卒業論文 2010年度（平成22年度）

セキュリティ意識向上のための
ネットワーク通信視覚化手法

慶應義塾大学 環境情報学部

氏名：福岡 英哲

担当教員
慶應義塾大学 環境情報学部

村井 純
徳田 英幸
楠本 博之
中村 修
高沢 一紀
重近 範行

Rodney D. Van Meter III

植原 啓介
三次 仁
中澤 仁
武田 圭史

平成23年2月13日
セキュリティ意識向上のための
ネットワーク通信視覚化手法

今日におけるエンドユーザにとってのセキュリティとは、市販のアンチウィルスソフトウェアを用いて、マルウェアや危険性のある通信が検知される度に行動を選ぶという受動的なものが一般的である。しかし、近年発生しているマルウェアによる情報流出は、受動的なセキュリティのみでは対処することが困難であるため、各ユーザが脅威を認識し、対策する必要がある。

そこで本論文では、エンドユーザのセキュリティ意識向上を図るため、ネットワークに流れるパケットをキャプチャし、それをインプットとして用いるゲームソフトウェアを設計・実装した。今までアンチウィルスソフトウェアに一任していたセキュリティ対策を、各ユーザが自発的にネットワークの状況を観測し対策することで、受動的なセキュリティ意識を改革し、向上させることができる。このソフトウェアにより、セキュリティやネットワークに詳しくないユーザでも通信の状態を感覚的に理解し、マルウェアの動作や不正な通信を認識することができる。その際、専門用語やパケットの情報・概念を可能な限り抽象化し、身近なオブジェクトに置き換えることで、セキュリティソフトウェアの使用におけるハードルを下げると共に、ユーザの通信に対する理解を促進する。

本論文はこのソフトウェアを用いてエンドユーザに対し啓蒙活動を行うと共に、これを足がかりにユーザー一人一人のセキュリティに対する意識を変革し、自律的に学んでいく体制を作ることを目的とする。

キーワード:
1. パケットキャプチャー, 2. エンターテイメント, 3. セキュリティ, 4. ネットワーク監視

慶應義塾大学 環境情報学部
福岡 英哲
For typical computer users these days, information security practice is considered as passive as users take necessary actions only when malicious software or attack attempts were detected. However, recent security breach due to continuous appearing of new malwares raised needs for users to recognize threats and to consider countermeasures against it.

In this thesis, design and implementation of a computer game software that observes network traffic and uses it as game components to enhance end-users’ security awareness has been conducted. In addition to existing anti-virus software by using this software, a user would be able to monitor network traffic while improving awareness of information security autonomously.

End-users can see the state of network traffic without technical knowledge, and recognize malwares and security incidents on his or her network simultaneously. Because this software replaces every technical term by a familiar object, it accelerates the user’s understanding without requiring the user to know any technical languages.

This thesis aims to bring enlightenment to end-users with a software, and to establish a beachhead to change their security consciousness.

Keywords:

Keio University, Faculty of Policy Management

Hideaki Fukuoka
目次

第１章 序論

1.1 脅威の増加と被害 .. 1
1.2 本論文の目的 ... 2
 1.2.1 通信の観測 .. 2
 1.2.2 ゲームとの融合 2
 1.2.3 設計と評価 .. 2
1.3 本論文の構成 ... 3

第２章 脅威の増加と意識改革 4

2.1 脅威の現状 .. 4
 2.1.1 脅威のカテゴライズ 4
 2.1.2 ユーザのセキュリティ意識の現状 5
2.2 問題点 ... 6
2.3 パケットモニタリングゲームの実装 6
2.4 まとめ ... 6

第３章 関連研究 .. 7

3.1 ネットワーク、パケットの視覚化 7
3.2 情報の視覚化と利便性の向上 8
3.3 特殊な外部要素を用いるゲームソフトウェア 8
3.4 まとめ ... 9

第４章 視覚化による問題の解決 10

4.1 ソフトウェアの概要 .. 10
 4.1.1 ソフトウェアの形態 10
 4.1.2 ソフトウェアのゴール 11
4.2 設計の主軸と問題点の解消 11
 4.2.1 抽象化による概念の把握 11
 4.2.2 視覚化による直感的な状況の認識 12
 4.2.3 ゲーム化による興味の喚起 13
4.3 まとめ ... 14
第5章 ソフトウェアの設計

<table>
<thead>
<tr>
<th>5.1 ゲーム開発要項</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1 パケットモニタリングに対する意識</td>
<td>15</td>
</tr>
<tr>
<td>5.1.2 興味の喚起とその継続</td>
<td>15</td>
</tr>
<tr>
<td>5.1.3 長期的な使用期間</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.2 ゲーム形態</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1 パケット内容担当ゲーム</td>
<td>16</td>
</tr>
<tr>
<td>5.2.2 リアルタイムゲーム</td>
<td>17</td>
</tr>
<tr>
<td>5.2.3 シミュレーションゲーム</td>
<td>18</td>
</tr>
<tr>
<td>5.2.4 結論とシナリオ</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.3 専門用語と概念の抽象化</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.1 パケット情報の抽出及び考察</td>
<td>19</td>
</tr>
<tr>
<td>5.3.2 概念の抽象化</td>
<td>20</td>
</tr>
<tr>
<td>5.3.3 パケット情報の抽象化</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.4 ゲームデザイン</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1 メインパラメータ</td>
<td>22</td>
</tr>
<tr>
<td>5.4.2 貿易によるゲーム状況干渉</td>
<td>22</td>
</tr>
<tr>
<td>5.4.3 ユーザのアクション</td>
<td>23</td>
</tr>
<tr>
<td>5.4.4 勝利条件</td>
<td>23</td>
</tr>
</tbody>
</table>

| 5.5 まとめ | 23 |

第6章 ソフトウェアの実装

<table>
<thead>
<tr>
<th>6.1 開発環境及び動作環境</th>
<th>24</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6.2 視覚化の実装</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1 アイテムの描画</td>
<td>24</td>
</tr>
<tr>
<td>6.2.2 郵便屋の描画</td>
<td>26</td>
</tr>
<tr>
<td>6.2.3 SYNパケットの描画</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.3 ゲームの実装</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.1 時間軸の設定</td>
<td>29</td>
</tr>
<tr>
<td>6.3.2 町の成長</td>
<td>29</td>
</tr>
<tr>
<td>6.3.3 貿易</td>
<td>32</td>
</tr>
<tr>
<td>6.3.4 ユーザのアクション</td>
<td>33</td>
</tr>
<tr>
<td>6.3.5 ユーザの補助</td>
<td>35</td>
</tr>
</tbody>
</table>

| 6.4 まとめ | 37 |

第7章 評価及び考察

<table>
<thead>
<tr>
<th>7.1 実施環境及び実施項目</th>
<th>39</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7.2 テストプレイヤーの行動評価</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1 テスト結果</td>
<td>39</td>
</tr>
<tr>
<td>7.2.2 考察</td>
<td>41</td>
</tr>
</tbody>
</table>
7.3 第三者による評点 ... 41
 7.3.1 ソフトウェアの使用方法は理解できたか 41
 7.3.2 コンピュータの状況は把握できたか 41
 7.3.3 Webページを閲覧するとどのアイテムを入手することが出来るか 42
 7.3.4 オブジェクトの意味は理解できたか 42
 7.3.5 ソフトへの興味を抱いたか 43
 7.3.6 コンテンツの消費にはどの程度の時間がかかることがか 43
 7.3.7 ゲーム形態の効用は認められるか 43
 7.3.8 考察 .. 44
7.4 全体の考察 .. 44
7.5 まとめ .. 45

第8章 結論 .. 46
 8.1 本論文のまとめ ... 46
 8.2 今後の展望 .. 47

謝辞 ... 48

付録A 実装の詳細な仕様 .. 52
 A.1 アイテムの割り当て ... 52

付録B ソフトウェア内容 ... 55
 B.1 ソフトウェア仕様 ... 55
 B.2 ソフトウェアスクリーンショット 56

付録C 評価項目 ... 60
 C.1 テストプレイヤーの行動評価 60
 C.2 第三者による評点 ... 62
図 目 次

3.1 Packet Garden 出典：GIGAZINE[18] 8

4.1 パケットキャプチャゲーム全体図 11
4.2 抽象化によるオブジェクトの置き換え 12
4.3 キャプチャ画面のサンプル .. 13

5.1 PacketCapture ソフト試作 .. 16
5.2 パケットキャプチャアクションイメージ図 17
5.3 抽象化された情報のパッケージング 19
5.4 郵便屋オブジェクト サンプル 21
5.5 ゲームシステム .. 22

6.1 パケットキャプチャ（通信視覚化）画面 25
6.2 郵便屋システム .. 27
6.3 SYN パケット ... 28
6.4 ゲーム画面 .. 29
6.5 詳細パルーン ... 30
6.6 貿易システム ... 32
6.7 システムメニュー ... 34
6.8 関税設定画面 ... 34
6.9 エリア開拓画面 .. 35
6.10 チュートリアル画面 .. 36
6.11 アイテム図鑑 1 ... 37
6.12 アイテム図鑑 2 ... 37

7.1 ソフトウェアの使用方法は理解できたか 42
7.2 コンピュータの状況は把握できたか 42
7.3 オブジェクトの意味は理解できたか 43
7.4 ソフトへの興味を持ちたかった 43
7.5 コンテンツの消費にはどの程度の時間をかかるか 44
7.6 ゲーム形態の効用は認められるか 44

C.1 ソフトウェアの使用方法は理解できたか 62
C.2 コンピュータの状況は把握できたか 63
C.3 オブジェクトの意味は理解できたか 63
C.4 ソフトへの興味を抱いたか .. 64
C.5 コンテンツの消費にはどの程度の時間がかかかりそうだ 65
C.6 ゲーム形態の効用は認められるか .. 65
表 目 次

6.1 アイテムのカテゴリズ 25
A.1 アイテムの割り当て詳細 1 53
A.2 アイテムの割り当て詳細 2 54
第1章 序論

本章では、各エンドユーザのセキュリティ意識の低下が今日のインターネット社会において様々な問題を引き起こす可能性があることを述べる。そして、エンドユーザのセキュリティ意識改革のためにモニタしたパケットを入力要素としたゲームソフトウェアを提案し、本論文の構成を記す。

1.1 脅威の増加と被害

これらの脅威について、一般ユーザの認知度は高まりつつあるが、依然低い水準にある。本論文における一般ユーザ、或いは一般的なユーザとし、研究者や専門家ではなく、コンピュータの習熟度が高くない187.4%のエンドユーザ[5]を指す。2009年度のIPAによる情報セキュリティの脅威に対する意識調査報告書[5]では、アンチウイルス不正請求、フィッシング詐欺、スパイウェアなどの認知率は9割に近い数値となったが、ポット・マルウェアなどの用語に関しては2割にいたらず、また認知していると答えた者の中にも誤った理解をしているものが多い。アンチウィルスソフトウェアを導入しているユーザは8割に近いものの、未知なウェブサイトの警告、ルータの利用などの自発的な対策は低い数値となる。このことから、一般ユーザの大多数は脅威に危機感を感じているものの、具体的な内容や対策については熟知していないことがわかる。

脅威は新しい種類のものが日々発生するため、既存のアンチウィルスソフトウェアでは対策が難しく、各ユーザが危険性を認知し、自発的に対策しなければ防ぐことは難しい。そこで、この低水準にある現在のセキュリティ意識を改革することによって、各ユーザが自発的にセキュリティ対策を学習する体制を作る。ユーザ個人がセキュリティに対して関心を持つことで、社会全体のセキュリティ意識が高まると共に、脅威による被害を減らすことができる。

しかし、一般ユーザが自発的に脅威について学習するのは難しい。専門用語や対応すべき脅威の種類が非常に多く、対象者が強い関心を抱いていない場合、学習意欲を保ち続けることは困難である。また、仮に全ての脅威を認知しても、脅威の種類は日々増えていく
ため，ユーザはそれらを臨機応変に対応していくことが求められる。

