and log environ-

1



1.2. RESEARCH GOAL

ment sensor data at home. Once you go outside, environment sensor data

can not be subscribed to. The user wants this application to collaborate

with environmental sensors anywhere he/she goes to. Also, a situation on

current sensor network systems prevent people to have global awareness.

For instance, although thermometers are installed everywhere in Tokyo city,

one can only acquire data from a very tiny number of sensors. If we can

subscribe to data from these thousands of millions of thermometers, very de-

tailed data of heat-island phenomenon can be acquired and effective action

against heat-island phenomenon can be executed.

We envision an open and global sensor network, in which users can

subscribe to data from arbitrary nodes in sensor networks distributed all

over the world. This platform provides people a global awareness. It en-

ables world wide detailed environmental studies such as earthquake or global

warming monitoring. Also, on this platform, applications are not restricted

to run on a single sensor network any more. For instance, Autonomous-

traveling robots can subscribe to their surrounding environmental informa-

tion anywhere they go. Under our platform, these robots can know various

situations such as a crowd or an amount of traffic. Other than these exam-

ples, open and global sensor network platform has potential to enhance life

log as mentioned above, entertainment, social security, social studies, and

navigation/recommendation system as well.

1.2 Research Goal

The goal of this research is to liberate data streams in currently private and

closed sensor networks and enable for applications to utilize them. For this

purpose, we will develop an open and global sensor network platform that

interconnects distributed sensor networks. This platform allows applications

to utilize sensor data stream from arbitrary sensor networks. This provides

applications a world wide mobility and a global awareness. We will propose

the architecture that enables this goal with high performance and practically

deployable way.

2



1.3. THESIS ORGANIZATION

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 introduces the field of current

sensor network systems and organized its architecture. Chapter 3 orga-

nizes related projects into 3 categories in architecture, and discussed the

reason that we are proposing a new system. Chapter 4 describes Sensing-

Cloud and approaches that SensingCloud adopts. Chapter 5 introduces the

implementation of SensingCloud. Chapter 6 evaluates the performance of

the implementation with comparison to the system with traditional cen-

tric architecture. Finally, chapter 8 summarize this thesis by focusing the

contribution of this thesis and future work of it.

3



Chapter 2

Sensor Network

2.1 Introduction

This chapter discusses and presents ideal sensor network architecture. Firstly,

we introduce a basic concept of general sensor network and utilization ex-

ample. Then, we will organize architecture of sensor network applications

and introduce the problem of its implementation. Then at the end of this

chapter, we will introduce requirements and ideal sensor network architec-

ture.

2.2 Sensor Network

Due to recent development of sensing and wireless communication technolo-

gies, small sensing devices have had ability to communicate each other. This

technology enables sensor devices to formulate a network autonomously,

called “Sensor Network” [1]. Sensor network helps passing data or bringing

commands among nodes, even the two can not directly communicate each

other. Since the nodes used in sensor networks are typically low cost and

small in size, they are distributed to an environment to enable dense reso-

lution sensing. Due to these features, sensor network is usually utilized for

detecting events or phenomena in an environment.

Imad Mahgoub and Mohammad Ilyas [2] have described the basic fea-

4



2.2. SENSOR NETWORK

tures of sensor network as following:

• Self-organized capabilities

• Short-range broadcast communication and multihop routing

• Dense deployment and cooperate effort of sensor nodes

• Frequently changing topology due to fading and node failures

• Limitation in energy, transmit power, memory and computing power

The first paper that showed a concrete concept of sensor network was

smart dust [3]. This research aims to acquire detailed real-space information

of the field by distributing an enormous number of dust-sized sensors as

shown in Figure 2.1. These tiny devices sense various types of information

including temperature, light, humidity, radiation, CO2, and more. This

helps people to get better understandings of environmental or geographical

information. Figure 2.2 shows the concept of smart dust.

Figure 2.1: node for Smart Dust Figure 2.2: concept of smart dust

Issues described above were rather the research of enabling technologies

of sensor network itself. In addition to these issues, researches of overlying

applications of sensor network are also active these days.

Hardware related issue underlies at the bottom. This research issue in-

cludes hardware sophistication/miniaturization, power supply, and energy

efficiency. Networking related issue lies next. This layer of research issues

5



2.3. APPLICATIONS ON SENSOR NETWORK

includes routing, network topology, and in-network database system. This is

the core layer of sensor network. Application layer includes context aware-

ness, data-mining, computer-human interaction.

2.3 Applications on Sensor Network

This section describes sensor network applications and how they utilize sen-

sor network features.

2.3.1 Environmental Monitoring

Environmental monitoring is one of largest classes of sensor network appli-

cation. By distributing small and low cost sensor nodes all over the envi-

ronment, the network of these small sensor nodes acquires a high-resolution

sensing result that is impossible to acquire with an existing environmental

sensing method. A traditional method for this kind of monitoring is to place

a single high-specification sensor station that represents an area around it.

This method can only acquire low-resolution data that represents a large

area even though the data itself is so precisely sensed. The resolution of

the data that is sensed by this method in a park is approximately 500m2 to

1km2. We can easily guess that there are some place colder/hotter than the

other areas such as windy shade, or concrete-made road in the sun in such

a large area.

Airy Notes [4], which is a name of first practical challenge to place hun-

dreds of sensors in a park, supports this fact. In Airy Notes, Ito et al. placed

more than 200 of 1mm x 10mm x 0.5mm wireless sensors shown in Figure 2.3

in a park, and overlaid the sensed environmental data on the park’s map

as shown in Figure 2.4. The result shows even in 5m2, temperature dif-

fers widely. The high-resolution data will be utilized for park’s environment

management or to evaluate effects of greens to the temperature. Sensor net-

work can be also utilized to various use such as fire monitoring [5] or human

activity monitoring [6, 7, 8]. Human activity monitoring is an innovative

6



2.3. APPLICATIONS ON SENSOR NETWORK

technology for the elderly care system [9] with privacy.

Figure 2.3: airy note sensor Figure 2.4: airynotes system

2.3.2 Context Aware Service

Sensor network contributes to the emergence of this class of applications,

which is “Context Aware Service” [10, 11]. Due to sensor network, computer

system can take various types of information into cyber space from real

world. This gives computer systems to understand what is going on in the

real world. Context aware system can actuate the most reasonable service

under a context that is analyzed from real-world information. The difference

between automatic-door or automatic-light which are the system that have

been automated for long time, is that context-aware system calculate more

abstract situation using various sensor data, on the other hand, traditional

automated system only uses a single data.

For example, current situation of the room, “serious” or “relaxed”, can

be analyzed by brightness of the room, chairs’ accelerometer, projector’s

on/off, and tone of the voice. And the situation can be utilized cell-phone

mode switching service. The service will switch to vibration mode when you

are in “serious” room and switch to ring-mode when you are in “relaxed”

room. The context analysis methodologies are widely proposed. Some are

based on probability calculation, other are based on exploratory algorithm.

7



2.4. ARCHITECTURE OF SENSOR NETWORK APPLICATION

2.3.3 Life Log Service

The concept of life logging is to self-record daily behaviors, such as vis-

ited places, purchased items, and encountered friends. This information is

logged by various medias such as still camera, video camera, or text. Sen-

sor network can enrich the media by providing environmental information

as attendant circumstances, so that the users can recall the situation more

vividly. ObjSampler [12] is a great example. it is stamp shaped life-logging

device with RFID reader that can read and store objects’ digital informa-

tion. When a user stamps on an product which interests him/her, @Reader

stores its digital information. @Reader can also receive real-world informa-

tion such as location or behavior and add it to the product’s information.

This data can help the user to recall the detailed situation when he/she

found the product.

2.4 Architecture of Sensor Network Application

We have organized architecture for sensor network applications. Figure 2.5

shows the architecture. On the bottom lies sensor network layer. This

layer brings real-world information to an upper layer application. Data

processing layer comes next. This layer processes raw sensor data and find

out abstract contexts. Then, application layer comes on the top. This layer

provides services to users by utilizing abstract context information from

processing layer. This architecture model can be adapted to most of the

sensor network applications. However the problem is each sensor network

application has its original instance in each layer. Application A has its

own sensor network, process method, and application. Application B has

another sensor network, another process method and another application.

This means sensor network and its application is hardly binded. What makes

situation worse, each sensor network is closed to the others. This situation

is undesirable for following reasons.

8



2.4. ARCHITECTURE OF SENSOR NETWORK APPLICATION

L1: Sensor Network Layer

L2: Data Processing Layer

L3: Applica!on Layer

Sensor network applica!on

Figure 2.5: architecture for senor network application

• Less Versatility

Currently, if one wants to create sensor network application, he/she

has to build from the bottom layer to the top layer. This causes large

development time and cost.

• Less Mobility

Existing implementation of sensor network application can only oper-

ate on a specific sensor network, which means applications with mobil-

ity like Life Logging or Robot Support are available only in a limited

area. Mobile application’s mobility is restricted in current situation.

