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Abstract

Efficient Data Collection Protocol for Wireless

Sensor Networks with Mobile Sink Nodes

Summary

In recent years, Wireless Sensor Networks (WSNs) are becoming increasingly

popular, and as a result, various kinds of WSN applications have been proposed. In

the meantime, due to the spread of mobile devices, such as, PDAs and smartphones,

users are now able to collect sensor data directly from WSNs. Since sensor nodes

have severe constraint on resources, it is important to collect data efficiently. Agility

in detecting link qualities is also essential, because qualities of links among mobile

nodes change rapidly.

This thesis proposes CTDCP (Clustered-Tree Data Collection Protocol), a data

collection protocol, and ALQDP (Agile Link Quality Detection Protocol), a link

quality detection protocol. CTDCP leverages clustered-tree structure to improve

both scalability and data collection efficiency. It further provides two key mecha-

nisms: bypass tree, which minimizes the overhead of route construction and data

collection, and broadcast-based routing, which reduces the number of data and ac-

knowledgement packets. ALQDP employs linear regression to quickly detect link

qualities, which enables mobile sink nodes to select most suitable paths upon the

discovery of a new node.

We evaluate CTDCP and ALQDP in the real world environment and in sim-

ulation. The real world evaluation proves that, in comparison to Collection Tree

Protocol and Four Bit Link Estimator, CTDCP and ALQDP 1) reduce energy

consumption by approximately 35%, 2) decrease the path length and the number

of retransmissions, and improve packet delivery ratio by about 2.5%, and 3) re-

quire roughly 2,200 bytes of RAM. Through simulation evaluation, in comparison

to Sidewinder, the combination of CTDCP and ALQDP 1) reduces the number

of transmissions per each source by approximately 43%, and 2) improves packet

delivery ratio by about 3.6%. In spite of its large storage usage, the magnitude of

improvement in packet delivery performance and overhead reduction is significant.

Accordingly, it is proven that proposed protocols outperform existing protocols in

terms of data collection efficiency. Our future work is maximizing the data collec-

tion performance by dynamically forming clusters, and improving the accuracy and

flexibility of link quality estimation.
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修士論文要旨 2011年度 (平成23年度)

無線センサネットワークにおけるモバイルシンクノードの
ためのデータ収集プロトコル

論文要旨

近年，複数の無線センサノードを利用し，構築したネットワーク (WSN: Wireless

Sensor Network)を用いるアプリケーションが提案，実装されている．また，PDAや
スマートフォンなどのモバイルデバイスの普及により，ユーザがWSNから直接デー
タを収集することが可能となっている．一方，センサノードの資源は厳しく制限され
ているため，データを効率的に収集することが重要な課題とされている．また，モビ
リティを持つノード間のリンクの品質は激しく変化するため，それを迅速に検知する
必要がある.

本論文では，データ収集プロトコル，CTDCP (Clustered-Tree Data Collection

Protocol)，及びリンク品質検知プロトコル，ALQDP(Agile Link Quality Detection

Protocol)を提案する．CTDCPでは，クラスタ化されたツリー構造を用いることで，
高いデータ収集効率とスケーラビリティを達成している．さらに，CTDCPでは 2つ
のメカニズム，bypass treeとブロードキャストベースのルーティングを活用するこ
とで，ツリー構造のオーバーヘッド，及び送受信されるパケット数を削減している．
ALQDPでは機械学習を用いることで，迅速かつ高い精度でリンクの品質を検知し，
モビリティを持つノードに最適なパスを提供している．
本論文では，実環境，及びシミュレーションでの評価を行った．実環境での評価

を通じ，Collection Tree Protocolと Four Bit Link Estimatorと比較し，CTDCP

と ALQDPが，1) 電力消費量を約 35%削減，2) ホップ数，再送数の削減，並びに
パケット配送率を約 2.5%向上，及び 3) 約 2,200バイトの RAMを要することが実証
された．また，シミュレーションの評価を通じ，Sidewidnerと比較し，CTDCPと
ALQDPが，1) 送信される総パケット数を約 43%削減，及び 2) パケット配送率を約
3.6%向上したことが証明された．評価結果から，提案手法がストレージを必要とす
る半面，オーバーヘッドの大幅な削減，及び高いパケット配送率を実現することが証
明された．今後の展望として，最適なクラスタを動的に構成する手法の提案，並びに
リンク品質検知の精度，柔軟性の向上を行う．