1.2 本論文の目的

本論文の目的は，一般ユーザのセキュリティに対する意識を改革し，向上するために導入となるソフトウェアを設計・実装することである。ソフトウェアはパケットモニタリングソフトウェアをベースとし，ゲーム要素を付け加えてデザインする。キャプチャしたパケット情報をゲーム要素として用いることにより，ゲームにはポストが送受信するあらゆる通信パケットの内容が反映される。

1.2.1 通信の観測

本論文はゲームプレイを通じて，自分のポストの通信状況を観測できる環境を提供する。普段意識することのないポストの通信を見るようにすることで，ユーザの好奇心を刺激し，セキュリティに対する興味を喚起する。また，このソフトウェアはユーザに監視を促すものではないが，普段ユーザが把握している正常な通信状態と，マルウェアなどの不正な通信が発生した際の通信状態を比較することで，脅威の発生を検知することが可能。これによって通常は検知の難しい，細かな通信状態の差異にも対応できる。

1.2.2 ゲームとの融合

ゲームの形態を取ることでセキュリティに関心を抱いていないユーザにもソフトウェアを使用させ，意識向上を図ることが期待できる。ソフトウェアに登場する専門用語は可能な限り抽象化し，身近なオブジェクトに置き換えることで，ユーザは専門用語を学習する必要がなくなる。また，継続的にゲームをプレイすることで，長期かつ頻繁なソフトウェアの使用が見込まれる。これによってポストの通信状態を把握する時間が長くなり，ユーザのセキュリティに対する意識向上につながる。

1.2.3 設計と評価

本論文ではキャプチャされた通信パケットの視覚化において，効率的な抽象化手法を考察する。パケットヘッダの持つ各情報について重要性を比較し，グラフィカルな表示方法を検討する。この取り組みによって，ユーザは専門用語や膨大な文字データを理解する必要が無く，漠然とソフトウェア画面を眺めているだけである程度ポストの通信状態を把握することができる。本ソフトウェアでは通信の情報をIPアドレス，ポート番号，プロトコル，ベイロードの長さ，パケットが送受信のどちらであるかを抽象化した。ゲームデザインでは，異なるいくつかのゲームジャカルを提案し，その中で最も効率的なゲーム形態を検証・考察する。ゲーム化においてはユーザが長期間にソフトウェアを利用できる上，
第1章 序論

視覚化画面をユーザが注視しなくてもある程度通信の状態を把握することができる仕様を目指す。

以上の設計を基に実装したソフトウェアを第三者に使用して貰い、その評価を得る。実際にユーザの行動を観察し、ユーザビリティの観点から作成した点数表にてソフトウェアの働きを探点する。また、理解度に関してはテストを作成しユーザに実施する。第三者を主体とした評価以外にも抽象化した点について、実際にマルウェアや攻撃などが発生した時にそれを感知できるか検証する。

1.3 本論文の構成

本論文は全8章から構成される。第2章では、エンドユーザのセキュリティ意識の問題とその解決方法について述べる。第3章では、第2章で述べた課題に取り組む関連研究を紹介する。第4章では、ソフトウェアの設計について述べる。第5章では、第4章で述べた設計を元にソフトウェアを実装する。第6章では第5章で実装したソフトウェアの性能を評価し、考察を行う。第7章で本論文の結論と、今後の展望を述べる。
第2章 脅威の増加と意識改革

脅威と一般ユーザのセキュリティに対する意識の現状を述べる．また，セキュリティ意識の向上の際に問題となる3つの点について述べる．

2.1 脅威の現状

今日，インターネットを基盤としたコンピュータ社会には様々な脅威が存在する．マカフィーによる2010年第3四半期のセキュリティ脅威レポートによると，1.4秒あたり1個という早さで新種のマルウェアが誕生している．アンチウィルスソフトウェアの普及と性能向上に伴いマルウェアの被害は低減したが（アンチウィルスソフトの普及率は79.3％，マルウェア被害は前年度より5.2％減少している），依然増加する脅威による被害は社会問題となっている．

2.1.1 脅威のカテゴライズ

脅威は大別すると2種類にカテゴライズできる．一方はユーザが意識することなく，アンチウィルスソフトウェアが自動的に検知し対処するものであり，もう一方はユーザが自発的に対策を施さなければ，対処することのできないものである．

受動的に対策可能の脅威

一般に，既存のマルウェアはアンチウィルスソフトウェアがデータベースに登録している限り，検知することができる．マルウェアの検知はパターン・マッチングが主であり，データベースに登録されているマルウェアのパターンと一致するものをマルウェアと定義し削除或いは隔離する．また，アンチウィルスソフトウェアの性能向上に伴い，新種のマルウェアも検知することができる．ヒューリスティック機能はプログラムの属性や振る舞いを検証し，脅威を検出するアルゴリズムである．そして，ネットワークに接続しようとするプログラムや，システムに大きな影響を及ぼす可能性のあるプログラムは事前にその旨をユーザに確認させることで，意図しない通信やデータの改ざんを防ぐ．
ユーザが意識する必要のある脅威

2.1.2 ユーザのセキュリティ意識の現状

意識報告書[3]の「4.3.1.1. 情報セキュリティ対策の実施状況と今後の実施意向」では、アンチウィルスソフトウェアの普及率は80％以上を示しているが、サイトの信頼性の考察、不要になった自宅パソコンの破棄など、自発的なセキュリティ対策になると数値が著しく低下していく。これは第2.1.1節で述べた、ユーザが意識する必要のある脅威への耐性が低いことを示す。このように、アンチウィルスソフトウェアに依存し、自発的な対策が十分でない現状のセキュリティ意識を、本論文では受動的なセキュリティと表現する。一般ユーザのセキュリティ意識の低さは、この受動的なセキュリティ体制が一因であると考えられる。

本論文ではこの受動的なセキュリティ体制を改革し、ユーザ個人が自発的にセキュリティ対策を施す体制を作ることを目標とする。各ユーザが自発的に対策を学習し、実施する体制を作ることで、社会全体のセキュリティはより強固なものとなる。また、専門用語の習得や関心の欠落は意識そのものを改革することで対処が可能である。日々増加していく脅威に関しても、ユーザがその都度学習するようになるため、対応が容易になる。
2.2 問題点

ユーザの意識改革をする上で障害となるいくつかの問題点を挙げる。これらはユーザが自発的にセキュリティ対策を学習する上での障壁であり、これらの解消がユーザの意識を転換する上で必要不可欠な要素となる。

- 専門用語・概念の理解
 脅威とその対策を学習する上で、コンピュータやネットワークに関連した専門用語の知識が必要となる。ルータやポートなど、一般的なユーザにとって聞き慣れない言葉も多く存在する。また、コンピュータやネットワークの仕組みには現実世界に存在しない概念も多く含まれているため、コンピュータに詳しくないユーザが正確に理解し学習することは難しい。

- 興味の欠落
 セキュリティにあまり関心の無いものは、そもそも学習活動自体に興味を示さない場合が多い。セキュリティ強化キャンペーンは現在も各所で行われているが、それらはユーザーが興味を示すことが前提となる。したがって、学習には興味を引き要素が必要不可欠である。

- 継続性
 セキュリティ知識の習得や意識の転換には長い時間を要するため、途中で学習をやめてしまうケースが考えられる。脅威は日々増加していくため、長期間での学習活動を行う必要がある。

2.3 パケットモニタリングゲームの実装

本論文ではこの問題点を解消するため、パケットモニタリングゲームを設計・実装する。このソフトウェアはコンピュータに流れる通信を可視化し、ゲーム要素と関連付けることにより、エンドユーザにコンピュータの通信の状況を観測させ、セキュリティ意識を向上させる。また、ゲームという形態を取ることで、セキュリティに興味のないユーザに利用させることが可能となる。

2.4 まとめ

本章では、脅威の現状とユーザのセキュリティ意識の現状について述べた。今日のインターネット社会において、ユーザは自発的にセキュリティ対策を意識しなければ、増加する脅威に対応することができない。本論文では現在の受動的なセキュリティ意識を改革し、ユーザ1人1人のセキュリティ意識の向上を目指す。その際、障害となる3つの問題点について述べ、具体的な方法としてパケットモニタリングゲームの実装を示した。
第3章 関連研究

本章では、既存のパケットモニタリングソフトウェア、及び通信の視覚化を題材とした研究を挙げる。また、特殊な外部要素をパラメータとして用いたゲームソフトウェアに関しても述べる。

3.1 ネットワーク、パケットの視覚化

エンドユーザのセキュリティ意識向上、または学習のためにパケットを可視化する研究や作品は多数存在する。エンドユーザのセキュリティ意識向上を目指したパケットヘッダ可視化システム [15] では、本論文と類似した問題意識を持ちパケットヘッダをグラフィックアニメーションとして表すソフトウェアを実装している。これはHTTPやDNSなどパケットにラベル付けし、モニタリングした通信の内容の理解を促進している。また、パケットの伝送をトラックの絵で行うことにより、データが届けられるという概念を説明している。その他にログ表示機能を搭載することにより、退席時の通信状態を閲覧できる。ただし、このソフトウェアは専門用語をそのまま用いており、本論文の用いる問題の解決手法である専門用語の使用とは異なる。パケットモニタリングの視覚化の一検討 (オフィスインフォメーションシステム及び一般) [16] では、通信で発生したパケットの特徴をいくつか抽出し、画面中央の描画セクションにおけるアイコン描画に反映する。描画する要素は通信レイヤ、通信方向、転送時間、パケットサイズであり、アイコンの位置や形状、移動の速度や向きなどに影響を与える。また、この研究では実装したソフトウェアと既存のパケットモニタリングソフトウェアを比較評価し、テキストベースのパケットモニタリングソフトウェアがエンドユーザには受け入れられにくいという結果を示した。更にこのソフトウェアで用いたアニメーション効果について評価し、80％の被験者の回答によりその有効性を示した。

パケットモニタリングを内包した、より視覚的なソフトウェアとしてPacket Garden[17]が挙げられる。このソフトウェアはキャプチャしたパケットを基にその特徴を解析し、荒涼とした惑星に山や草木が出現するというものである。関連付けられただけしかのソフトウェア（ポート番号）のトラフィックをキャプチャするとそれに応じて特徴的な変化をする。ホストに流れる通信を意識するという点では本論文と類似しているが、継続した使用を促すようなゲーム的要素は見られない。ソフトウェアのスクリーンショットを図3.1に示す。
3.2 情報の視覚化と利便性の向上

ログ情報の閲覧時にユーザをサポートするインタフェースを提供する研究として見えログ[19]が挙げられる。この研究で実装されたシステムは、主にログメッセージを解析し情報を抽出することによって、ユーザに把握しやすい形で情報を提示する。また、ログメッセージに含まれる単語の出現頻度を解析することにより、低出現頻度の単語が含まれるログを「異常と推測されるログ」として提示する。取り扱うデータは異なるが、最終的な判断をユーザに委ねながらも、判断を補助するために効率的な視覚化手法を提案するという点で本論文と類似しているといえる。

3.3 特殊な外部要素を用いるゲームソフトウェア

3.4 まとめ

本章では、既存のパケットモニタリングソフトウェア、特にエンドユーザのセキュリティ意識向上のために設計されたソフトウェアについて述べた。いずれもユーザインタフェースを工夫することにより、パケットの情報や伝達の仕組みの理解を促進している。また、特殊な外部要素をゲームのパラメータを用いたゲームソフトウェアの例を述べた。これらは全て数十万、数百万本の売り上げを記録したヒット商品であり、特殊な外部要素を持つゲームの成功例を示している。このことから、本論文の方針であるパケットモニタリングソフトとゲームを組み合わせた、一般ユーザのセキュリティ意識向上を試みる。
第4章 視覚化による問題の解決

本章では、第2章で述べた問題点を解決するために、実装するパケットモニタリングソフトウェアについて述べる。本論文では概念と用語の抽象化とゲーム化によって問題点を解決する。