• Less Visibility

Applications can only subscribe to sensor data from a sensor network

which is specifically installed to it. It is unlikely to think that one ap-

plication developer or organization can deploy sensor network to whole

city therefore this limits the visibility of sensor network application.

As written above, this architecture is not enough for services that en-

vision subscribing data from larger area that single sensor network can not

cover. It is necessary to unify and open up the sensor network layer and

some extent of data processing layer as a common platform.
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2.5 SensingCloud

In this section, we will present an ideal common sensor network platform,

which we named “SensingCloud.” Based on discussions above, an ideal sen-

sor network is “a sensor network that applications can request for arbitrary

data in desirable form anywhere they are.” As shown in Figure 2.6a, an

application can subscribe to sensor data around it. Also, an application

can subscribe to data from larger area,even if the networks are deployed in

remote place as shown in Figure 2.6b.

(a) (b)

Figure 2.6: over view of SensingCloud

The feature of SensingCloud enhances the ability of the sensor network

applications. The environmental monitoring applications can enlarge their

target area from a park or community to city or country. Also, this plat-

form enables an application to subscribe to feeds from sensors which are not

deployed for its purpose. For example, an earthquake monitoring applica-

tion can leverage acceleration sensors in computers whose initial purpose is

for HDD protection. Detailed earthquake intensity map can be created by

monitoring acceleration data from computers located in a city.

Context aware services can subscribe to sensor data anywhere they are.

This enables mobile device can execute context aware services utilizing not

only their embedded device but also variety of environmental information.

10
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Context aware services on mobile devices needs to utilize sensors embedded

to the device themselves, since they can not subscribe sensor feeds in strange

place. The same thing can be said to Life log applications.

2.5.1 Requirements for SensingCloud

Based on the overview of the ideal sensor network platform, we have orga-

nized 3 major requirements.

Transparent Connectivity to distributed sensor networks

Applications should not be aware of each individual sensor network dis-

tributed in the world. The application should only request for its necessary

data to SensingCloud, even if the necessary data comes from multiple sen-

sor networks which belongs to different domains. SensingCloud requires

abstracting these cross domain sensor networks and provide applications

transparent access.

Meta-Level Accessibility to arbitrary data

Applications should access to data from arbitrary nodes in the SensingCloud.

However, applications usually do not know the existence of circumjacent sen-

sors. Applications can not specify sensor or sensor network to access with

identifier such as sensor’s unique id, IP address or MAC address. Sensor-

Cloud should search for the target sensor or sensor network from queries

from application which contains meta-level information such as Location

and sensor type.

On the other hand, reply of the SensingCloud should be Meta-Level too.

Applications want to know the semantics of the sensor data, not only sensor

data itself. SensingCloud should answer not only concrete data but also

data with meta-level.
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Automatic Scalability for growing number of sensors

The number of networked sensors is dramatically increasing and it is as-

sumed to be for the future. SensingCloud needs to be scalable to manage

the increasing number of sensors and their data streams all over the world.

In addition, from a perspective of management cost, SensingCloud should

scale automatically as the number of sensors grows. It is hard for one au-

thoritative organization to scale up the system as SensingCloud gets bigger

and bigger.

2.5.2 Utilization Scenario

Following applications are utilization scenario of SensingCloud.

• Precise Heat Island Effect Monitoring

Using SensingCloud, monitoring applications can acquire temperature

data from sensors distributed in the city. By mapping the data to the

city map, the effect of heat island and anti-action can be visualized.

• Precise Rain Map

By subscribing humidity information from SensingCloud, real-time

and high resolution rain map can be created. By extrapolating the

future area of the rain, the application can provide information that

the remaining time until rain starts.

• Real-Space Computer Game

Computer games that take into account real-world information can be

developed. Currently world in games are totally separated from real

world. SensingCloud enables to connect those separate two worlds.

For example, there can be an item that players can only get in places

under -5C.
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2.6 Summary

In this chapter, we have described the basic concept of sensor network and

introduced traditional sensor network and applications running on it. Cur-

rently when an application developer implements a sensor network applica-

tion, he/she has to deploy a new sensor network only for the application.

What makes the situation worse, each sensor network is closed to the others.

This situation indicates that sensor network has not yet became a common

infrastructure. This restricts service area of the applications and diminishes

development efficiency. To defeat this situation, we figured out an ideal sen-

sor network platform what we named SensingCloud. SensingCloud should

1) abstract cross domain sensor networks, 2) provide worldwide accessibility

to sensor data from sensor networks which belong to different domains, 3)

provide basic controllability for incoming data flow that can be enormous

and 4) respond quickly to data request. In the next paragraph, we will

introduce our approach to create SensingCloud.
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Chapter 3

Related Works

3.1 Introduction

In this chapter, we introduce existing novel researches that share the goal

with us. The researches aims to create an architecture that connects dis-

tributed sensor networks in the world and make them accessible to other

applications and users. In reading the papers of the work, we have or-

ganized their approaches into 3 categories: “High Performance Computer

(HPC) Based Architecture,” “Cloud Based Architecture,” and “Grid Based

Architecture.” In this chapter, we will acquire hints to design our system

by examining that approaches of existing researches can solve our initial

requirements of our system.

(a) (b) (c)

HPC

Client Client

HPC

Cloud

Client

Figure 3.1: a) HPC Based, b) Cloud Based, c) Grid Based Architecture
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3.2 HPC Based Architecture

High Performance Computer (HPC) Based Architecture is traditional way

to integrate a large-scale system. Figure 3.1a shows HPC based architecture.

Placing a HPC in the middle and concentrate data and computation into

the machine, the other components of the system are not required to have

a large computational power.

3.2.1 SensorWeb

Liqian et al. has proposed SensorWeb [13, 14], which is an open and scalable

infrastructure for sharing and geocentric exploration of sensor data. Their

initial motivation is to create a SensorMap that enables spatio-temporal

sensor data exploration. The software image of SensorMap is shown in

Figure 3.2. When a user specifies the area of interest by drawing a polygon or

input the name of the city, SensorMap automatically aggregates sensor feeds

within the area at an appropriate granularity based on the zoom level as

shown in Figure 3.3. The SensorWeb project is to create a back-end system

to enable large scale sensor sharing and exploration for SensorMap. In the

research, they have addressed two research challenges, namely heterogeneity

and Scalability.

Figure 3.2: Screendump of SensorMap Figure 3.3: 3D data distribution

As for heterogeneity issue, unlike monoclinic sensor network, a large-

scale data stream sharing system has a variety of sensors, data types, and
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3.2. HPC BASED ARCHITECTURE

application needs. They have named 3 heterogeneities existed among the

system, which are sensor heterogeneity, data heterogeneity and application

heterogeneity. They need to be abstracted user from applications.

Scalability issue is important for SensorMap interface. Since SensorMap

is highly interactive application, the SensorWeb needs to respond to the re-

quest in real-time although the application needs a large computational cost.

Special visualizations based on contour map is the good example. It requires

interpolation of unobserved sensors data and it needs large computational

cost. In addition, they can not be pre-calculated.

They have proposed system architecture for heterogeneity issue and scal-

able algorithm to attack the scalability challenge. Here, we focus on the

system architecture and introduce the approach. The architecture is shown

in Figure 3.4. Their components are “Sensor Gateway”, “Coordinator” and

“Transformer”. Sensor Gateway interfaces sensors to SensorWeb. It for-

wards sensor data stream to Coordinator, which is like DNS for SensorWeb.

Coordinator transmits the stream into Transformer, which converts data

semantics, for example unit translation, data fusion. At last, transformed

values are provided to user applications from transformers.

As for SenseWeb, the research project has the same goal with ours, but

research challenges are slightly different. Especially for scalability issue,

while we addressed that automatic scalability is required for this architec-

ture, they do not mention “automatic”. Their architecture is scalable, how-

ever, someone in the middle need to reinforce the hardware to scale up the

system. Ensuring scalability with algorithmic approach is appropriate for

SenseWeb since it has a concrete utilization example such as SenseMap.

On the other hand, in SensingCloud, the algorithm should be flexibly re-

placable therefore, the approach is not appropriate for our assumption. It

is necessary for us to consider the approach to ensure the scalability with

architecture. The same thing about automatic scalability as SenseWeb can

be said to Sensor Andrew. Although the architecture supports extensibility,

it does not scale automatically when the system grows. Someone needs to

16



3.2. HPC BASED ARCHITECTURE

Figure 3.4: Architecture of the SenseWeb system

upgrade the server layer. Therefore, even though it is extensible, the archi-

tecture rely on high performance computer is not appropriate to achive our

ideal scalabile architecture.

3.2.2 Sensor Andrew

Sensor Andrew [15, 16] is a framework which enables large-scale campus wide

sensing and actuation. The goal of this project is to develop a framework to

support large-scale monitoring, operation and control of infrastructure with

extensible, easy to use, and secure manners. Different from the other related

work, this project supports controlling actuators, not only publish/subscribe

to sensor feeds. The architecture of Sensor Andrew is shown in Figure 3.5.