キーワード：
1 無線センサネットワーク 2 データ収集プロトコル 3 リンク品質検知プロトコル
4 クラスタツリー

慶應義塾大学大学院 政策・メディア研究科
米川 賢治
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Chapter 1

Introduction

In recent years, wireless sensor networks is becoming increasingly popular,

and various kinds of applications have been proposed. In this chapter, we

present the background, motivation and objective of the research, followed

by the organization of the thesis.

1.1 Background

Recent advances in micro electro-mechanical system (MEMS) have lead to

the miniaturization of sensor nodes. In addition, growth of wireless tech-

nologies provides low-energy, low-power wireless communication ability to

the sensor nodes. As a result, many researchers have been proposing and

implementing applications using wireless sensor networks (WSNs), which

consist of hundreds of wireless sensor nodes.

Spread of wireless sensor nodes, PDAs, and smartphones allowed users

to utilize them to collect sensor data directly from WSNs. Meanwhile, since

wireless sensor nodes are designed to be small and cheap, they have severe

constraint on resources, such as, CPU, memory, storage and energy source.

Hence, various kinds of protocols have been proposed to efficiently collect

sensor data from WSNs to sink nodes.

1.2 Motivation and Objective

This thesis proposes a data collection protocol which allows sink nodes to

efficiently collect sensor data from WSNs. The proposed protocol aims to

collect sensor data with high delivery ratio and small overhead. It is im-

portant to achieve high efficiency when collecting data, especially in WSNs,

because sensor nodes have severe constraint on resources.

1



CHAPTER 1. INTRODUCTION

When collaborating mobile sink nodes with WSNs, efficiency and agility

becomes additionally important. Although sensor nodes utilize low-energy,

low-power radio chips, wireless communication consumes large amount of

energy compared to other operations, such as calculation, sensing and stor-

ing data. Therefore, it is important to minimize the number of packets

required to aggregate sensor data to sink nodes. The proposed protocol

is designed to minimize not only the number of control packets, but also

data packets by utilizing clustered-tree structure. In order to achieve high

agility, we propose a link quality detection protocol which quickly detects

the qualities of links among nodes.

This thesis describes the design and implementation of two protocols.

One of them is a data collection protocol named Clustered-Tree Data Col-

lection Protocol (CTDCP), which efficiently collects sensor data to multiple

mobile sink nodes leveraging clustered-tree structure. Another is a link

quality detection protocol named Agile Link Quality Detection Protocol

(ALQDP), which quickly detects the qualities of links by utilizing estima-

tion based on the history of data. The thesis evaluates those protocols in

the real world environment and in simulation.

1.3 Organization

This thesis is organized as follows. In Chapter 2, we introduce the back-

ground of WSNs and mobility in sink nodes. We then present the importance

of data collection in wireless sensor networks, and describe related work in

Chapter 3. In Chapter 4, we present our approach of utilizing CTDCP,

a data collection protocol, and ALQDP, a link quality detection protocol,

and explain their design. Chapter 5 describes our implementation of CT-

DCP and ALQDP. We present the methodology and results of evaluation in

Chapter 6. Finally, in Chapter 7, we conclude this thesis, and discuss our

future work.

2



Chapter 2

Wireless Sensor Networks

and Mobile Sink Nodes

In this Chapter, we discuss wireless sensor networks and the spread of mobile

sink nodes. First, we discuss traditional WSNs consisting of static sensor

nodes. We then explain the spread of mobile sink nodes, and applications

utilizing them. Finally, we describe our target environment, issues, and

requirements.

2.1 Wireless Sensor Networks

Due to the spread of wireless sensor nodes, researchers have been proposing

various kinds of WSN applications [1] [2] [3] [4] [5] [6] [7] [8]. The majority

of WSN applications assume static sensor/sink nodes: all sensing nodes and

data collecting nodes are immobile. In recent years, collaboration of mobile

sensor/sink nodes is drawing researchers’ attentions. In this thesis, we target

WSNs with static sensor nodes and mobile sink nodes.