4.1 ソフトウェアの概要

本論文では、キャプチャしたパケットをパラメータとして用いるゲームソフトウェアを実装する。身近な物の状態を可視化することで、セキュリティをより身近な物として認識させる。また、パケットをゲーム要素として用いることで、恒常的な利用が見込める他、環境ごとにパケットの種類は変化するため、異なる環境で様々なゲーム状況を楽しむことができる。

4.1.1 ソフトウェアの形態

ソフトウェアは通信で発生するパケットをキャプチャし、それをオブジェクトとしてゲームに反映する。ユーザはキャプチャされたパケットをリアルタイムで閲覧する。第2節にて専門用語の習得がセキュリティ学習における問題点と指摘したが、本ソフトウェアはこの専門用語をユーザに提示せず、別のオブジェクトや概念に置き換えることでこの問題を解決する。キャプチャされたパケットの情報や概念をできる限り抽象化することで、一般ユーザでもホストの状態を把握することができる。ソフトウェアにはキャプチャ画面とゲーム画面の2つの画面を用意する。通信パケットは描画されるだけでなく、ゲーム要素としてゲーム内のパラメータに影響を与える。これによりユーザは退席時の通信を把握することができ、キャプチャ画面を閲覧せずとも通信の状況を把握できる。システムの全体図を図11に示す。

本ソフトウェアは、ゲーム要素としてパケットを利用して通信するため、多くの情報が省略される。したがって、このソフトウェアを用いてネットワークを介する脅威全てを検知できるとは限らない。また、脅威が発生してもそれを検知してアラートを出すといった動作はしない。ただし脅威が発生した場合、何らかの影響がゲーム画面或いはゲームパラメータに与えられるため、それを認知したユーザが自発的にアクションを取り、解決することを想定している。
第4章 視覚化による問題の解決

4.1.2 ソフトウェアのゴール

本ソフトウェアのゴールは、今までネットワークトラフィックを閲覧したことが無かった一般ユーザにネットワークの状態を意識させることである。具体的には、ユーザが通信にはいくつかの種類が存在することを理解し、コンピュータ上で取ったアクションにより様々な通信が行われることを認識することである。

4.2 設計の主軸と問題点の解消

本論文ではソフトウェアのゴールを達成するため、3つの軸に主眼を置いて設計する。同時に、それらの軸が前述した意識改革の問題点をどのように解消するかを述べる。

4.2.1 抽象化による概念の把握

ソフトウェアにおいて、専門用語は抽象化され隠蔽される。HTTPやDNSなどの用語は身近なオブジェクト（本や果物など）に置き換えられ、IPアドレスやポート番号などパケットの情報は何らかの描画要素として表される。また、通信という概念を別の身近な表現に置き換え、仕組みもゲームの要素として表す。これによって、専門用語や概念の理解が難しい、一般ユーザでも通信状況を把握することができる。抽象化によるオブジェクト置き換えのサンプルを、図4.2に示す。

個々のオブジェクトは説明を添付し、そのオブジェクトがどのような条件下で観測できるかユーザは把握することができる。例えば書籍というオブジェクトは「Webページを
第4章 視覚化による問題の解決

4.2 抽象化によるオブジェクトの置き換え

関覧すると発生」と表示され、一般ユーザがオブジェクトの意味を理解できる．Web ページという用語も厳密にはコンピュータ用語であるため専門用語であるが、一般的な用語として浸透しているため説明文に用いる．説明文の用語は、可能な限り難しくならないようユーザによるフィードバックを元に調整する．

抽象化された概念の学習効果

抽象化されたオブジェクトは別のオブジェクトに置き換えるため、研究者の学習には望ましくない．しかし一般ユーザにとっては、多少情報を省略してもソフトウェアを使用させることが重要である．また、通信によるパケットのやり取りという概念は抽象化された状態でも把握することが可能である．概念を理解すれば、ユーザがこのソフトウェアを通じてセキュリティについて知識を深めたいと考えた際に、置き換えられたオブジェクトに専門用語を当てはめて学習することができる．

4.2.2 視覚化による直感的な状況の認識

ソフトウェアはキャプチャされたパケットをリアルタイムで映し出すキャプチャ画面を実装する．通信が発生するとタブレクトを表すオブジェクトが移動する．ユーザはこれを見ることで現在のホストの通信状況を把握できる．もし、何も通信をしていないにもかかわらず大量のパケットが送受信されているようであれば、何らかの脅威が活動している可能性が考えられる．その他にも、普段見かけない種類のオブジェクト（パケット）や、そのオブジェクトの特徴にそぐわない通信（送信しかされていないオブジェクトが受信されたり）を脅威のインシデントとして検知することができる．図11にサンプルを示す．
第4章 視覚化による問題の解決

4.2.3 ゲーム化による興味の喚起

ゲーム化により、本来セキュリティに関心の無いユーザにもソフトウェアを利用して貰うことができる。また、ゲーム化を中心に設計することによって、ユーザはゲームをプレイしているだけでセキュリティに対する意識を深めることができる。また、ゲームを継続的にプレイできる形態にすることで、ソフトウェアの利用期間も長期なものになる。視覚化だけでは興味を持っていたとしても継続的に利用することには結びつかない可能性が高い。しかし、ゲームにすることでゲームデザインの工夫により恒常的な利用が期待できる。抽象化されたオブジェクトをゲーム要素としてパラメータに関連付けることで、よりオブジェクトに対する関心が深まる他、退席時もしくはゲームを見ていいない期間の通信を把握することができる。リアルタイムで見ている必要が無くなる上、単純にグラフなどでログを示すよりも自然な形態でユーザに通信状況の結果を示すことができるため、理解が促進される。
4.3 まとめ

本章では、エンドユーザのセキュリティ対策学習における3つの問題点を解消するため、キャプチャしたバケットを入力要素とするゲームソフトウェアについて述べた。設計における3つの主軸として抽象化、視覚化、ゲーム化の3つを述べ、それぞれがどのように問題の解決に関わるか述べた。第5章ではこれを元に、具体的な設計について述べる。
第5章 ソフトウェアの設計

本章では、第4章で述べた3つの主軸を基にゲームソフトウェアを設計する上で必要となる3つの要項を挙げ、考えうるゲーム形態を考察する。そして、専門用語及び概念の抽象化手法、そして具体的なゲームデザインを述べる。

5.1 ゲーム開発要項

開発要項として、以下の3点を挙げる。

• パケットモニタリングに対する意識
• 興味の喚起とその継続
• 長期的な使用期間

5.1.1 パケットモニタリングに対する意識

本ソフトウェアはモニタリングされたパケットをパラメータとして扱うため、パケットをユーザが適度に意識する仕様が望ましい。例えばユーザが取得したパケットに対するアクションを取らない設計にすると、難解なパケット情報を理解する必要は無くなるが、受け取ったパケットがどのようなものであるか意識しない。逆に取得したパケットの属性を1つ毎に調査し、それに対応したアクションを取るような仕様にした場合、情報が煩雑になりユーザが疲弊する。そのため、パケットの特徴がある程度残した状態でゲームに反映しつつ、ユーザが詳細な情報を理解する必要がないといった仕様にする必要がある。

5.1.2 興味の喚起とその継続

本ソフトウェアは、ゲームの形態を取ることによって第2章にて述べた問題点である興味の欠落と継続性を解決するものであるため、ゲームそのものがユーザの興味を引く内容を持つ必要がある。また、興味を継続させることによりソフトウェアの使用を継続的なるものにする。ソフトウェアを利用する意欲を、本論文ではモチベーションと表現する。モチベーションが高い状態を維持することができれば、ユーザはソフトウェアを継続的に利用し、モチベーションが下降すればソフトウェアの利用を中止する。興味の喚起とその継続のためには、いかに高いモチベーションを維持し続けるかが要点となる。
第5章 ソフトウェアの設計

図5.1: PacketCaptureソフト試作

5.1.3 長期的な使用期間

興味の継続とは別に，ゲームソフトウェア自体のプレイ期間も重要な要素となる．興味を十分に抱き続けたとしても，数時間で全てのコンテンツを消費してしまうと，それ以上の学習効果は見込めない．本論文におけるコンテンツとは，ゲーム中でユーザに達成させるために準備したゲーム要素を指し，コンテンツの消費とはそのゲーム要素を達成することを指す．集中的にコンテンツを消費するタイプのゲームではなく，繰り返し遊べるものや，収集要素（コレクションなど）のあるもの，バックグラウンドで動かしつつ定期的にアクションを起こすものなどが望ましい．

5.2 ゲーム形態

上記の開発要項を踏まえ，ゲーム形態を検討する．本節では3種類の違ったゲーム形態を提案し，それぞれのメリット・デメリットを述べた上で最終的に採用したゲーム形態を述べる．

5.2.1 パケット内容当てゲーム

パケット内容当てゲームは，一定期間内に送受信したパケットの種類ごとの総量を予測し，予測の当たり外れに応じてスコアが増減するゲームである．種類はポート番号やプロトコルによって分類される．ユーザにはヒントを提示し，何度も予測を行うことで，次第に高い正答率＝高いコンピュータの状況把握が可能となる．このゲームは本論文のソフトウェアを設計するにあたり，その前身として作成された．作成したソフトウェアのスクリーンショットを図5.1に示す．
5.2 パケットキャプチャアクションイメージ図

メリットとしては、ゲームルールが単純であるためユーザが理解しやすく、ゲーム目標の工夫により長いプレイ時間を獲得できる（1ヶ月間のスコア維持など）。また、パケットの属性にユーザが直接触れること、より深い理解が可能である。しかし、単純なゲームルールなため、娯楽性は薄く、ユーザのモチベーションを高く保つことは困難である。更にゲームの性質上送受信したパケットを一定時間隠蔽しなければならず、ユーザがコンピュータ上のアクションとパケットの関係を観測することができない。

5.2.2 リアルタイムゲーム

リアルタイムゲームは、パケット情報を元に様々なオブジェクトを出させ、ユーザがリアルタイムでそれに対応するといったゲーム形態である。リアルタイムとは、ゲームがユーザのアクションを待たず、時間の経過と共に自動的に進行するシステムである。オブジェクトとは具体的に、障害物や敵、アイテムを指す。パケットの属性を抽出し、それを元にオブジェクトの属性も変化させることで、キャプチャしたパケットによる異なるゲーム進行が成される。例えばアクションゲームでは、キャプチャしたパケットのプロトコルによって異なる特性を持った敵を生成し、それを主人公が撃破していくといったものが挙げられる。イメージ図を5.2に示す。

比較的インタラクティブなゲームとなるため、興味を喚起することは容易である。基盤となるゲームはセキュリティ要素も考慮した娱乐性を求める必要なく自由に設計できるため、純粋なゲームデザインがユーザの獲得における要点となる。また、環境によって異なるゲームの展開が見込めるため、繰り返し別の環境で遊ぶことが可能である。しかし、リアルタイムゲームは短期間にプレイするゲームであるため、長期間遊ばせることは困難である。また、ゲームをプレイしている最中はコンピュータ上で他のアクションが行われる
5.2.3 シミュレーションゲーム

シミュレーションゲームでは、外的要因がゲーム状況に様々な変化を与える。リアルタイムゲームがパケットを直接ユーザに干渉するオブジェクトと変換するのに対し、シミュレーションゲームではパケットが環境に干渉する。代表的なシミュレーションゲームとして育成ゲームが挙げられる。パケットキャラクターを育成ゲームとしてデザインした場合、何らかの生物をゲーム内に住まわせ、獲得したパケットを元に様々な属性の値を作り出し与えるといったゲームになる。生物は与えられたパケットの種類によって多様な変化を遂げる。シミュレーションゲームはパケットの流れによってゆっくりとゲームが進行していくため、自然と長期的なプレイ時間を見込むことができる。また、環境によって全く異なる展開となるため、他のユーザとゲーム内容の差異についてコミュニケーションを取りることができる。攻撃力や防御力といった対戦用のパラメータを付加することにより、育てたオブジェクトで対戦するといった遊び方も用意することが可能である。デメリットとしては、リアルタイムゲームに比べて画面の動きが少ないため、迫力に欠けることが挙げられる。また、3つのゲーム形態の中で最もパケット情報が抽象化され、ゲーム進行との関わりが薄いため、短期的な学習効果は最も低いと考えられる。