There are 3 layers in the architecture, namely “Transducer Layer”, “Gateway

Layer”, and “Server Layer”. Transducer layer includes sensors and actuators

with little or no computational resource. Gateway layer includes medium to

desktop class computers that have the Internet connectivity. They bridges

data from transducers via variety of bass or communication protocols to

campus network. Then server layer contains high-performance systems with
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extensive storage capabilities. They are responsible for administration of

entire system such as control, data aggregation and storage. This layer

also have a component named “Agents”, which can analyze sensor data and

provide high-level service or meta-sensors which provides abstract events.

Figure 3.5: The Sensor Andrew architecture

The feature of this project is that Sensor Andrew leverages eXtensible

Messaging and Presence Protocol (XMPP) [17] as a communication proto-

col. According to the paper, they adopted XMPP since not only that it is

already the internet standard, but also it provides 1) security feature, 2)

both point-to-point and broadcast capabilities, 3) public-subscribe to func-

tionality, 4) organized event messages with an internal database for storing

transaction records and 5) clustering or replication to meet scale demands

as well as provide backup fault tolerance. Each functionality meets the Sen-

sor Andrew’s communication requirement, which are 1) standard messaging

format, 2) extensible message types, 3) point-to-point and multicast mes-

saging, 4) support for data tracking and/or event logging and 5) security,

privacy, access control.
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3.3 Cloud Based Architecture

Although Cloud Based Architecture as shown in Figure 3.1b has a high per-

formance component in the middle like HPC based architecture, the com-

ponent consists of many computers. The component is called “cloud”. The

scalability is high since the cloud is usually easily extensible. For the same

reason as HPC approach, cloud based architecture seems to be appropriate

for a sensor network integration.

3.3.1 Sensor-Cloud Integration

Hassan et al. has proposed an framework of sensor - cloud integration [18].

In this framework, distributed wireless sensor networks forwards data to

the cloud and cloud do the rest. Tasks such as data aggregation, data

monitoring, and even application is done in this cloud. As shown in Figure,

they leverages the concept of Software as a Service (SaaS), they includes

applications layer tasks in the cloud. The users only get the result of the

process of SaaS. The Figure 3.6 shows a framework for a cloud provider.

Figure 3.6: A framework of Sensor-Cloud Integration
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However, they point out the scalability problem when huge sensor data

processing tasks are concentrated on the cloud. For the problem, they have

proposed the mechanism for collaboration between different cloud providers

named “VO (Virtual Organization) Based Dynamic Collaboration”. By this

cloud-cloud collaboration realizes the dynamic scalability. However, they

have addressed serious problem which is the cost and trust. This collabora-

tion is among companies and business related issue is a large challenge.

However we both use a term “cloud”, the two researches have a major dif-

ference, which is the architectural difference from the definition of the term

cloud. Our definition of cloud includes distributed local sensor networks.

On the other hand their definition of cloud does not include distributed lo-

cal sensor network. Also, we envision the cloud that grows spontaneously

by end-users’ participations without business related issues.

3.4 Grid Based Architecture

Grid Based Architecture Figure 3.1c is based on a concept that gathering

relatively small computational resources and generate a large computation

power [19]. This approach is opposite approach from the other two but also

suitable for the sensor network.

3.4.1 Global Sensor Network

Aberer et al. has proposed Global Sensor Network [20] which they describe

it as Sensor Internet. The work trying to interconnects heterogeneous cheap

and smart wireless sensor devices such as MICA Motes [21] or BTNodes [22].

They advocates the importance of interconnecting these sensors. In their

paper, they refer the success of the publication of documents on the World

Wide Web. By referring WWW’s logical abstractions (URL, hyperlinks, and

HTML) and basic communication protocols (HTTP), they have proposed 1)

simple and strong xml abstraction for sensor devices, 2) adaptive container

based system implementation which allows dynamic reconfiguration without
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stopping the system, 3) scalable peer-to-peer architecture to handle a very

large number of data and 4) light-weight implementation for easy deploy-

ment in standard computing environment. In the paper, they mainly focus

on simple and strong sensor abstraction that they named “Virtual Sensor”.

In our research, referring to their Virtual Sensor abstraction, we will also

focus on whole scalable architecture, including sensor discovery.

3.4.2 TomuDB

There are another instance from Grid Based Architecture. TomuDB [23]

is a project which aims to provide a platform that people can query sen-

sor data from wide area such as city or country with multiple-resolution.

When the system can not match the resolution that user has demanded, it

interpolate [24] the data to match the resolution. TomuDB’s is very similar

to SensorWeb but it has different architecture. The authors of TomuDB

points out that sensor feeds from all the distributed sensor network are sent

to a centric storage of SensorWeb and the approach tends to occur bottole-

neck. TomuDB proposed to use distributed approach, on the other hand

SensorWeb adopted centric approach.

The TomuDB’s system architecture is shown in Figure 3.7. In the very

front, “Web API Server” converts human readable query to XML format

and send the query to “DBSN Requester”. DBSN Requester converts XML

query into SQL query and forwards to an Overlay Network consists of

“DBSN Peer”. DBSN Peer is responsible for 1) collecting data from sensor

nodes and 2) answering SQL queries.

This system fulfills our system requirements in a architectural point of

view. However, we consider that requiring database system to the peers

which are managed by sensor network owners are to heavy assumption. In

addition, we think that data storage is the responsibility of software in the

application layer. The sensor network should support bridging data stream.
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SQL Query

SQL Response

Sensing Data

Overlay NetworkDBSN Peer

DBSN Peer DBSN Peer

DBSN Peer

DBSN Peer

Sensornet A
Sensornet B

Sensornet D

Sensornet C

DBSN Peer

Web API Response

Web API Query Users

XML Query XML Response

DBSN Requester

Web API Server

Figure 3.7: The TomuDB architecture

3.4.3 IrisNet

Phillip et al. has proposed IrisNet [25]. The project envisions a worldwide

sensor web, in which user can query sensors distributed in the world. In their

research, they proposed architecture to enable a planet-wide data collection

with easy, secure, robust, and real-time manner. The architecture is shown

in Figure 3.8.

Figure 3.8: The IrisNet architecture

The system composed of 2 components, which are “Sensing Agent” (SA)

and “Organize Agent” (OA). SA is a nodes with genetic data acquisition

interface. SA processes and forwards data from the sensors connected to the
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node to OA. The processes of SA is described in a code named “senselet”.

On the other hand, OA is the node with a part of distributed database

system which stores service-specific data from SAs. OAs are hieratically

organized as shown in Figure. This hierarchy enables efficient processing of

geographically scoped queries.

Figure 3.9: The IrisNet OA Hierachy

3.4.4 Sensor Grid

Sensor Grid is a project that aims to share sensor data just the same as

the other research projects. The project leverages the technique of grid

computing to enable efficiently process, analyze and store the vast amount

of sensor data using the computational resource and data storage in the grid.

Also, the grid computing technique enables different users and applications

to share the sensors in flexible usage scenarios. The grid provides seamless

access to the sensors distributed world-wide anywhere and anytime. As

the computational resources in the sensors getting larger, this sensor grid

scenario gets more realistic.

Their proposing method is to share the sensor data with existing grid

computing technologies such as OGSA [26]. OGSA is a specification that

enables grid service in web services using technologies such as XML, WSDL
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and SOAP. This framework supports standard interfaces for dynamic ser-

vice creation, destruction and finding. Using OGSA, the vision of sensor

grid described above is realized without developping whole new system ar-

chitecture.

Figure 3.10: The SPRING framework

In order to build such sensor grid, they have proposed Scalable Proxy-

based Architecture for Sensor Grids (SPRING). Existing grid services are

too complex to be implemented in Sensor nodes that are commonly utilized

among sensor network developers. Therefore, they put “Sensor Proxy”,

which acts as an interface between wireless sensor network and the grid. The

proxy not only exposes the sensor resources as a grid services, it bridges the

data from local wireless sensor network protocol to the Internet Protocol

and provides an ability to join/leave autonomously from the grid, and other

necessary services such as power management, scheduling, security, and QoS

management. The framework architecture is shown in Figure 3.10. The

sensor resources are accessible in a similar manner as other compute or data

resources.
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3.5 Summary

In this section, we have introduced the project and researches which shares

the project goal with us. We organized these researches into 3 categories

by its architecture, which are “High-Performance Computer Based Archi-

tecture”, “Could Based Architecture” and “Grid Based Architecture”. For

each category and its instance, we discussed whether they fulfill our sys-

tem requirements. As a result, we have found that SensingCloud should be

accessed as easy as we do to the cloud, and inside of the cloud should be

grid architecture whose components are belongs to different organizations

or individuals. In the next chapter, we will introduce the detailed system

architecture of SensingCloud.
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Chapter 4

SensingCloud

4.1 Introduction

In this chapter, we will propose SensingCloud. We will describe 3 design

principles of SensingCloud that fulfills the requirements of ideal sensor net-

work as we discussed in Chapter 2. Then, after introducing hardware and

software architecture, we will introduce and explain the designs of Sensing-

Cloud components which are “Distributed Process Client”, “Index Server”

and “User Application”.

4.2 System Overview

SensingCloud enables applications to receive data from arbitrary member-

ship nodes. Major component of SensingCloud are “Distributed Process

Client” and “Index Server”. Distributed Process Client is a GUI based

sensor network management tool. Although the front end of this client is

GUI based network manager, it bridges the data stream from local sensor

network to IP network. Moerover, they dynamically turns to be a server

which integrates data stream from other clients and provide sensor feeds to

the applications. Distributed Process Clients is a part of distributed com-

putational resource in SensingCloud. Index Server resolves IP addresses of

relevant Distributed Process Clients from meta-level request from applica-
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tions and sends control commands to them. Sensor networks distributed in

the world function as a large scalable sensor network when administrators

of these sensor network utilize Distributed Process Client.

Sensor Network

Applica�on

Client

Sensing Cloud
Request Response

Sensor

Figure 4.1: System Overview of SensingCloud

4.3 Design Principle

There are 3 design principles: “Transpaerent Cross Domain Communica-

tion,” “IP Bridged Communication” and “Abstraction of Sensor Data.”

4.3.1 Transpaerent Cross Domain Communication

There are two heterogeneity problems in sensor network which are network

heterogeneity and device heterogeneity. For the system to behave as if it is

single sensor network, we enables transparent cross domain communication

with 2 approaches, which are IP Bridged Communication and Abstraction

of Sensor Data.
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IP-Bridged Communication

There are various network protocols for sensor network such as Zigbee or

Bluetooth. It is impossible for sensor networks with different protocols to

communicate each other. To link up these sensor networks that adopts

different communication protocol, we have IP network stand in the middle

of heterogeneous sensor network. By connecting a computer with a sink

node for its sensor network, all data coming from the sensor network is

IP reachable. Usually sink nodes for sensor networks are connected to a

computer for applications to use the data collected from sensor network.

We have chosen IP as a bridge assuming that the computers are connected

to the Internet.

Abstraction of Sensor Data

The other heterogeneity is various sensor feeds. SensingCloud includes var-

ious feed types such as temperature, humidity, acceleration and so on. In

addition, each has several types in unit. For instance, temperature infor-

mation can be described not only in Celsius but also in Fahrenheit. Sensor

feed should be abstracted in order to be able to locate target information or

to aggregate target data described in different units.

XML 4.3.1 shows sensor feed abstraction. Sensor and Feeds are two ma-

jor elements in this XML. “sensor” element shows the sensor device informa-

tion such as id and location. “feeds” element contains more than one “feed”

elements since one sensor device can have multiple sensing elements on its

board. “feed” element contains “type” and “value” element. “type” spec-

ifies a data type such as, temperature, humidity and acceleration. “value”

represents the sensing data in a measurement that specifies in its property.
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4.3.1Sensor Feed XML¶ ³
<sensorFeed>

<sensor>

<id>abc12345</id>

<location>

<latitude>35.38827</latitude>

<longitude>139.427326</longitude>

</location>

<sensor>

<feeds>

<feed>

<type>temperature</type>

<value unit="celsius">18</value>

</feed>

<feed>

<type>humidity</type>

<value unit="percent">30</value>

</feed>

<feeds>

</sensorFeed>

µ ´
4.3.2 Meta-Level Request Processing

Location Based Sensor Discovery

Applications can request SensingCloud for sensor feeds by specifying target

location and data type. This enables applications to acquire target feeds

not knowing the identifier of the target sensors. In the index server, sensors

are described with id, data type, sensor network it belongs to and location

information. Therefore, the index server can resolve the sensors and sensor

network to collect feeds. Sensor network administrators put those necessary

information when they register the sensor through sensor network manage-

ment tool in Distributed Process Client. Sensors with mobility such as cars

and cell-phones need to update location information up to date periodically

assuming that they have GPS and IP connectivity.
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Characteristic Value Processing

“Characteristic Value Processing” translates raw data into meta-level infor-

mation. Providing only raw data without any processing has a problem that

applications can not expect how much data will be transformed. Applica-

tions will not be atble to extimate processing time, especially devices with

less calculation resource.

Figure 4.2 shows a detailed architecture of data processing layer. Defin-

ing that the lowest-level expression of sensor data is raw data, the most

meta-level expression is what we call context such as situation, behavior or

mood. Expression stands between the two is characteristic value of sensor

data, such as max/min, average, variance of a certain area. The discus-

sion here is that what extent of the processing layer should be included in

SensingCloud.

The bottom layer is named raw data layer. This layer provides the data

without being processed. This layer transform unit of sensor data, such as

meter to centi meter. The layer in the middle is named characteristic data

layer. This layer executes basic numerical operation such as average and

variance using raw data. The output data of this layer is still in numerical

form. Then, context layer transform characteristic values to more abstract

information.

L1: Sensor Network Layer

L2-1: Raw Data Processing Layer

L3: Applica!on Layer

L2-2: Feature Value Processing Layer

L2-3: Context Processing Layer

L1: Sensor Network Layer

L2: Data Processing Layer

L3: Applica!on Layer

Figure 4.2: architecture of sensor data processing

The lightest design of sensor network platform only includes raw data
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layer. Applications are responsible for the characteristic calculation and

context inference with this sensor network. Applications receives raw data

from sensor network, therefore the query would be “Temperature in Tokyo

in C” or “Humidity in Amazon in %”. This design has a problem that

applications can not expect how much data will be transformed. Applica-

tions can not infer processing time, especially devices with less calculation

resource. As written above, this design is not practical.

On the other hand, a sensor network that includes raw data layer and

characteristic value layer seems to be reasonable. The applications can re-

strict the number of incoming sensor data since the network is responsible

for those numerical procedure. In this way, sensor network application can

expect the execution cost before receiving data from the network. Query will

be “Average noise level in Los Angels in Db” or “Highest Temperature in

Galapagos in C with 1km2 resolution”. Also, this design is reasonable from

the aspect of implementation matter, since the number of basic numerical

operation is limited.

The richest design of sensor platform includes all three layers. Although

this design includes everything, it is impractical. Query of applications to

such sensor network would be “A situation of this room” or “Today’s weather

of New York City”. In this way, application developers seem to be able to

create sensor network applications very easily and application itself becomes

compact. But answer to such query will be too abstract that there can be

possibly an infinite numbers of answers and impossible for applications to

handle. Therefore this design is impractical.

As a result, sensor network platform should be responsible for tasks in

first and second layer that are transformation data units and execution of

basic numerical operation as shwon in Figure 4.3. Based on these discus-

sions, next section proposes ideal sensor network platform.
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L3: Applica�on Layer

L1: Sensor Network Layer

L2-1: Raw Data Layer

L2-2: Characteris�c Data Layer

L2-3: Context Data Layer

Common Sensor Network Pla!orm

Applica�onMiddleware

Figure 4.3: architecture image for common sensor network platform

Query Design

The XML format of data request from Application to SensingCloud is de-

scribed in XML 4.3.2. The element named “geography” is to define inter-

ested geographical area. “feedCondition” element represents filtering condi-

tion for feed forwarding in FeedProcess. “feedAggregation” element defines

how to aggregate the feeds filtered with the condition described in condition

element. “name” parameters for both feedCondition and feedAggregation

are corresponding each other. In this XML example, feedAggregation named

“temp” is applied to feeds which matches to feedCondition named “temp”.

Not defining a feedAggregation element for a feedCondition means applica-

tion wants data without any operation.
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4.3.2Feed Request XML¶ ³
<request>

<client>

<ip>133.27.170.224</ip>

<port>23456</port>

</client>

<geography>

<area type="radius">

<value type="km">5<value>

</area>

<longitude>139</longitude>

<latitude>36</latitude>

</geography>

<feedConditions>

<feedCondition name="temp">

<type unit="celcius">temperature</type>

<condition type=">=">30</condition>

</feedCondition>

<feedCondition name="noise">

<type unit="decibel">sound</type>

<condition type="*"></condition>

</feedCondition>

</feedConditions>

<feedAggregations>

<feedAggregation name="temp">

<interval>1500</interval>

<operation>ave</operation>

</feedAggregation>

</feedAggregations>

</request>µ ´
Table 4.1 is a list of conditions and operations which SensingCloud sup-

ports currently.

4.3.3 Distributed Data Aggregation

SensingCloud has to be designed with scalability since it manages a great

number of sensor networks in the world. SensingCloud leverages distributed
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Table 4.1: Operation Set for Data Aggregation

Type Symbols Description

Condition <, <=, ==, >=, >, * Filter unmatched values

Operation sum, ave, var, max, min, idw Calculate values in a period

computing to make the system scalable. We will present the merit and

demerit of both centralized and distributed computing and introduce the

reasons why we adopted distributed manner. Then, we will propose the

scaling mechanisms for SensingCloud.