5.2.4 結論とシナリオ

本論文の目的は一般ユーザのセキュリティ意識向上であり、長期に渡ってコンピュータの通信を監査し続けることが重要となるため、最も長期的なプレイが見込むシミュレーションゲームを選択する。デメリットとして挙げられたユーザの興味を引き付ける力の欠落に関しては、チュートリアルや序盤イベントの実装によりできる限りゲーム開始時の興味の喚起を意識してデザインし、それを解決する。また、短期的な学習効果が最も低いことに関しては、プレイ時間を長期化することにより対応する。

シナリオ

ゲームプレイに際し、ユーザはこのソフトウェアを常に起動する。ゲーム画面を聞いていない必要は無く、基本的にはタスクバーアイコンとしてバックグラウンドで動かす。数十分から数時間程度の間隔でウィンドウを開き、パラメータを設定することでゲームを進行させる。ソフトウェアにはゲーム画面とキャプチャ画面が存在し、ユーザはゲーム画面を主に利用してプレイする。通信の状況は基本的にゲームパラメータとして反映されるため、ゲーム画面のみの閲覧である程度把握することが可能である。ただし、何らかの異常がログ、またはゲームパラメータに見られた場合、より詳細な通信状況だけを閲覧することができるキャプチャ画面を起動し、現在の通信状況や過去の通信ログを閲覧して該当する異常を特定できる。
5.3 専門用語と概念の抽象化

エンドユーザ向けのソフトウェアを開発する上で必須である、専門用語及び概念の抽象化を行う。まず、パケットヘッダ及びパケットに含まれる情報要素を抽出し、個々の要素を考察する。その後、策定したゲームデザインにそってパッケージングすると共に抽象化する。本論文におけるパッケージングとは、効率的にユーザに抽象化した情報を伝えるため、オブジェクトの中に属性を上手く内包することである。個々の要素が雑然としている抽象化では、管理が困難である。オブジェクトのパッケージングについて、図5.3に示す。

5.3.1 パケット情報の抽出及び考察

パケットの持つ情報を幾つかの要項として抽出し、個々の要素について考察する。パケットの属性に大きく関わり、重視されるべき要素は抽象化においてオブジェクトの属性に大きく関わる要素を割り当てる。

- IP アドレス

通信先の把握のために、IP アドレスを抽象化する。多様な IP アドレスとの通信は DDOS 攻撃に見られる1つの特徴である。IP アドレスは非常に種類が多く、32bit（または128bit）のアドレスを直接オブジェクトのパラメータに変換してもあまり有用な情報を得られないため、あくまで同 IP アドレスとの通信をバインドする程度に留める。これにより、異なる複数の IP アドレスと频繁に通信を行っている場合、ユーザがそれを認知することができる。
第5章 ソフトウェアの設計

- プロトコル

パケットの種類を把握するためにプロトコルを抽象化する。プロトコルはパケットの性質に大きく関わるため、次項のポート番号と併せてオブジェクトに大きな特徴を与える。

- ポート番号

パケットの種類を把握するためにポート番号を抽象化する。プロトコルと併せてパケットの種類を表す重要な要素であるため、オブジェクトの本質に関わる属性を割り当てる（物そのものの「種類」など）。特に、マルウェアに利用されることが多い80, 135, 139, 445番を始めとした数のポート番号は、専用の属性を割り当てることでそのパートでの通信を示す。

- パケットの送受信

パケットが送信したものが受信したものか表すために、これを抽象化する。送受信の方向は通信の整合性の確認に有用である。例えば、本来データの送信に使われるポートで受信が行われていたり、退席中に身に覚えのない大量のデータ送信が行われていたり、といったケースを感知することができる。通信の方向は何らかのオブジェクトパラメータとして実装することもできるが、可能ならば直接画面上を移動するなど、直接的な表現がユーザの理解を促進すると考えられる。

- ベイロード

1つのパケットに含まれるベイロード（ヘッダ部分を除いたデータ）の総量を抽象化し示す。通信の方向と同じく整合性の確認に有用であるが、優先度は低い。しかし、オブジェクトの大きさなど直感的な表現ができるため、反映は容易であると考えられる。また、ベイロードの中身を解析することにより、パケットの判別をより細部まで行うことができる。しかし、これには多くのケーススタディを行う必要があるため、本論文では実装しない。

- SYNパケット

SYNパケットは、TCP通信においてセッション開始時に取り外される特別なフラグを持ったパケットである。ワームなどが感染活動のためにポートスキャンを行う際、このSYNパケットが大量に送付される。多量のSYNパケットを受信しているにも関わらず、なかなか通信が成立しない場合、何らかの脅威による干渉が行われている可能性が高い。

5.3.2 概念の抽象化

本ソフトウェアでは、通信を貿易として表現する。貿易を行うことで町の景気が向上し、町の育成に影響を及ぼす。パケットの受信を輸入、パケットの送信を輸出と表現することで、自分のコンピュータにパケットの送受信が起きていることを感覚的に理解することができる。パケットは抽出した情報を全て内包し、荷物として表現する。荷物には種類
5.3.3 パケット情報の抽象化

アイテムは、プロトコルとポート番号によって決定する。HTTPなどの主要なポート番号には専用のアイテムが割り当てられている。また、1024番以降はRegistered Port Numberとそうでないもので大別し、それぞれアイテムを割り振っている。送受信の方向もアイテム種類決定に若干関わる他、郵便屋の移動する方向として表現する。受信パケットは右から左に、送信パケットは左から右に郵便屋が移動し、画面外に出ると消滅する。ペイロード量は、転送量として実際に数値をユーザに見せる他、視覚化画面では郵便屋の背後を回る魔法陣の大きさで表現する。郵便屋自体の拡大率としない理由は、巨大な郵便屋オブジェクトが大量に描画されるのは見栄えが悪く、また見辛いからである。パケット情報を抽象化し作成した郵便屋オブジェクトのサンプルを、図5.4に示す。SYNパケットは、通常のパケットと区別するため、郵便屋とは違う描画をする。具体的な描画内容は第6章にて説明する。

郵便屋は、一定時間内に送受信したアイテムのうち、同じIPアドレス・同じポート番号のものを纏め、集積する。一定量を集積するかタイムアウトすると、画面上に描画され、左から右または右から左へと移動する。郵便屋により、画面上に描かれるオブジェクトの数が抑えられ、ユーザが状況を把握しやすくなる。閲覧となる時間及び量はオプションで変更でき、増加させれば画面上の郵便屋が減少し、減少させれば郵便屋の数は増加する。
第5章 ソフトウェアの設計

5.4 ゲームデザイン

本ソフトウェアのゲームデザインを述べる。全体のゲームシステムを図5.5に示す。

本論文では、ソフトウェアを町育成ゲームとしてデザインする。ユーザはソフトウェアの中に自分の町を持ち、それを成長させて楽しむ。パケットキャプチャ貿易は町を活性化し、町の様相を変化させる。

5.4.1 メインパラメータ

主軸となるパラメータとして、資金と人口を設定する。資金はゲーム内で行動するのに必要なパラメータであり、税収によって増加する。人口は町の成熟度を一元的に示すパラメータであり、多ければ多いほど税収が増加する。また、補助パラメータとして景気と幸福度を設定する。景気パラメータが増加すると資金の上昇幅が大きくなり、減少すると小さくなる。また、一定値を下回ると資金が減少していく。同様に幸福度パラメータが上昇すると人口も増加し、下降すると人口も減少する。

5.4.2 貿易によるゲーム状況の変化

ゲームは、コンピュータが通信を行い、そのパケットをキャプチャすることで進行する。ただし、輸出者は直接ゲームパラメータに反映されない。理由として、例えば資金パラメータがパケットの受信によって増加するといった状況にした場合、意図的に大量のパケットを受信するアクションをユーザが実行するという可能性が懸念される。本論文ではこのソフトウェアを正常な通信の観測に用いるものとしてデザインするために、ユーザが故意に通信状態を操作する仕様は避けなければならない。よってゲーム内における貿易は、
町の景気パラメータを増減させる。貿易を行うと、それが輸出入などちらであるかに関わらず、町の景気を一定値上昇させる。町の景気が上昇すると、人口１人があたりの税収が多くなり、結果的に資金パラメータが増える。また、景気の良い状態が続くと幸福度も追従して上昇し、人口の増加を見込むことができる。

5.4.3 ユーザのアクション

行われる貿易に対し、ユーザはアイテム毎に関税を設定することで、輸出入（以後、取引と表現する）量を調整することができる。各アイテムには需要・供給パラメータが存在し、大量に取引されるアイテムは供給過多で経済効果が低くなり、需要を大幅に上回ると取引停止となる。よって大量に取引されるアイテムは関税を高くすることで取引量を減少させ、供給が需要を超えないようにする。例えば、HTTP による通信を表す「書籍」アイテムは Web ブラウザでホームページと大量に取引されるため、多くのユーザは予め関税を高めに設定すべきである。ちなみに、パラメータ調整の煩雑化を避けるため、需要・供給パラメータは輸出入共有とする。その他、ゲームにおけるユーザのアクションとしては多様なものでも用意する。町の育成を促すものや、新たなエリアの開拓、条例の制定などが挙げられる。詳細は第 6 章で述べる。

5.4.4 勝利条件

ゲームの終了条件、所謂ゲームクリアは設定しない。ソフトウェアを恒常的に利用して貯うのが本論文での方針であり、ゲームクリアすることでソフトウェアの利用が中断されるかは望ましくないからである。また、育成ゲームというゲーム形態そのものにも基本的にゲームクリアはなく、ユーザが望む限り永遠に続けることができる。ただし、ゲーム目標が存在しない場合ユーザのゲームプレイにおけるモチベーションを保ち続けるのは難しいため、人口 100 万人や資金の一定値到達など、幾つかのゲーム目標を定める。ユーザは目標を達成するとそれに応じた褒賞を受け取ることができる。目標を明確にすることができ、ゲームプレイにおける指針が示されるため、ユーザがそれに沿ってゲームを進行させることができる。この状態を継続させることで、ユーザのモチベーションを高く維持し続けることが可能です。

5.5 まとめ

本章では、インプットに対する意識、興味の喚起とその継続、長期的な使用期間を 3 つの開発要件として挙げ、その理由について述べた。そして開発要件を元にゲーム形態の選定を行い、本論文ではシミュレーションゲーム（町育成ゲーム）としてソフトウェアを設計することを示した。抽象化においてはパケット情報を抽出し考察した後、概念とパケッット情報の抽象化を行った。また、ゲームデザインではインプットの具体的なゲームパラメータへの反映方法や、ユーザのアクションについて述べた。
第6章 ソフトウェアの実装

本章では、第5章で述べた設計手法を元に、ソフトウェアを実装する。

6.1 開発環境及び動作環境

本論文では、ソフトウェアをC++で実装する。統合開発環境としてVisual Studio 2008を使用し、拡張はDirectX9を用いる。C++である理由は、Windowsアプリケーション、特にWindows上で動作するゲームソフトウェアの多くが処理速度などを理由にC++を使っているからである。動作環境はWindows XP及びそれ以降のWindows系OSとする。Windowsを選択した理由は、Windows系OSを使うユーザが2010年12月時点で90.19%と極めて高いシェア率を誇っている29からである。

6.2 視覚化の実装

本節ではキャプチャ画面の実装について述べる。まず、アイテムの具体的な割り当てとその理由について述べ、郵便屋の描画方法について述べる。そして、通常の郵便屋と描画方法の異なるSYNパケットの描画について述べる。キャプチャ画面のサンプルを図6.1に示す。