Centralized and Distributed

There are two possible models for SensingCloud. One is “Centralized Com-

puting Model” and the other one is “Distributed Computing Model”. In

centralized computing model, all the tasks are executed in a single strong

calculation resource which can be a single server or a cluster of servers,

as shown in Figure 4.4. On the other hand, tasks are divided into pieces

and each is executed on relatively small calculation resources in distributed

computing model as shown in Figure 4.5. Table is a comparative chart for

characteristics of both centralized and distributed computing model.

server

client

Figure 4.4: Centralized Model

client

client

client

Figure 4.5: Distributed Model

The reason for SensingCloud to leverage Distributed P2P model is that
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the model can distribute the computation and network transaction. If de-

signing this system with centralized server client model, all the data must

transmit to a remote central server and processed on the server. On the

other hand, the system designed with distributed P2P model can complete

the process with utilizing adjacent computational resource. The system does

not have to transmit the data to the remote server and the computation do

not concentrate on a single spot. In addition, the system scales automati-

cally in propotion to the size of the system, by participatory sensor network

being a part of computational resource. If the system is designed with cen-

tralized server client model, the administrator has to add computational

resource to the central server as the system gets bigger. Also, distributed

P2P model distributes data without concentrating information to a specific

organization. This feature avoids some organization to take advantage or to

control information. Table 4.2 shows summary of the comparison between

the two design methods. For SensingCloud to be scalable, we have adopted

distributed P2P computing model.

Table 4.2: comparison of centralized and distributed computing

Centralized Server Client Distributed P2P

Transaction all to a remote server to adjacent resource

Computation all on a single server on participatory resources

Scalability scales manually scales automatically

Pure P2P and Hybrid P2P

There are two types of P2P designs: “Pure P2P” and “Hybrid P2P”. Pure

P2P model shown in Figure 4.6 is completely server less architecture. In this

architecture, peers exchange their information and enables node searching

autonomously. However, this design enhances the systems scalability and ro-

bustness, network load increases. Moreover, this design does not guarantee

finding target node and respond time varies too. On the other hand, Hybrid
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peer

Figure 4.6: Pure P2P Model

peer

index

Figure 4.7: Hybrid P2P Model

P2P model shown in Figure 4.7 has an index server which contains informa-

tion of peers. In this model, firstly a client asks the locations of peers which

have target contents, and then start to communicate peer to peer. Although

this architecture decreases the system scalability and robustness, they can

find target node without failure with stable respond time. Table 4.3 shows

the summary for the design comparison. For the reliability of node discovery

and respond time, we have adopted Hybrid P2P design.

Table 4.3: comparison of Pure P2P and Hybrid P2P

Pure P2P Hybrid P2P

Robustness ◦ ×

Scalability ◦ ×

Responsiveness × ◦

Reliability (Discovery) × ◦

SensingCloud Scaling Mechanism

Based on Distributed P2P Model with hybrid P2P architecture, we have

designed SensingCloud’s auto scaling mechanism. Figure 4.8 shows the pro-

cedure of SensingCloud Scaling Mechanism.

When the user application request for sensor feeds, 1) it accesses to

index server to resolve which sensor network provides the target feeds. 2)
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The index server resolves the IP addresses of the clients connected to the

target sensor networks in a specified area, and nominates a master node

from the nodes geologically close to target clients. 3) The index server sends

“Aggregation Request”, which includes contents of query, IP address of the

source sensor networks and IP address of destination, which is the IP address

of the application that has requested the feeds. 4) Then, the master node

sends “Feed Request” to the clients connected to target sensor networks.

Feed request contains IP address of master client, types and conditions of

the feeds to be forwarded to master client. After this procedure, 5) the

clients forward the feeds from their sensor networks to master client. 6) The

master client aggregate the feeds and send to the user application.

IP (1)

(2)

(3)

(3)

(4)

(4)

(5)

Index Server

Master Node

Slave Node

Slave Node

Applica!on

Command

Feed

Figure 4.8: Procesures of SensingCloud Scaling Mechanism

As for the master client, the client which located at the closest to the

centroid coordinates of the slave clients since data transaction can be com-

pleted in smaller area. We have chosen centroid coordinates as a barometer

of the closeness, since the location of slave clients can vary as shown in

Figure 4.9.
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Centroid Coordinates
Slave Client
Master Client

Figure 4.9: Location of Slave Client and Master Client

SensingCloud Scaling Mechanism has two types of scaling, namely “hor-

izontal scaling” and “vertical scaling” as shown in Figure 4.10,4.11. In the

figure, each circle represents clients, and the square at the bottom represents

user application. Two different mechanism will be described below.

• Horizontal Scaling

Horizontal scaling is for assigning the client in charge of the aggrega-

tion task for each request. This is what we have introduced above.

The idea is shown in Figure 4.10.

• Versical Scaling

Vertical scaling is for task distribution in one request when the data

to process is too large for a single master client to aggregate. The idea

is shown in Figure 4.11. This has a hierarchical structure. A master

client is also a slave client of another master client in higher level.

This ensures the responsiveness of aggregation task even if a number

of target feeds increases.
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Figure 4.10: Horizontal Scaling Figure 4.11: Vertical Scaling

Spontaneous Participation in SensingCloud

Sensor networks are usually deployed for a specific reason. SensingCloud

integrates those sensor networks and make them a single open platform. To

make SensingCloud large enough to provide global awareness, it has to be

easy for administrators to participate in the system. For those reason, we

have developed sensor network management software as a front end of dis-

tributed process client. This helps sensor network administrators to manage

their local sensor network and at the same time, enables the sensor network

to be connected to SensingCloud.

4.4 System Architecture

4.4.1 Hardware Architecture

The hardware architecture of SensingCloud is shown in Figure 4.12. Index

Server is running on a server computer that has high computational resource.

Distributed Process Clients are running on participants’ PC. The PCs are

connected to a sink node which collects sensor feeds from its sensor network.

Sensor networks which participating in SensorCloud have variety of sensor

network communication protocols. One may have zigbee, and one may have

bluetooth. Data from those heterogeneous sensor networks is bridged to IP

network through Distributed Process Clients. We assume mobile sensors

which do not belong to sensor network, for example sensor on a cars or cell
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phones, are IP reachable.

The 

Internet

Zigbee

Bluetooth

2.4GHz

Index Server

High Spec. Computer

Distributed Process Client

User PC
Sensor

Applica!on Terminal

PC or Mobile 

SinkNode

Mobile Sensor

Figure 4.12: Hardware Structure of SensorCloud

4.4.2 Software Architecture

Figure 4.13 shows software architecture for SensingCloud. In the Index

Server, Data Resolver Server and Sensor Database is running. In client

nodes, Distributed Process Client and Sensor Proxy are running. Sensor

Proxy is the process that is directly receives feeds via Sink Node from sensor

network. Users must implement Sensor Proxy unless they use well known

sensors since it is hard for Distributed Process Client to understand the

raw packet from sensors. Sensor Proxy parses raw packet from sensors and

formats the sensor feed according to sensor abstraction xml introduced in

XML 4.3.1. The xml is sent via IP network to Distributed Process Client.

Feeds between Distributed Process Client are utilizing UDP. On the other

hand, commands and replies such as Aggregation Request, Feed Request,

and Reply/Request to User Applications are utilizing TCP.

The Figure 4.14 shows software structure for back-end process of Dis-

tributed Task Processer. The software is composed of 2 major components

which are “Aggregation Manager” and “Feed Manager”. Firstly, Aggrega-
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Applica�on

Slave

  DPC
  Master DPC   Slave DPC

Data Resolve Server
Sensor

DB

Sensor Proxy Sensor Proxy Sensor Proxy

Request

Feed Request

Feed

Feed

Feed

Aggrega�on

Request

Reply

sensors sensors sensors

Figure 4.13: Software Architecture of SensorCloud

tion Manager is a component that runs when the Distributed Task Processer

is assigned to be a master task processor. When Aggregation Manager re-

ceives the request, it creates a new thread instance of “Aggregation Pro-

cesser”. This thread 1) sends “Feed Request” to Feed Manager of relevant

Distributed Task Processer, 2) receives the feeds from them and 3) aggre-

gate and reply the result to a user application. On the other hand, Feed

Manager is the component which runs when the distributed task processor

is assigned to be a slave one. When Feed Manager receives Feed Request

from Aggregation Process, it creates a new thread instance of “Feed Pro-

cess”. This process is connected to a local sensor network and forwards the

incoming feeds which matches to the application’s interest described in the

Feed Request. By distributing this software to sensor networks in the world,

they will collaborate each other and create SensingCloud.
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Figure 4.14: Distributed Task Processer

4.5 Summary

In this chapter, we proposed and described design approaches to satisfy the

requirements of SensingCloud. The approach includes “Transparent Cross

Domain Communication”, “Meta-Level Request Processing” and “Distributed

Data Aggregation”.

As for Transparent Cross Domain Communication, we focused on 2 het-

erogeneity problem, which are “Network Heterogeneity” and “Device Het-

erogeneity”. We proposed that IP should bridge the distributed sensor net-

work all over the world to solve network heterogeneity. Also, we have defined

sensor device abstraction as a solution of device heterogeneity.

In Meta-Level Request Processing, we proposed “Location Based Sensor

Discovery”, “Characteristic Value Processing” and “Query Design”.

We designed index sensor resolver server that resolves application’s meta

request with geographical location, and sensor type in Location Based Sen-

sor Discovery section. We have discussed the abstraction level of data that

SensingCloud should provide to application in Characteristic Value Process-

ing layer. Then, we have designed query to satisfy the approach.

In proposal of Distributed Data Aggregation, we have discussed the de-

sign of the module, and decided to leverage Hybrid P2P technology and
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distributed computation model. Also, we realize spontaneous participation

for this open and global sensor network by distributing client software for

SensingCloud with sensor network administration software. At the end of

this chapter, we have introduced both hardware and software architecture

for SensingCloud. In the next chapter, we will introduce details of software

implementation of SensingCloud.
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Chapter 5

Implementation

5.1 Introduction

In this section, we will describe how implemented SensingCloud. We have

implemented the system components with Java. Since world’s sensor net-

work administrators will use client software of SensingCloud, Java is an

appropriate for its feature of platform independency. First, we will intro-

duce the implementation of common models for SensingCloud. Then, we

will explain the software implementation of Distributed Process Clinet and

Index Server.

5.2 Data Models

In this section, we will introduce the major and common models for the

system, namely “Sensor”, “SensorFeed” and “SensorData”. They are the

data models that are commonly used in all components. The class diagrams

for each class are shown in Figure 5.1. They all extends super class which

represents the abstract form of each class.

5.2.1 Sensor

“Sensor” class represents a sensor as the name of the class says. Currently

we have only focused on sensors which provides numerical data. Sensor
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Figure 5.1: Class Diagrams for Common Models

class supports this type of sensor. However, in the future, we are consid-

ering that to support other type of data such as stream data. Therefore,

sensor class is a subclass of abstract class “Object”, and overrides serialize

method, since we have to change serialize description to support some other

type of data. Object has its id, and location information described as lat-

itude and longitude. Also, it contains access authority fields described as

isOwnerSubscribable, isGroupSubscribable and isOthersSubscribable. We

have designed this model after the UNIX file authorization model.

5.2.2 SensorFeed

“SensorFeed” class represents a set of data that an instance of Sensor class

produces. Therefore, if a sensor has thermometer and accelerometer, a sen-

sor feed contains temperature and acceleration data. For the same reason

that Sensor class is a subclass of Object class, SensorFeed class is a sub-

class of “Feed”. Feed has its sequential Id, and longitude and latitude as its

property. And it has a list of instances of Data.

5.2.3 SensorData

“SensorData” class is a model for data that consists a SensorFeed. Since

one sensor can have more than one sensing module, one SensorFeed can have

more than one instance of SensorData class. Again, with the same reason,
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SensorData has a super class named “Data”. Data has 3 fields namely,

value, type and unit. Type represents a type of data such as temperature,

and unit represents the scale of the value, which is Fahrenheit Celsius or

Fahrenheit.

5.3 Distributed Process Client

Figure 5.2 shows the screen dump of distributed process client’s front end.

Orange points on the map represent sensors. In sensor add mode, the dialog

will pop up when a user clicks on a map. The user has to type sensor id,

and the feed’s data type, and access property information. On the left pane,

the user can see sensor list which the distributed process client manages.

Figure 5.2: Screen Dump for Distributed Process Client

When sensor network administrator added a new sensor using the tool, it

registers the sensor information to Sensor Network Resolver running on the

Index Server. The registration for SensingCloud is done by this procedure.
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As long as this software is running with IP connectivity, the client is a part

of computational resource too.

5.3.1 Software Implementation

Figure 5.3 shows a part of class diagram for Distributed Process Client. This

diagram shows the main module of Distributed Process Client. Class named

“DistributedProcessClientManager” in the figure, manages all GUI, data ag-

gregation, and data forwarding. Classes for GUI components are not in the

Figure, since we do not explain GUI modules in this section. Distributed-

ProcessClientManager has 2 major class named “AggregationManager” and

“FeedManager”. AggregationManager has a list of “AggregationProcess”

whose instance is created when “AggregationRequest” is received. Also,

FeedManager has a list of “FeedProcess” whose instance is created when

“FeedRequest” is received. “FeedSubscriber” is a class for subscribing local

and remote sensor feeds via IP network. The events of FeedSubscriber are

observed by instances of AggregationProcess and FeedProcess. In following

section, we will describe details of each class.

Figure 5.3: Class Diagram for Distributed Process Client
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5.3.2 Aggregation Manager

Figure 5.4 shows a class diagram for AggregationManager. The class imple-

ments Runnable interface and run as a thread. In run() method, it waits

for AggregationRequest and creates AggregationProcess. Here, listen port

is statically assigned. AggregationRequest XML is shown in XML 5.3.2.

If the value of “type” element in “property” block is “greatMaster”, that

means the request is for the AggregationProcess which provides aggregated

sensor feed to the user application. If the element has value “master”, the

request is to be sent to AggregationProcess which sends its data to another

AggregationProcess for vertical process distribution. “Destination” block is

appeared only when the type represents “greatMaster” to let the Aggrega-

tionProcess to know the network address of the user application.

Figure 5.4: Class Diagram for AggregationManager
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5.3.2AggregationRequest XML¶ ³
<aggregationRequest>

<property>

<id>12</id>

<type>greatMaster</type>

</property>

<destination>

<ip>133.27.170.222</ip>

<port>37456</port>

</destination>

<clients>

<client type="slave">

<ip>133.27.170.224</ip>

<sensors>

<sensor>iota-temp</sensor>

<sensor>delta-temp</sensor>

</sensors>

</client>

<client>...</client>

</clients>

<feedConditions>

<feedCondition name="temp">

<type unit="celcius">temperature</type>

<condition type=">=">30</condition>

</feedCondition>

<feedCondition name="noise">

<type unit="decibel">sound</type>

<condition type="*"></condition>

</feedCondition>

</feedConditions>

<feedAggregations>

<feedAggregation name="temp">

<interval>1500</interval>

<operation>ave</operation>

</feedAggregation>

</feedAggregations>

</aggregationRequest>µ ´
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5.3.3 Aggregation Process

A class diagram of AggregationProcess is shown in Figure 5.5. This class

implements 3 interfaces, which are Runnable, FeedSubscriberListener and

FeedRequestReceiverListener. AggregationProcess is an abstract class that

is extended by “MasterAggregationProcess” and “NormalAggregationPro-

cess”. The difference between these two is whether it forwards the aggre-

gated sensor feed to user application which is described in the Aggregation-

Request or AggregationProcess from which received FeedForwardRequest.

MasterAggregationProcess is instantiate when type of aggregationRequest is

“greatMaster” and NormalAggregationProcess is instantiate when the type

is “master”.

In their run() method, first, it generate instance of FeedRequestReceiver

and start its thread. Then, it decides the number of listenport, and start

feed subscriber on the port. After that, it sends FeedForwardRequest for

other slave clients, and receives and aggregates sensor feeds from them and

send them to the destination. The destination can be user application or

the master client stands on upper hierarchy. The XML format for FeedFor-

wardRequest is shown in XML 5.3.3

Figure 5.5: Class Diagram for AggregationProcess
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5.3.3FeedForwardRequest XML¶ ³
<feedForwardRequest>

<property>

<id>12</id>

<type>start</type>

</property>

<sensors>

<sensor>iota-temp</sensor>

<sensor>delta-temp</sensor>

</sensors>

<feedConditions>

<feedCondition>

<type unit="celcious">temperature</type>

<condition type="+=">30</condition>

</feedCondition>

<feedCondition>

<type unit="decibel">sound</type>

<condition type="-=">200</condition>

</feedCondition>

</feedConditions>

</feedForwardRequest>µ ´
5.3.4 Feed Manager

FeedManager is just like AggregationManager. Figure shows a class dia-

gram for FeedManager. This class runs as a thread. In the thread loop, it

waits for FeedForwardRequest, and when it receives the request, it generates

FeedProcess. FeedManager has a FeedSubscriber which subscribe to sensor

feeds from local sensor network. When the subscriber receives the feed, it

notify the event to each instance of FeedProcess.

5.3.5 Feed Process

FeedProcess is the class which filters and forwards the feeds according to

FeedForwardRequest. Class diagram is shown in Figure 5.8. FeedProcess

implements FeedSubscriberListener. when local FeedSubscriber receives the
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Figure 5.6: Class Diagram for FeedManager

sensor feed, the event will be notified with the feed to FeedProcess. In the

call-back method of FeedProcess, it sends the feed to a master client.