6.2.1 アイテムの描画

アイテムの描画について述べる。まず、アイテムのカテゴライズについて述べ、詳細なアイテムの割り当てについて述べる。

カテゴライズ

貿易にて輸出入されるアイテムは大別して3種類存在する。1つ目は雑貨である。雑貨カテゴリーに属するアイテムは、FTPやDNS、HTTPなどの登録されたポート番号か、WELL KNOWN PORT NUMBERS（ポート番号1023以下）を用いるパケットに割り当てられる。雑貨アイテムが割り振られなかった場合、TCPを用いる通信のパケットは素材カテゴリーのアイテムとなる。そして、雑貨も素材も属さないUDPを用いた通信のパケットは食材カテゴリーのアイテムとして表現される。唯一例外として、TCPおよびUDP以外
図 6.1: パケットキャプチャ（通信視覚化）画面

表 6.1: アイテムのカテゴリー

<table>
<thead>
<tr>
<th></th>
<th>TCP</th>
<th>UDP</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>登録済ポート番号</td>
<td>雑貨</td>
<td>高級宝石</td>
<td>素材</td>
</tr>
<tr>
<td></td>
<td>1023</td>
<td></td>
<td>1024〜</td>
</tr>
</tbody>
</table>

のプロトコルを用いる通信は、雑貨カテゴリーに属する高級宝石が割り当てられる。以上のカテゴリーを表6.1にも示す。

アイテム割り当て

具体的なアイテムの割り当てについて述べる。また、更に詳細なアイテムの割り当ては付録Aの表A.1，A.2に示す。

- 雑貨カテゴリーのアイテム
 雑貨カテゴリーのアイテムは、第6.2.1節で述べたとおり、登録されたポート番号を用いて通信されたパケットである。まず、80番や8080番などのHTTPは書籍アイテムが割り振られる。続いて、SSLは学術書，SMTPやPOP3など電子メールに関連するポート番号は手紙として表現される。MSNやAOLなどのメッセージサーバー，IRC，P2Pソフトウェアも専用のアイテムとなる。SSH，DHCP，NETBIOS
などその他の登録されたポート番号については書類アイテムを割り当てる。ただし、
ワームが利用することの多い135, 139, 445番ポートについては薬品アイテムが割
り当てられる。また、いずれにも該当しないWELL KNOWN PORT NUMBERS
については送信パケットの場合布、受信パケットの場合雑誌となる。

• 素材カテゴリのアイテム
 素材カテゴリのアイテムはREGISTERED PORT NUMBERS（ポート番号1024
〜49151）に属するか、或いはDYNAMIC AND/OR PRIVATE PORTS（ポート番
号49152〜65535）に属するかで種類を変える。また、送信パケットか受信パケット
かによっても変更する。よって、素材カテゴリには計4種類のアイテムが存在する。
内訳は送信が木材・生糸、受信が鉄材・宝石となる。

• 食材カテゴリのアイテム
 食材カテゴリのアイテムは素材カテゴリと同じく49152番ポートにて区切る他、
12800番でも分割する。UDPはネットゲッターや動画配信などで多く用いるため、TCP
より細分化し差別化を測る。内訳は送信が農作物・酒類・水産物、受信がインスタ
ント食品・食玩・畜産物となる。

• 素材・食材カテゴリのアイテム補足
 素材・食材カテゴリのアイテムは輸出のみのアイテム、輸入のみのアイテムに分
けられるため、アイテムの種類はゲームの世界観を考慮している。輸出アイテムは
木材・生糸・農作物・酒類・水産物と戦前の日本のような農業中心の後進国をイメー
ジし、輸入アイテムは鉄材・宝石・インスタント食品・食玩・畜産物と産業革命後
の工業国をイメージしている。

6.2.2 郵便屋の描画

キャプチャ画面に描画される郵便屋について述べる。郵便屋システムの詳細を図6.2に
示す。

荷物の集積

第5.3.3節で述べたように、郵便屋は画面上に描画されるオブジェクト数を減らし、視
認性を向上するために用いられる。パケットがキャプチャされると、同IPアドレス・同
ポート番号（以下「同属性」とする）のパケットを集積している待機中の郵便屋が検索さ
れ、該当する郵便屋にパケットが集積される。該当する郵便屋が存在しない場合は新たに
待機郵便屋が発生し、以後同属性のパケットはここに集積される。集積されたパケットは
集積数がカウントされると共に、ベイロードのレングス（長さ）が合計され記録される。
一定時間の経過（タイムアウト）、または一定量の集積により郵便屋の待機状態が解除さ
れ、画面に描画される。その際、既に描画されている郵便屋に同属性のパケットを集積し
ているものがある場合、その郵便屋に統合される。
図 6.2: 郵便屋システム

郵便屋アイコンの描画

郵便屋のアイコンは 4 種類のうちランダムに選ばれる。ランダムとした理由は、配達するアイテムの特性によって分類すると画面上を流れるオブジェクトが偏ってしまい、見栄えが悪いかである。郵便屋の背後には集積したバケットの量に応じて法陣が描かれ、魔法陣の大きさを式 6.1 に示す。魔法陣の大きさ \(M \) は初期値を 0.3 倍とし、最大で 1 倍とする。バイロードのレングス合計を \(L_{Total} \) とし、レングス閾値 \(L_{th} \) で除算する。同样にバケット集積カウント合計を \(C_{Total} \) とし、カウント閾値 \(C_{th} \) で除算する。本ソフトウェアでは \(L_{th} \) を 50000、\(C_{th} \) を 100 と設定しているため、レングス合計が 50000 以上、カウント合計が 100 以上の時、魔法陣の大きさは最大となる。

\[
0.3 + \min\left(0.35 \times \frac{L_{Total}}{L_{th}}, 0.35\right) + \min\left(0.35 \times \frac{C_{Total}}{C_{th}}, 0.35\right)
\]

郵便屋の右下及び左上には、配達中のアイテムのアイコンが小さく表示されている。これにより、郵便屋がどのアイテムを集積しているのか把握することが可能である。郵便屋は輸出（送信）の場合右から左に、輸入（受信）の場合右から左へと移動する。
6.2.3 SYNパケットの描画

SYNパケットは、通常のパケットと区別して扱うため、特殊な描画方法を用いる。SYNパケットは郵便屋に集積されず、また郵便屋とは異なる形で描画される。キャプチャ画面に描画されるSYNパケットのサンプルを図6.3に示す。SYNパケットはキャプチャされると画面上に蝶で作られた導線を引き、1秒以内にフェードアウトする。SYNパケットの描画は細く、短時間しか表示されないため、集積しなくても画面の視認性が損なわれることはない。

TCPの通信を行うとまず始めにSYNパケットの導線が引かれ、続いて郵便屋が画面端から登場する。郵便屋が登場せずにSYNパケットのみが大量に描画される場合、ポートスキャンなどの脅威の活動を予測することが可能である。
6.3 ゲームの実装

本節ではゲーム画面及びゲームソフトウェア全体の実装について述べる。ゲーム画面のサムネイルを図6.4に示す。

6.3.1 時間軸の設定

現実時間における1時間を、ゲーム内時間の1年とする。経過年数はパネルごとに記録され、管理される。また、5分毎にゲーム画面左下に表示される暦月が変化する。これによりユーザがプレイ時間を大まかに把握することが可能である。

6.3.2 町の成長

本節では、メインとなる町育成システムについて述べる。町を構成するパネルの概念を説明し、町を成長させる方法について述べる。

パネルとエリア

町は複数のパネルからなり、1エリアに9枚のパネルが存在する。パネルは居住区と商業区の2種類があり、それに応じた建物が建造される。また、資金を消費することで2つのうちどちらかに変化する草原パネル、町の中心に位置し固定される城パネルが存在する。
第 6 章 ソフトウェアの実装

図 6.5: 詳細パルーン

パネルにはレベルが存在し、10 レベル毎に建物の姿が変わる。最大レベルは 30 レベルである。レベルは資金を消費することで手動で上げることができ、建物が変化する 10 レベルごとに消費する金額が上昇する。パネル毎に人口パラメータを持ち、それらの集計がゲーム全体の人口パラメータとしてゲーム画面下部に描かれる。パネル毎の人口の上限は、レベルに依存する。人口は 1 秒毎にランダムで増減する。人口増減は式に示す。人口増減

\[\Delta P = \text{random}(60) - \text{random}\left(\frac{H_{p_{\text{limit}}}}{2} - H_P\right) \]

\[- \text{random}(50) \times \left(0.5 - \frac{H_t}{H_{t_{\text{max}}}}\right) \]

\[- \text{random}(20) \times \left(0.5 - \frac{E_q}{E_{q_{\text{max}}}}\right) \]

商業区の時

\[\Delta P = \Delta P \times 0.2 \]

(6.2)

パネルをクリックすると詳細パルーンが表示され、パネルの種類や人口、レベル、経過年数を調べることができる。また、レベルアップやパネルの破棄も詳細パルーンから行う。詳細パルーンのサンプルを図 6.5 に示す。

- 居住区

居住区は町人が住むためのパネルである。人口を増やしたい場合、居住区パネルを増やす。最大レベル時の人口上限は 10 万人となる。
• 商業区

商業区は住める町人の数が居住区に比べると低く、代わりに人口の10倍が経済力をもつ隱蔽されたパラメータに変換される。最大レベル時の人口上限は1万5千人となる。

• 草原

草原は未定義のパネルである。詳細パルーンから居住区または商業区として定義し、変化させることができる。

• 城

城はゲーム開始時から町の中央に存在する建造物である。城は人口が上下せず、レベルアップもしない。また、新しく作ることも破棄することも不可能である。城をクリックすると、詳細パルーンの代わりにシステムメニューが表示される。

税収と需要供給の増減

一歩每に町の状態が更新され、税収が発生する。税収は人口をベースに、景気パラメータが高いほど増加する。税収計算を式(6.3)に示す。税収Iは環境Ecを景気限界値Eclimitで除算した値に、人口Population、税率Tx、税収補正(0.7)を乗算する。乗算であるため、景気パラメータが0の場合、税収は0となる。

\[I = \frac{Ec}{Eclimit} \times Population \times \frac{Tx}{100} \times 0.7; \] (6.3)

また、同じタイミングで景気パラメータ及び幸福度パラメータの更新が行われる。景気増減式を式(6.4)に示す。景気増減値\(\Delta Ec \)は景気振幅\(Ec_{amp} \)，商業力（商業区の人口×10）MerchantPower，人口Population，及び景気の中庸化効果\(Ec_{middle} \)の複合により決定される。景気振幅は800を根拠値とし、人口Populationを人口閾値(100万)Populationthで割った値に69200を掛けた値を加算する。ただし、最大値は70000となる。景気の中庸化効果\(Ec_{middle} \)は、景気限界値\(Eclimit \)を2で除算した値から景気Ecを減算し、その値を中庸化補正(10000)で除算し決定する。幸福度は景気が変化したパラメータにより、上昇或いは下降する。幸福度増減式を式(6.5)に示す。幸福度増減値\(\Delta Hp \)は幸福度増減最大値\(Hp_{rnd} \)を最大値としたランダム値から10を引いた値である。幸福度増減最大値\(Hp_{rnd} \)は根拠値を0とし、幾つかの条件によって加算される。

\[\Delta Ec = -Ec_{amp} + Ec_{amp} \times \frac{MerchantPower}{Population} + Ec_{middle} \]
\[Ec_{amp} = \min \left(800 + \frac{Population}{Populationth} \times 69200, 70000 \right) \]
\[Ec_{middle} = \frac{Eclimit}{2} - Ec \] (6.4)
\[
\Delta H_p = -10 + random(H_{prnd})
\]
\[
H_{prnd} = 0
\]

景気 > 幸福度 × 1000 の場合 ,+ 20

健康が 100 以上の場合 ,+ 5

犯罪率が 10% 以下の場合 ,+ 5

(6.5)