Figure 5.7: Class Diagram for FeedProcess

5.3.6 Feed Subscriber

FeedSubscriber subscribes to data via UDP. The class diagram is shown in

Figure 5.8. The instance for this class can be 2 types. One is local feed

subscriber and the other is remote feed subscriber. Local feed subscriber is

for receiving feeds from sensor proxy. Remote feed subscriber is for feeds

from another slave clients. Feeds are based on sensor feed XML shown

in XML 4.3.1. As for feeds from local sensor proxy, they do not include

location information since it can be found by matching id in Distributed
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Process Client.

Figure 5.8: Class Diagram for FeedSubscriber

5.4 Sensor Index Server

“Sensor Index Server” manages the both geographic and network location

of sensors and Distributed Process Clients. We have desigend small index

server since in Sensing Cloud, the server’s task is the smaller the better. The

major components of the server are “Object Resolver”, “Object Updater”

and “Authorization Manager”. A class diagram for the system is shown

in Figure 5.9. Object Resolver resolves IP address of a target sensor net-

work from user’s meta-level request. Object Updater manages geographic

and network location of mobile sensors. Authorization Manager manages

login/out requests to SensingCloud from users.

5.4.1 Database Design

We have leverages PostGIS technology, which is a PostgreSQL database with

GIS related functions. This has geometry type in nature, and can process

GIS function in its query, such as getting distance between a point to a

point. The database has tables as shown in Table 5.1. The relationship

between tables is described in the Figure 5.10. To join SensingCloud, users
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Figure 5.9: Class Diagram for Sensor Index Server

have to register their account to the database. The account information will

be stored in “users” table. “network” table is separate from user table since

a user can have more than one sensor networks. “ip address” column repre-

sents the IP address of the Distributed Process Client. Every time the client

goes on-line, the IP address is updated. Information of the sensors is stored

in “objects” table. The uniqueness for a set of user name and network name

is guaranteed. “location” column represents sensor’s geographical location.

“Geometry” is a type which represents longitude and latitude in PostGIS

implementation.

Table 5.1: Table list for SensingCloud database

Name Description

users User account information

networks Perticipant sensor network information

objects Sensor and its location information

types Registered data types

units Registered data scale
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networks

user_name Text

network_name Text

ip_address Text

owner_permission Boolean

group_permission Boolean

others_permission Boolean

online boolean

users

id Integer

user_name Text

user_pass Text

objects

id Integer

object_id Text

user_name Text

network_name Text

type Text

owner_permission Boolean

group_permission Boolean

others_permission Boolean

loca on Geometry

Figure 5.10: Relationship between tables

5.4.2 Sensor Resolver

A class for Object Resolver is “ObjectResolverManager” and “ObjectRe-

solverProcess”. When ObjectResolverManager receives a “Feed Request”

which is a request from an user application, it creates an instance of Objec-

tResolverProcess and handle the request.

Basically, this process 1) finds the IP addresses of Distributed Process

Clients which contain the sensors with target type located in target area, 2)

choose a master client and slave clients out of them, and inform the master’s

IP address to the user application and 3) sends Aggregation Request for a

master client(s). Following query shown in Figure 5.11 is to retrieve clients

which contain target sensor nodes located within a target area for Sensing

Cloud database shown in Figure 5.10. By these 3 steps, the object resolver’s

task is completed. The rest of the tasks to make SensingCloud work is re-

sponsible for the Distributed Process Clients. The task and communication

steps after ObjectResolver is described in Figure 5.13. Sequence diagram
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for the communication is shwo in Figure 5.12.

SELECT object_id and network_name FROM objects 

WHERE ST_DWithin(ST_Transform(

   ST_GeomFromText('POINT(139 36)',4326),32653),

   ST_Transform(location,32653), 5000 ) 

AND (type= ‘temperature’ OR type = ‘sound’ );

Figure 5.11: PostGIS query for resolving network from meta condition

main recv manager proc manager proc manager proc

User App Index Server DPC (master) DPC (slave)

Subscribe Request

Feed

Aggregated Feed

Aggregated Feed

Aggregated Feed

start

start

start

start

event

event

event

Aggrega!on Request

Feed

Feed Forward

Request

Feed

IP Addrress of GreatMaster

request id 

Figure 5.12: Sequence diagram for task assignation

The static number ’4326’ represents id for geographical coordinate sys-

tem. ’4326’ is for WGS84, which is the most common geographical co-

ordinate system for GPS data. Another static number, ’32653’, is for

SRID(Spatial Referencing IDentifier). Then, the last static number, ’5000’,

represents radius for the target area. Therefore, the query retreive net-

work names which contains sensors with temperture and sound sensor within

5000m from the geographic coordinates(139,36).
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Figure 5.13: Tasks and communications after SensorResolver tasks

However, this server can execute little smarter task. It divides the re-

quested target area and chooses master clients for each area and slave clients

for each master client from Distributed Process Clients which contains tar-

get sensor nodes. The manager chooses one of the master clients to be a

great master client which aggregates feeds from the other master clients and

provides aggregated feeds to the user application. The IP address which is

notified to the user application is the IP address of this great master client.

5.4.3 Update Manager

Sensors such as speed sensor on vehicles or accelerometer on cell-phones are

changing its location time to time. The location information in database

needs to be updated as they move. As described above, we are assuming

that those mobile sensor nodes have the internet connectivity. Therefore,

the server has a module to update the location of sensors named “Location

Update Manager”. The module receives location update request directly

from the mobile sensors. The request XML is shown in XML 5.4.3.
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5.4.3Location Update Request XML¶ ³
<update>

<network>naoya’s mobile</network>

<location>

<longitude>139.33423</longitude>

<latitude>32.35234</latitude>

</location>

</update>µ ´
5.5 Summary

In this chapter, we have described detailed system implementation and com-

munication protocols of Distributed Process Client and Index Server. Dis-

tributed Process Client consists of “AggregationManager” and “FeedMan-

ager” which create an instance of “AggregationProcess” and “FeedProcess”

when they receive their requests. On the other hand, Index Server consists

of 3 components, namely “AuthorizationManager”, “ObjectResolver” and

“ObjectUpdateManager”. In the next chapter, we will evaluate performance

of SensingCloud based on this implementation.
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Chapter 6

Evaluation

6.1 Introduction

In this section, we have done an evaluation to verify that the architecture and

implementation of SensingCloud can perform better in performance than

different type of architecture, such as high performance computer based

architecture. First, we will explain detailed purpose, and environmental

settings of the evaluation. Then we will show the result and analyze the

result.

6.2 Purpose of Evaluation

In this research, we have adopted the architecture using P2P and distributed

computing technology for improving performance of sensing cloud. In this

section, we will evaluate the performance of current design and implementa-

tion of SensingCloud, To compare the performance and scalability of current

design and implementation, we have developed a software which performs

the same as SensingCloud with another architecture, which is centralized

server-client model based on high-performance computer. We named it

“SensingCenter”. By comparing the architecture of SensingCloud to that of

SensingCenter, we can not only verify the appropriateness of the architec-

ture, but also find strong and weak point of SensingCloud.
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6.2.1 Environment Settings

Hardware Settings

HTNET

CNS

IP

X

REMOTE

XX

Sensor

Network

DPC
User App

IndexServer

IndexDB

50ms

Near

Distant

Distant

0.3ms

50ms

Figure 6.1: Evaluation Environment Settings

Figure 6.1 shows hardware environment of this evaluation. We have vir-

tually emulated 3 different network environments, namely HTNET, CNS

and REMOTE. All three networks actually exist and we emulated the net-

work environments with RTT between these networks by using DummyNet.

HTNET and CNS are networks placed in Keio University, SFC. Therefore,

these two network are geographically located near by. Referring to results

of RTT from a node in actual HTNET to a node in actual CNS, which are

approximately 0.6 ms, we have set 0.3 ms delay between these two. On the

other hand, network named REMOTE is assumed to be located at remote

place. To communicate between the node placed in REMOTE network and

HTNET or CNS, we have set 50ms latency. We placed 3 Distributed Process

Clients in HTNET, 2 in CNS. Sensor Networks connected to these Nodes

are virtually emulated. Each sensor network has 100 sensor nodes and each

node is sending one temperature feed per 1 second. User application which
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queries sensor feeds is located in HTNET.