各アイテムの需要・供給パラメータも 10 秒毎に更新される。供給によって満たされた需要を打ち消し、全ての需要がランダムに若干上昇する。この時、需要が供給を上回る場合、プレミア・エフェクト（品薄による購買意欲の増加）が働き、需要の上昇率が高くなる。どちらの場合も需要の上昇はわずかであるため、ユーザは供給過多とならないよう関税の設定を慎重を行う必要がある。

6.3.3 貿易

貿易が町に及ぼす影響を具体的に述べる。1 つの取引は郵便屋が待機状態を解除し画面に描画された瞬間に成立し、処理が行われる。貿易システムのイメージ図を図6.6に示す。

图6.6: 貿易システム

景気エフェクト

1 つの取引によって発生する景気への影響（以後、景気エフェクトとする）を述べる。景気の増減式を式6.6に示す。景気の増減は輸送された荷物の総量（積載されたパケットの
レングス合計）Amountを基準に行われる。その値に技術力 Techを技術力最大値 Tech_maxで除算した値を乗算し、需要 Demandの3乗を供給 Supplyの3乗で割った値を乗算する。ただし需要が供給を上回る場合、これは1として計算される。これにより、そのアイテムが供給過多の時、景気エフェクトを減少させる。3乗とした理由は、供給の増加に伴って補正値を大きく掛けるためである。

$$\Delta Ec = \frac{Amount}{100} \times \frac{Tech}{Tech_{max}} \times \min \left(\frac{Demand^3}{Supply^3} \times 0.98, 1.0 \right) \times 2.2 \quad (6.6)$$

供給エフェクト

1つの取引によって増加するアイテムの供給パラメータ（以後、供給エフェクトとする）について述べる。景気エフェクトを計算した後、景気エフェクトの数値を供給補正値700で除算し、供給パラメータに加算する。この時、供給パラメータの値が必要パラメータの3倍を上回っていた場合、需要パラメータの3倍の値に調整する。

関税及び需要供給バランスによる実質輸出入量の変化

ユーザが設定した関税により、取引量に補正を掛ける。関税による実質輸出入量の変化を式6.7に示す。関税 Dutyが100G（デフォルト）の時に実質輸出入量 IX_amountは元の輸出入量Amountの1/2となり、0Gにした場合は1になる。関税がデフォルト数値を超えると、取引量は減少していく。関税の上限は5000Gとなるが、上限値の場合でも取引量は0にならない。また、供給パラメータが需要パラメータの3倍以上である場合、取引は停止されアイテムは破棄される。

$$IX_{amount} = Amount \times \frac{1}{2^{Duty/100}} \quad (6.7)$$

6.3.4ユーザのアクション

本ソフトウェアで行える、その他のユーザのアクションをまとめる。いずれのアクションも、城パネルをクリックすることで聞くシステムメニューから選択することができる。システムメニューを図6.7に示す。

関税設定と輸出入量の閲覧

第5.4.3節で述べたように、ユーザはアイテムごとに関税を設定し、輸出入量を調整することができる。関税設定画面にて、ユーザは現在の需要供給パラメータを閲覧しながら設定することが可能である。関税の設定画面を図6.8に示す。緑色のゲージは需要が供給を上回っていることを示し、供給パラメータが増加すると短くなっていく。赤色のゲージ
図 6.7: システムメニュー

図 6.8: 関税設定画面

は供給が必要な上回っていることを示す。赤色のゲージが最大の長さである場合、取引停止となる。また、左上のタブから輸出/輸入量を選択すると輸出入量総計を閲覧することが可能である。

34
新しいエリアの開拓

資金を消費することにより、新しいエリアを開拓することができる。エリアを開拓すると、新たに9枚の草原パネルが出現し、居住区または商業区として定義することが可能である。ゲーム中盤以降はこのエリア開拓を繰り返し、町をより巨大な物にする。エリア開拓画面のサンプルを図6.9に示す。

詳細設定画面

町の運営における様々な情報を閲覧することができる。また、条例の制定やキャンペーンの実施を行うこともできる。条例は貿易の輸出入量に補正値を掛けたり、景気・幸福度パラメータに影響を及ぼしたりといった効果がある。キャンペーンは短期的な需要の増加や輸出入量の調整、特定のエリア・パネルの活性化などといった効果がある。これら能動的なユーザの行動によってゲーム展開を変化させることにより、ユーザのモチベーションを維持することが可能である。

6.3.5 ユーザの補助

本ソフトウェアはユーザがマニュアルを閲覧することなく使用できるように、チュートリアルやアイテム図鑑を内包する。本節ではユーザビリティの向上のために、ユーザが行う補助について述べる。
6.10: チュートリアル画面

チュートリアル

本ソフトウェアでは、ゲーム開始時、及び新規アクションを起こした際にチュートリアルが表示される。チュートリアルは説明文のみだとユーザが読取れない可能性があるため、登場人物に台詞を喋らせることにより、ゲーム要素の一環としてユーザに提示し理解を促す。チュートリアルのサンプルを図6.10に示す。

チュートリアルが長期に渡るとユーザのモチベーションが下がるため、チュートリアルは一度にすべて表示せずに、ユーザが新しいアクションを行った場合に適宜表示する。例えばパネルのレベルアップやエリア開拓画面の閲覧、需要バラメータが供給を大幅に上回った時などが挙げられる。また、チュートリアル内で説明されたアクションはチュートリアルを閉いたまま行うことが可能であるため、その場で試行することにより理解を深めることができる。

アイテム図鑑

貿易したアイテムがコンピュータの状況とどう結びついているか説明するため、アイテム図鑑を内包した。アイテム図鑑は常に呼び出すことができる他、関税設定画面や貿易画面ではアイテムの画像にカーソルを合わせ右マウスボタンを押すことにより、選択したアイテムの説明を閲覧できる。アイテム図鑑のサンプルを図6.11.12に示す。また、図鑑の説明文はできるかぎり専門用語を除いた文章になっているため、一般ユーザでも理解が可能である。
第6章 ソフトウェアの実装

図 6.11: アイテム図鑑 1

図 6.12: アイテム図鑑 2

6.4 まとめ

本章では、ソフトウェアの具体的な実装について述べた。開発環境及び動作環境を示し、視覚化であるキャプチャ画面、そしてゲームの主要部分であるゲーム画面について述
第6章 ソフトウェアの実装

べた。視覚化の実装ではアイテムを大まかにカテゴライズし、パケットを属性によって割り振った。また、郵便屋の挙動と描画方法についても述べた。ゲームの実装では町の成長におけるシステムについて述べ、貿易によるゲーム進行への具体的な影響を示した。そして、ユーザーの実行できるその他のアクションと、ユーザビリティの補助について述べた。本章で実装したソフトウェアのスクリーンショットや仕様を付録に示す。
第7章 評価及び考察

本章では，第6章で実装したソフトウェアの性能を測定し，評価する．第三者によるテストプレイを実施し，ユーザの意識向上におけるソフトウェアの効果を評価する．評価を行った後，結果を考察する．

7.1 実施環境及び実施項目

本論文では，第三者によるソフトウェアの使用を主軸として評価を行う．実行環境は開発環境と同じであるWindowsXP SP3を用いる．被験者は研究室に所属する学生及び知人数十名を対象とする．被験者はコンピュータに詳しいものからそうでないものまで多様である．評価は被験者のソフトウェア使用を客観的に評点するものと，被験者自身がソフトウェアを評点するものの二つから成る．

7.2 テストプレイヤーの行動評価

ソフトウェアの理解度，ソフトウェアを通じたコンピュータ状況の理解度をソフトウェア使用時の行動から評点する．また，ユーザの意識改革における論点であった，抽象化，興味の喚起，そして継続性に関してもそれぞれ評価し，ゲーム化そのものの意義を評点する．評価には6つの項目を用いる．各項目ごとに0点から始め，より高い得点のチェックポイントを被験者が達成するごとに点数が上昇する．いずれの項目も4点以上を獲得することで，その項目にて掲げられたテーマについて達成されていることを示す．被験者は12名を対象とし，ゲームプレイを後ろから観測することにより評点した．評価時間は10分を目安とした．

7.2.1 テスト結果

本節ではテストの結果を示す．また，結果の詳細は付録C.1に示す．

ソフトウェアの理解

ユーザがソフトウェアの使用方法を理解しているか評価する．これにより，ソフトウェアのユーザビリティを測定すると共に，ソフトウェアそのものの効果がどの程度ユーザに
伝わっているか評価する。平均点は4.17点であり、6人の被験者が5点を獲得した。ソフトウェアの理解についてはチュートリアルがユーザの補助を果たし、多くの被験者が口頭での説明が必要としなかった。このことから、ソフトウェアのユーザビリティについて、本ソフトウェアは目標とした水準を満たしているといえる。

コンピュータ状況の把握

ユーザがコンピュータの状況を把握できているか評価する。平均点は4.17点であり、点数は3点、4点、5点にそれぞれほぼ均等に分布した。本ソフトウェアは長期的な利用を目的としているが今回の評価時間は比較的短かったため、ソフトウェアの正確な効果を測定するにはより長期的な評価を行う必要があると推測される。ただし平均点は4点を超えているため、本ソフトウェアを用いたコンピュータ状況の把握は目標値を上回っている。

オブジェクトの抽象化

抽象化したオブジェクトについてユーザの理解度を評価する。平均点は4.08点であり、点数は4点を中心として5点、3点に分布した。抽象化については成功しているものの、抽象化元のオブジェクトを理解するためにはより多くの評価時間が必要であると考える。平均点は4点を超えており、ソフトウェアが行った概念・用語の抽象化は十分であるといえる。

興味の喚起

ユーザがソフトウェアによって興味を喚起されたか評価する。平均点は3.58点と他の項目より比較的低い。多くの被験者はゲームの方針を理解しソフトウェアを積極的に利用したものので、続続した使用への意欲は十分でなかった。これはゲームが長期的なプレイ時間を想定したものであることと、多様なコンテンツの不足に起因すると考えられる。

使用期間の長期化

ユーザのコンテンツ消費が長期的であるか評価する。本論文におけるコンテンツ平均点は4.08点であり、多くの被験者はコンテンツをほとんど消費しなかった。ただし、消費率は全てのコンテンツを一元的に表した時の消費率であるため、必ずしも消費していないコンテンツがユーザの興味を引き続けるわけではない。平均点は4点を超えているため、本ソフトウェアの使用期間の設定は方針に即しているといえる。
ゲーム形態の効果

ソフトウェアをゲーム形態とした効果が表れているか評価する。平均点は4.75点と高く、多くのプレイヤーがゲームプレイを通してコンピュータの状況を理解するに至っている。このことから、ソフトウェアをゲーム形態としたことは、ソフトウェアの利用に大きく結びついており、ソフトウェアのゴールを達成するために有用である。

7.2.2　考察

テストプレイを通じた被験者の行動評価において、各項目の平均点はいずれも水準を満たしており、6項目中5項目は高い評価を得た。興味の喚起については第5章で示した通り最も興味を惹きにくいゲーム形態であるため、短期的な評価時間では比較的低い評点となったが、評価時間の長期化やコンテンツの強化により、補うことができると考える。特にゲーム形態の効果については高い評点を得ており、ソフトウェアをゲーム化したことによる効果がうかがえる。

7.3　第三者による評点

ソフトウェアの理解度や抽象化を行動評価と同じ6項目で示し、ユーザが評点する。また、理解度の指標の一つとして、Webページの閲覧にて取得されるアイテムの名称を答えてもらった。被験者は35名を対象とし、10分程度のソフトの試用を経て、評点用紙またはGoogle Docsのフォーム機能を用いて行った。結果の詳細を付録に示す。図はGoogle Docsにて自動生成されたものを用いた。

7.3.1　ソフトウェアの使用方法は理解できたか

出力されたグラフを図に示す。概ね問題ないを選択した被験者が最も多く、幾つか理解できなかった事項があることを示している。しかしチュートリアルを受けても理解できないと答えた被験者は一人のみであり、ソフトウェアのユーザビリティ設計は目標の水準を満たしているといえる。