Hardware specification for each node is shown in Figure. Basically, Dis-

tributed Process Clients are low-mid price computers such as Mac mini,

MacBook air, or MacBook Pro. On the other hand, Index Server is high

performance machine, such as MacPro. Figure is the hardwares used for

this evaluation. 6.2

Figure 6.2: Evaluation Settings

Table 6.1: Specification of Hardware

Name CPU Memory OS Description

MacBook Air Core2Duo 1.86GHz 2GB MacOSX 10.5.8 DPC (HTNET)

MacBook Pro Core2Duo 2.4GHz 4GB MacOSX 10.5.8 DPC (HTNET)

MacBook Pro Core2Duo 2.33GHz 3GB MacOSX 10.6 DPC (HTNET)

Mac Mini PowerPC G4 1.42GHz 1GB MacOSX 10.5.8 DPC (CNS)

MacBook Pro Core2Duo 2.6GHz 4GB MacOSX 10.5.2 DPC (CNS)

MacPro Quad-Core Xeon 2x2.8GHz 4GB MacOSX 10.5.6 IndexServer

ThinkPad t43p Pentium M 2.13GHz 2GB Linux Ubuntu 9 Database

MacBook Pro Core2Duo 2.93GHz 8GB MacOSX 10.5.8 User App

Software Settings

We run SensingCloud on this hardware environment. SensingCenter, the

competitor software which is designed with centralized server-client archi-

tecture, is also runs on this architecture. In SensingCenter, Distributed

Process Clients do not take aggregation process; only forwards sensor feeds
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of their underlying sensor network. Index Server runs all aggregation process

instead. SensingCenter has “CentralManager” and “CentralProcess”. Cen-

tralManager receives FeedSubscribeRequest and create CentralProcess. The

instance of CentralProcess, which runs as a thread, 1) receives FeedRequest

from the user application, 2) resolves target Distributed Process Client to

collect data from, 3) sends FeedForwardRequest to them 4) aggregates feed

and 5) sends the aggregated feeds to the user application. The sequence

diagram is shown in Figure 6.3.

main recv manager proc manager proc manager proc

User App Index Server DPC (master) DPC (slave)

Subscribe Request

Feed

Aggregated Feed

Aggregated Feed

Aggregated Feed

startstart

start

start

event

event

event

Feed Request

Feed

Feed

IP Addrress of GreatMaster

request id 

Figure 6.3: Sequence Diagram for SensingCenter

6.2.2 Procedure

The evaluation procedure is as follows.

1. Sends a subscribe request to SensingCloud/SensingCenter.

2. Receive the first sensor feed.

3. Time the interval between step.1 and step.2.
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4. Repeat the step.1 to step.3 until it gets 100 times.

The subscribe request we used is shown in XML 6.2.2. According to the

request, the first sensor feed will be arrived at the user client in 1000 mil-

liseconds + latency. Therefore, the latency of SensingCloud/SensingCenter

can be calculated by (Interval between 1 and 2) - 1000. We do the steps

described above for 5 times and average the time consumption.

6.2.2Feed Request XML¶ ³
<request>

<client>

<ip>133.27.170.224</ip>

<port>23456</port>

</client>

<geography>

<area type="radius">

<value type="m">1000<value>

</area>

<longitude>139.427326</longitude>

<latitude>35.38827</latitude>

</geography>

<feedConditions>

<feedCondition name="temp">

<type unit="celcius">temperature</type>

<condition type="*">0</condition>

</feedCondition>

</feedConditions>

<feedAggregations>

<feedAggregation name="temp">

<interval>1000</interval>

<operation>IDW</operation>

<args>139.427324,35.38829:139.427324,35.38823:....</args>

</feedAggregation>

</feedAggregations>

</request>µ ´
The requested operation is IDE, which is an established interpolation

method utilized for geocentric sensing. IDE interpolates the value of an
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arbitrary points based on the observed value around the points utilizing

each distance to a point as a calculation weight. This request can burden

the server because this operation requires much iteration. This xml requests

for the system to interpolate arbitrary 20 points with IDE algorithm.

6.3 Performance Evaluation

To verify the appropriateness of the distributed architecture in performance,

we have executed the procedure for both SensingCloud and SensingCenter.

After measuring each performance, we plotted the average performance for

each trial on Figure 6.4.
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Figure 6.4: Result on Performance Evaluation

Blue diamond-shaped plots represent the results of SensingCenter, and

red square-shaped plots represent the results of SensingCloud. For the be-

ginning, both results are very similar each other. However, after around

70th query, the performance of SensingCenter gradually goes up while the

performance of SensingCloud keeps its performance. By this evaluation, we

found that distributed architecture which SensingCloud has adopted can

perform better in this sale of global sensor network.
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6.4 Scalability Evaluation

To verify the distributed architecture enables autonomous scalability, we fo-

cused only on the performance of SensingCloud and executed the procedure

for network with 3 Distributed Process Client and 5 Distributed Process

Client. The result is shown in Figure 6.5.

Blue diamond-shaped plots are the performance for the network with

3 clients and Red square-shaped plots represents the performance for the

network with 5 clients. We can observe the network with 5 clients performs

the similar performance transition to that of the network with 3 clients

does. SensingCloud with 5 Distributed Process Clients performs better;

even the number of sensor feeds to process is larger. We can observe that

SensingCloud scales with the scale of the network.

In this evaluation case, the performance turned to be better since incre-

ments of the processing power was larger than the processing power required

to sustain performance with the increments of sensor feeds.
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Figure 6.5: Result on Scalability Evaluation
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6.5 Summary

In this chapter, we evaluate and compare the performance of two softwares

which act the same for user application. One software is SensingCloud,

which leverages P2P and distributed computing methods. The other soft-

ware is what we named SensingCenter, which does same thing as Sensing-

Cloud but it adopts centric server-client approach. We could find out that

SensingCloud can keep this performance with much larger setting athough

SensingCenter is better architecture in this small evaluation setting.
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Chapter 7

Conclusion and Future

Works

In this chapter, we conclude this thesis by summarizing overall contribution

of this research and discussing the future work of SensingCloud.

7.1 Conclusion

In this thesis, we have organized am architecture of current sensor network

system and pointed out a problem that all sensor networks are closed to the

others. We focused on the problem, which prevents future expansion of the

sensor network systems, and proposed an architecture named SensingCloud

to share sensor data streams of sensor networks distributed all over the world

with automatic scalability. The contribution of this research is as follows.

• Modeling Current Sensor Network System

We have organized current sensor network systems into 3 layers, which

are, from the bottom, Sensor Network Layer, Data Processing Layer

and Application Layer. Sensor Network Layer includes hardware, net-

work protocols and etc. Data Processing Layer contains three sub-

layers, which are Raw Data Layer, Characteristic Data Layer and

Context Data Layer. A task such as unit translation is done in Raw
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Data Layer. Basic and well-known numerical calculations, from aver-

aging to interpolation, are done in the Data Processing Layer. Context

Layer is to process characteristic data and convert it into an abstract

form such as situation, emotion or atmosphere. At last, the instances

of Application Layer are user applications. Currently, a developer of

sensor network system needs to implement all instances of the three

layers. This situation not only decreases development efficiency but

also prevents user applications to subscribe to data streams of the

sensor networks owned by others.

• Modeling Future Sensor Network Architecture

In the future, sensor networks distributed all around the world should

share its sensor data stream and allow user applications to acquire the

global awareness. To realize this, a common sensor network platform

is needed. Referring to the sensor network architecture, the common

platform should include Sensor Network Layer and a part of Data

Processing Layer, which are Raw Data and Characteristic Data Layer.

Since Context Layer has an infinite possibility of instance, it is too

heavy for the common platform to include it. Also, the user appli-

cation would not be able to handle an infinite possibility of answers.

Therefore, Middleware or Application should include Context Layer.

• Proposing an Architecture for Open and Global Sensor Net-

work

To create the common platform, we organized the requirements of the

platform and proposed architectural approach. The requirements are

1) transparent connectivity to distributed sensor network, 2) meta-

level accessibility to arbitrary data and 3) automatic scalability for

growing number of sensors. We propose SensingCloud, which is the

common sensor network platform with the required functions. Sensing-

Cloud leverages P2P and distributed computing method and enables

transparent access with meta-level query.
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7.2 FutureWork

On developing SensingCloud, we have found several technical problems. For

future SensingCloud development, the following future works are necessary.

7.2.1 Serverless Architecture

SensingCloud leverages Hybrid P2P system architecture. In the architec-

ture, a peer finds a target peer with centric index server, and starts peer

to peer communication. Since the centric server is a single point of failure,

the robustness decreases. Also, the time consumption for searching target

sensors from the database can be bottleneck. Especially in our case, this is

critical since we used geocentric queries, which needs more computational

resource. To solve this problem, we would like to leverage Distributed Hash

Table (DHT) [27, 28, 29] in the future implementation of SensingCloud.

However, DHT only allows finding contents with the name completely match

to the request. In our case, complete match is nearly impossible since con-

tents name includes geographical coordinates. To develop a mechanism to

allow DHT to find sensors based on geographical coordinates is also future

work.

7.2.2 Security and Restriction

In the implementation of SensingCloud, the security issue is out of focus.

However to use this platform in practice, security issue is imperative. For

example, current implementation of SensingCloud is vulnerable for DOS

attacks. Since hardware which executing aggregation process are low-middle

performance computers, CPU utilization can easily gets up to 100% with

DOS attacks even if the node is randomly chosen from several candidates.

This can happen with not only malicious attempts but also with normal

innocent utilization. Access control based on CPU utilization or network

throughput is needed. Also, fake sensors that provide random value or

tampered value with some purpose can exist in SensingCloud. Filtering
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method against data from fake sensors is needed for SensingCloud to be

Trustworthy sensor network platform.
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