7.3.2　コンピュータの状況は把握できたか

出力されたグラフを図に示す。35人中27人が5点、4点と評価しており、貿易画面・ゲーム画面両方が有効であることを示している。また、3点以下と評価したプレイヤーも長期的にソフトウェアを使用した場合理解度は変化するため、コンピュータ状況の把握における本ソフトウェアの効果に期待できる。

41
7.3.3 Webページを開覧するとどのアイテムを入手することができるか

結果を表(C.2)に示す。35人中29人が正解した。また、不正解だった被験者も無回答は存在せず、何らかのアイテムをアクションと結び付けるよう努力したことが窺える。自発的にコンピュータの状況を把握することを目的とした本ソフトウェアにとって、この傾向は望ましいものである。

<table>
<thead>
<tr>
<th>書籍、学術書</th>
<th>29人</th>
<th>82.8%</th>
</tr>
</thead>
<tbody>
<tr>
<td>その他</td>
<td>6人</td>
<td>17.2%</td>
</tr>
</tbody>
</table>

7.3.4 オブジェクトの意味は理解できたか

出力されたグラフを図(C.3)に示す。27人の被験者が4点及び3点と評価した。オブジェクトの抽象化は有効だが、元の概念との結び付けが不十分であることが窺える。ただし、本ソフトウェアは長期的に利用することを目的としているため、評価時間を長期化することで解決する可能性がある。
7.3.5 ソフトへの興味を抱いたか
出力されたグラフを図C.4に示す。最も多い選択肢は今後の発展に期待するであり、ソフトウェア本体の魅力が不足していることを示した。2点以下を評点した被験者は少なかったため、今後のコンテンツ強化やゲーム性の向上などで対応する。

図7.4: ソフトへの興味を抱いたか

7.3.6 コンテンツの消費にはどの程度の時間がかかるか
出力されたグラフを図C.5に示す。結果は均一ではなく、短い評価時間で正確に判断できなかったことが伺える。2点以下を付けた被験者に対してはソフトウェア自体のコンテンツの多様さや魅力が不足していることが窺えるため、ソフトウェアの発展が必要である。

図7.5: コンテンツの消費にはどの程度の時間がかかるか

7.3.7 ゲーム形態の効用は認められるか
出力されたグラフを図C.6に示す。5点の項目が最も多く選ばれ、多くの被験者がソフトウェアをゲーム形態とすることの効用を認めた。また、3点以上に35人中34人が集中
7.3.8 考察

いずれの項目も平均点は行動評価と同様に3点を超え、ソフトウェアに対し高い評価が
為されている。ただし、コンテンツの多様性の不足が招いたと思われる、費用の喚起不足
や、コンテンツ消費時間予測の短期化が見られるため、今後の課題とする。また、評価時
間が短く、一部正確な効果の計測ができていないため、数日間の試用期間が今後の評価時
の要因となる。

7.4 全体の考察

2つの評価を終えた上で、考察を行う。ソフトウェアのゴールとして設定した、通信の
種類の理解については、それをオブジェクトとして抽象化しゲーム要素に用いた本ソフト
ウェアの使用方法を70%の被験者が把握したため、達成しているといえる。また、そのア
プローチとして用いた専門用語や概念の抽象化及び別のオブジェクトへの置き換えは一定
第7章 評価及び考察

の効果を示し、セキュリティの知識が無い被験者もパケットモニタリングを内包する本ソフトウェアを扱うことができた。

ただし、興味の喚起やコンテンツ消費期間については課題が残る。メインである町育成要素に関しては短時間で消費することは不可能である。しかし、それ以外の消費コンテンツが存在しないため、単純な町育成に飽きてしまうユーザの出現在推測できる。コンテンツを強化し、多様な成長要素を複合させてゲームを進行させることにより、これを解決すると共にユーザのソフトウェア使用の意欲を維持し続ける。パケットモニタリングソフトウェアとゲームソフトウェアの融合というコンセプトに関しては行動評価・被験者による評点共に高い評価を得ており、その有効性を示した。

7.5 まとめ

本章では実装したソフトウェアの効果を測定するため、第三者の利用を通した評価を行った。テストプレイヤーの行動評価では被験者の行動を客観的に観測し、評点した。第三者による評点では被験者自身がゲームを評価し、点数を付けた。いずれもソフトウェアの理解やコンピュータ状況においては高評価を得たが、興味の喚起やプレイ時間に関してはやや低い評価が付いた。今後はコンテンツの多様性の強化やゲーム性の向上が課題となる。
第8章 結論

本章では、本論文の成果をまとめ、今後の展望を述べる。

8.1 本論文のまとめ

本論文の目的は、一般ユーザのセキュリティに対する意識を向上するために、キャプチャしたパケットをパラメータとして用いたゲームソフトウェアの設計・実装である。今日のインターネット社会において、一般ユーザのセキュリティ意識の低下が問題となっている。本論文はユーザの受動的なセキュリティ意識に着目し、ユーザのセキュリティ意識向上を図った。具体的には、ネットワークトラフィックを観察したことがなかった一般ユーザにネットワーク状況を意識させると共に、ユーザの取るアクションによって様々な種類の通信が行われることを認識させることである。そこで、一般ユーザのセキュリティ対策の学習における問題点である、専門用語や概念を抽象化し、別のオブジェクトに置き換えたパケットモニタリングソフトウェアを実装した。また、ソフトウェアをゲームと複合させることにより、興味の喚起と継続した使用を目指した。

ソフトウェアは幾つかのゲーム形態を考察した後、シミュレーションゲームの一つである育成ゲームとして設計した。育成ゲームはコンテンツの消費に時間がかかるため、ユーザがより長期間に渡ってソフトウェアを使用することで継続的に学習が可能である。通信の概念は町育成における外部との貿易として表現し、通信パケットを輸送物とすることにより、ユーザは通信の概念や専門用語を意識することなく、ゲーム要素の理解のみでそれらを把握することが可能となった。

また、実装したソフトウェアを実際に使用し、評価実験を行った。35名を被験者とし、そのうち一部の被験者の行動を観測して評点する行動評価と、被験者自身によるソフトウェアの評点を行った。70％以上の被験者がソフトウェアをマニュアルや特別な学習なしで利用することができ、ネットワークの状況を把握することができた。また、抽象化したオブジェクトに関しても88％の被験者がゲーム要素として理解したが、抽象化前の概念と通信の情報を十分に学習出来たとは言い難い。興味の喚起及びプレイ時間においては十分でなく、今後の課題としてコンテンツの強化が挙げられた。セキュリティと娯楽性の融合に対し、多数のユーザは好意的な点数を付け、本論文の掲げたコンセプトが有効であることを示した。
8.2 今後の展望

本論文の成果をもとに、ソフトウェアを更に改良することが望まれる。視覚化においては、現状だと通信の流れを漠然とユーザが眺めているため、低頻度の通信の特殊表現や特徴的なパケットの表現など、よりユーザが直感的に通信の特徴を理解できる描画を目指す。また、現在は通信パケットのみをモニタリングの対象として挙げているが、今後はこれを拡張することにより、より多くの情報をユーザが把握できる仕様を目指す。例えば本論文では扱わなかったペイロードの解析は、より詳細なパケットのカテゴライズを可能とする。

評価及び考察で十分でないとしたコンテンツの多様性についても強化する。具体的には資金パラメータを用いた様々なアクションや、定期的な特殊イベントの発生などが挙げられる。また、本論文のソフトウェアでは環境の違いによる町の差異が明確に現れないため、建物の種類を増やすなどして対応する。町の差異を表現できた場合、他のユーザとの通信や対戦も視野に入れることができる。これによって、町の成長だけではない多様な要素がゲーム進行において複合し、ユーザのモチベーションを維持することが可能である。本論文では評価手法として第三者による使用を主軸にした定性評価を行ったが、評価手法についても更に検討し、よりソフトウェアの効果が正確に測定できる評価を行う必要がある。また、評価時間も十分でなかったため、少なくとも数日の試用期間を準備する必要がある。これらの改良により、最終的にこのソフトウェアを世間一般に発布し、社会全体のセキュリティ意識向上を目指す。
謝辞

本論文の作成にあたり，ご指導頂いた慶應義塾大学環境情報学部学部長 村井 純博士，
同学部教授 徳田 英幸博士，同学部教授 中村 修博士，同学部准教授 楠本 博之博士，同学
部准教授 高汐 一紀博士，同学部准教授 三次 仁博士，同学部准教授 植原 啓介博士，同学
部専任講師 重近 範行博士，同学部専任講師 中澤 仁博士，同学部専任講師 Rodney D.Van
Meter III 博士，同学部教授 武田 圭史博士に感謝致します．特に武田圭史博士は，常に
私の研究について的確な助言をして下さりました．私の知りえなかった知識や経験を借り
げもなく語って下さり，問題への新しい視点や取り組み方をご指導いただきました．本当に
ありがとうございます．

そして本研究を進めていく上で，様々な激励と助言をいただきました，慶應義塾大学大
学院政策メディア研究科博士研究員 水谷 正慶博士，同学部 上原 雄貴氏，同学部 重松 邦
彦氏，慶應義塾大学環境情報学部卒業生 朝永 愛子氏に感謝致します．特に上原 雄貴氏
は，修士の研究や論文の執筆，学会発表などで多忙な身にも関わらず，親身に相談に乗っ
ていただき，研究の方向性や研究発表のやり方など様々な点で面倒を見ていただきまし
た．氏無しでは卒論執筆や二年半に渡る充実した研究生活を送ることはできませんし
た．本当に感謝致します．

研究に協力をしていただいた，鴻野 弘明氏，中島 明日香氏，碓井 利宜氏，山本君，鎌
田 和大氏，相見 眞男氏，中井 研氏，吉原 大道氏と德田・村井合同研究室の皆様に感謝
致します．

また，研究室で苦楽を共にした梅田 昂翔氏，Doan Viet Tung氏，藤原 龍氏に感謝致
します．彼らと一緒に研究をすることで互いに切磋琢磨しあい，質の高い研究の議論をす
ることが出来ました．

研究物である「執事戦争」の製作にグラフィッカーとして協力して頂いた，山口 直人氏
に感謝致します．彼の力無しではこの作品は完成することはありませんでした．また彼と
共にソフトウェアを作ることで，研究のモチベーションも高く維持し続けることができま
した．

最後に，大学入学からの4年間だけでなく22年間をあらゆる面で支えていただいた母，
福岡 弘美，父，福岡 智彦と私の家族に心から感謝致します．
参考文献

[4] 偽装セキュリティツール - wikipedia. http://ja.wikipedia.org/wiki/%E5%81%BD%E8%A3%85%E3%82%BB%E3%82%AD%E3%83%A5%E3%83%AA%E3%83%86%E3%83%82%E3%83%84%E3%83%8B%E3%83%AB 12 2010.

第8章 結論

付録A 実装の詳細な仕様

A.1 アイテムの割り当て
表 A.1: アイテムの割り当て詳細 1

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>アイテム名</th>
<th>割り当てる通信の属性</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑貨</td>
<td>書籍</td>
<td>HTTP</td>
</tr>
<tr>
<td></td>
<td>学術書</td>
<td>HTTPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMTPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NNTPS</td>
</tr>
<tr>
<td></td>
<td>手紙</td>
<td>SMTP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POP3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IMAPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POP3S</td>
</tr>
<tr>
<td></td>
<td>旅行鞄</td>
<td>MESSANGER</td>
</tr>
<tr>
<td></td>
<td>音楽 CD</td>
<td>FTP</td>
</tr>
<tr>
<td></td>
<td>ゲームソフト</td>
<td>P2P</td>
</tr>
<tr>
<td></td>
<td>新聞紙</td>
<td>IRC</td>
</tr>
<tr>
<td></td>
<td>機密書類</td>
<td>SSH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telnet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DNS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCHP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NNTP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NETBIOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UPnP</td>
</tr>
<tr>
<td>布類</td>
<td>WELL KNOWN PORT (SEND)</td>
<td></td>
</tr>
<tr>
<td>杂誌</td>
<td>WELL KNOWN PORT (RECV)</td>
<td></td>
</tr>
<tr>
<td>薬品</td>
<td>RPC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>File Sharing</td>
</tr>
<tr>
<td>高級宝石</td>
<td></td>
<td>NON TCP and NON UDP</td>
</tr>
<tr>
<td>同人ゲーム</td>
<td>Registered by User</td>
<td></td>
</tr>
<tr>
<td>不思議な荷物</td>
<td></td>
<td>DropBox</td>
</tr>
</tbody>
</table>
表 A.2: アイテムの割り当て詳細 2

<table>
<thead>
<tr>
<th>カテゴリー</th>
<th>アイテム名</th>
<th>割り当てる通信の属性</th>
</tr>
</thead>
<tbody>
<tr>
<td>素材</td>
<td>木材</td>
<td>TCP (SEND) Registered Port Number</td>
</tr>
<tr>
<td></td>
<td>鉄材</td>
<td>TCP (RECV) Registered Port Number</td>
</tr>
<tr>
<td></td>
<td>生糸</td>
<td>TCP (SEND) Dynamic Port Number</td>
</tr>
<tr>
<td></td>
<td>宝石</td>
<td>TCP (RECV) Dynamic Port Number</td>
</tr>
<tr>
<td>食材</td>
<td>農産物</td>
<td>UDP (SEND) Registered Port Number with Port 12800</td>
</tr>
<tr>
<td></td>
<td>インスタント食品</td>
<td>UDP (RECV) Registered Port Number with Port 12800</td>
</tr>
<tr>
<td></td>
<td>酒類</td>
<td>UDP (SEND) Registered Port Number with Port 12800</td>
</tr>
<tr>
<td></td>
<td>食玩</td>
<td>UDP (RECV) Registered Port Number with Port 12800</td>
</tr>
<tr>
<td></td>
<td>水産物</td>
<td>UDP (SEND) Dynamic Port Number</td>
</tr>
<tr>
<td></td>
<td>畜産物</td>
<td>UDP (RECV) Dynamic Port Number</td>
</tr>
</tbody>
</table>
付録B ソフトウェア内容

B.1 ソフトウェア仕様
ソフトウェアタイトル：執事戦争
ジャンル：町育成ゲーム
開発環境：Windows XP SP3
開発言語：C++
使用ライブラリ：WinPCap，DirectX
ソースコードサイズ：147,965 バイト
プログラム・UI デザイン：福岡 英哲
グラフィック：山口 直人
B.2 ソフトウェアスクリーンショット
付録 B ソフトウェア内容
付録 B ソフトウェア内容

エリア情報
・未開拓エリア
・開拓済エリア
・選択中

詳細情報
文月
総人口 16407人
総兵力 416
総人口 7684
総兵力 1189

出/入荷
農作物
12000箱以上の輸出便
ゲームや動画配信など

総人口 16498人
付録C 評価項目

C.1 テストプレイヤーの行動評価

<table>
<thead>
<tr>
<th>点数</th>
<th>評点指標</th>
<th>人数</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>ゲームの仕組みを理解し、詳細な操作を行うことができる</td>
<td>6人</td>
</tr>
<tr>
<td>4</td>
<td>パネルの操作や、関税の設定を行うことができる</td>
<td>3人</td>
</tr>
<tr>
<td>3</td>
<td>全てのチュートリアルを終了し、貿易画面とゲーム画面を自由に行き来した</td>
<td>2人</td>
</tr>
<tr>
<td>2</td>
<td>ゲーム内でアクションを起こし、自力で全てのチュートリアルに辿り着いた</td>
<td>1人</td>
</tr>
<tr>
<td>1</td>
<td>冒頭チュートリアルを終了することができた</td>
<td>0人</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ユーザがコンピュータの状況を把握しているか</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>通信と発生する貿易アイテムをバインドし、理解している</td>
</tr>
<tr>
<td>4</td>
<td>貿易画面とゲーム画面を行い来し、関税の設定を行っている</td>
</tr>
<tr>
<td>3</td>
<td>貿易画面の意味を理解し、郵便屋にカーソルを当てている</td>
</tr>
<tr>
<td>2</td>
<td>貿易画面をチュートリアル以外に閲覧した</td>
</tr>
<tr>
<td>1</td>
<td>ソフトウェアの方針を理解した</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ソフトウェアの十分な抽象化はなされているか</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>オブジェクトの意味を自由的にアイテム図鑑で調べ、ゲームを進行している</td>
</tr>
<tr>
<td>4</td>
<td>いくつかのオブジェクトを実際の通信と結び付け理解している</td>
</tr>
<tr>
<td>3</td>
<td>オブジェクトの意味を理解した上で、ソフトウェアを使用できている</td>
</tr>
<tr>
<td>2</td>
<td>抽象化されたオブジェクトが通信を表すことを把握している</td>
</tr>
<tr>
<td>1</td>
<td>与えられたオブジェクトに疑問を持つことなく受け入れた</td>
</tr>
</tbody>
</table>
ユーザがソフトに興味を抱いているか

<table>
<thead>
<tr>
<th>番号</th>
<th>内容</th>
<th>人数</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>評価終了後も継続した使用が見込まれる</td>
<td>2人</td>
</tr>
<tr>
<td>4</td>
<td>積極的にソフトウェアを利用する様子が伺える</td>
<td>4人</td>
</tr>
<tr>
<td>3</td>
<td>ゲームの方針を理解し、娯楽としてソフトウェアを扱っている</td>
<td>5人</td>
</tr>
<tr>
<td>2</td>
<td>積極的にゲーム内のアクションを試している</td>
<td>1人</td>
</tr>
<tr>
<td>1</td>
<td>冒頭のチュートリアルを終了し、ソフトを使用する意欲がある</td>
<td>0人</td>
</tr>
</tbody>
</table>

ソフトウェアの使用期間は長期的であるか

<table>
<thead>
<tr>
<th>番号</th>
<th>内容</th>
<th>人数</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>ユーザがコンテンツを消費するにはより多くの時間が求められる</td>
<td>6人</td>
</tr>
<tr>
<td>4</td>
<td>ユーザのコンテンツ消費は短期的ではないことが見込む</td>
<td>2人</td>
</tr>
<tr>
<td>3</td>
<td>少なくとも数日間の使用が見込む</td>
<td>3人</td>
</tr>
<tr>
<td>2</td>
<td>少なくとも数時間の使用を見込む</td>
<td>1人</td>
</tr>
<tr>
<td>1</td>
<td>評価中にコンテンツを消費していない</td>
<td>0人</td>
</tr>
</tbody>
</table>

ソフトウェアをゲーム形態とした効果は現れているか

<table>
<thead>
<tr>
<th>番号</th>
<th>内容</th>
<th>人数</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>ゲームプレイを通じてバケットの流れを意識することに成功している</td>
<td>9人</td>
</tr>
<tr>
<td>4</td>
<td>ユーザはゲーム部分に興味を惹かれている</td>
<td>3人</td>
</tr>
<tr>
<td>3</td>
<td>セキュリティに心配の薄い者がセキュリティソフトを扱うことに成功している</td>
<td>0人</td>
</tr>
<tr>
<td>2</td>
<td>ソフトウェアを学習ソフトではなく、ゲームソフトとして理解している</td>
<td>0人</td>
</tr>
<tr>
<td>1</td>
<td>ユーザがソフトウェアに興味を示している</td>
<td>0人</td>
</tr>
</tbody>
</table>
C.2 第三者による評点

<table>
<thead>
<tr>
<th>ソフトウェアの使用方法は理解できたか</th>
<th>人数</th>
</tr>
</thead>
<tbody>
<tr>
<td>問題なくソフトウェアを使用できている</td>
<td>5人</td>
</tr>
<tr>
<td>概ね問題ない</td>
<td>20人</td>
</tr>
<tr>
<td>別途TXTによる説明や口頭での教示必要</td>
<td>9人</td>
</tr>
<tr>
<td>チュートリアルを受けても理解難しい</td>
<td>1人</td>
</tr>
<tr>
<td>理解が難しく、使用は見込めない</td>
<td>0人</td>
</tr>
</tbody>
</table>

図C.1: ソフトウェアの使用方法は理解できたか

<table>
<thead>
<tr>
<th>コンピュータの状況は把握できたか</th>
<th>人数</th>
</tr>
</thead>
<tbody>
<tr>
<td>貿易画面・ゲーム画面双方を利用しコンピュータ状況を把握している</td>
<td>10人</td>
</tr>
<tr>
<td>貿易画面・ゲーム画面の閲覧により適宜把握することができる</td>
<td>17人</td>
</tr>
<tr>
<td>貿易画面の閲覧により何となく理解することができる</td>
<td>6人</td>
</tr>
<tr>
<td>通信の観測はできたが、何が起きているかは良くわからない。</td>
<td>2人</td>
</tr>
<tr>
<td>オブジェクトの意味が理解できず、把握は難しい</td>
<td>0人</td>
</tr>
</tbody>
</table>
図 C.2: コンピュータの状況は把握できたか

<table>
<thead>
<tr>
<th>Web ページを閲覧するとどのアイテムを入手することが出来るか</th>
<th>29人</th>
<th>82.8%</th>
</tr>
</thead>
<tbody>
<tr>
<td>その他</td>
<td>6人</td>
<td>17.2%</td>
</tr>
</tbody>
</table>

図 C.3: オブジェクトの意味は理解できたか

<table>
<thead>
<tr>
<th>オブジェクトの意味は理解できたか</th>
<th>4人</th>
<th>15人</th>
<th>12人</th>
<th>4人</th>
<th>0人</th>
</tr>
</thead>
<tbody>
<tr>
<td>通信の概念も含めて理解が可能である</td>
<td>通</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
付録 C 評価項目

ソフトへの興味を抱いたか

<table>
<thead>
<tr>
<th>番号</th>
<th>内容</th>
<th>数</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>継続した利用をしたいと思う</td>
<td>8 人</td>
</tr>
<tr>
<td>4</td>
<td>使用する十分な動機を満たしている</td>
<td>8 人</td>
</tr>
<tr>
<td>3</td>
<td>興味深いため今後の発展に期待する</td>
<td>18 人</td>
</tr>
<tr>
<td>2</td>
<td>自分以外の者なら興味をそそられるかもしれない</td>
<td>1 人</td>
</tr>
<tr>
<td>1</td>
<td>全く興味をそそられない</td>
<td>0 人</td>
</tr>
</tbody>
</table>

图 C.4: ソフトへの興味を抱いたか

コンテンツの消費にはどの程度の時間がかかりそうか

<table>
<thead>
<tr>
<th>番号</th>
<th>内容</th>
<th>数</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>一ヶ月以上</td>
<td>13 人</td>
</tr>
<tr>
<td>4</td>
<td>一週間</td>
<td>11 人</td>
</tr>
<tr>
<td>3</td>
<td>数日</td>
<td>8 人</td>
</tr>
<tr>
<td>2</td>
<td>一日</td>
<td>2 人</td>
</tr>
<tr>
<td>1</td>
<td>既に飽きてしまった</td>
<td>1 人</td>
</tr>
</tbody>
</table>
図 C.5: コンテンツの消費にはどの程度の時間がかかっているか

<table>
<thead>
<tr>
<th>ゲーム形態の効用は認められるか</th>
<th>数</th>
</tr>
</thead>
<tbody>
<tr>
<td>ゲームデザインとして優れていると思う</td>
<td>19人</td>
</tr>
<tr>
<td>セキュリティに興味はなかったが、良い取っ掛かりとなった</td>
<td>8人</td>
</tr>
<tr>
<td>無いよりはマシであると思う</td>
<td>7人</td>
</tr>
<tr>
<td>あまり効果を感じられない</td>
<td>1人</td>
</tr>
<tr>
<td>全く効果はない</td>
<td>0人</td>
</tr>
</tbody>
</table>

図 C.6: ゲーム形態の効用は認められるか