2.2 Mobile Sink Nodes

In recent years, cooperation of mobile devices andWSNs has been attracting

researchers’ attentions. In this thesis, we focus on mobile sink nodes, and

not on sensor nodes. Since sensor nodes are designed specifically for the

purpose of sensing, we believe reduction in cost and size enables them to

be deployed in various environments. In the meantime, use of mobile sink

nodes has both advantages and disadvantages.
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CHAPTER 2. WIRELESS SENSOR NETWORKS AND MOBILE SINK
NODES

2.2.1 Spread of Mobile Sink Nodes

In the field of WSNs, there are two kinds of mobile sink nodes: passive,

and active mobile sink nodes. We thoroughly discuss their characteristics

as follows:

• Passive Mobile Sink Nodes

Sensor nodes located close to the sink nodes have to forward a larger

number of packets compared to those located far from the sink nodes.

Therefore, sensor nodes consume energy unevenly, resulting in short

network lifetime. Network lifetime is time until the first node exhausts

its batteries; the idea of network lifetime is that, WSN is useless when

at least one sensor node (especially the one that is forwarding the

large number of packets) is no longer operational. Researchers have

been arguing that static sink nodes are inappropriate in perspective of

extending network lifetime. Passive mobile sink nodes move around in

the area of WSNs, and collect sensor data. By doing so, the overhead

for forwarding packets are thoroughly distributed amongWSNs, hence,

network lifetime is extended.

• Active Mobile Sink Nodes

In this type of WSNs, sink nodes actively move in and out the cov-

erage of WSNs. Wireless sensor nodes, PDAs and smartphones are

usually used as sink nodes, which are equipped by humans, animals,

robots, and vehicles. They do not travel for the sake of data mul-

ing, instead, they travel because it is their nature. Unlike traditional

WSNs, mobile sink nodes do not acquire sensor data from the static

sink node, instead, they collect sensor data directly from the WSNs.

Researchers have been proposing to use smartphones as sink nodes in

WSNs [9] [10]. Zhang et al. proposed uSD, an SD card which have

capability to communicate with wireless sensor nodes over ZigBee [9].

This, in turn, shows that any kind of device with SD card slots can be

mobile sensing/sink nodes. Park et al. proposed to collect sensor data

directly from WSNs using smartphones [10]. Accordingly, the use of

mobile devices as sink nodes is becoming increasingly popular.

We believe that in the near future, due to the spread of mobile devices,

there will be a lot of WSN applications which assume the existence of mobile

sink nodes. Therefore, in this thesis, we target active mobile sink nodes.

4
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Figure 2.1: Scale vs. Sink Nodes’ Speed in Various WSN Applications

2.2.2 Application Utilizing Mobile Sink Nodes

In this section, we introduce WSN applications which utilize mobile sink

nodes. We discuss home application [1], biological/chemical attack detec-

tion [2], emergency preparedness [3], microclimate control [4], battlefield

monitoring [5], habitat monitoring [6], environmental monitoring [7], and

target tracking [8]. Fig. 2.1 illustrates the relationships between scales of

WSNs and sink nodes’ speeds in applications utilizing WSNs with mobile

sink nodes.

Examples of home applications are smart room/home/building. In these

applications, users collect sensor data from sensor nodes placed in the envi-

ronment, and use context-aware or location-aware services. The majority of

these applications are supplied in small-sized places, and they assume slow

targets, such as, humans and robots, as sink nodes.

Biochemical attack detection, emergency preparedness and microclimate

control suppose WSNs with building-size scale. Biochemical attack detection

is utilized for detecting and alerting the biochemical attacks by terrorists,

robber, etc. Emergency preparedness is used to suggest evacuation route in

case of emergency. These applications are essential in saving human lives.

Microclimate control is used to control dimming/air condition in rooms,

buildings, etc. It is meaningful in providing users the optimal environment,

while minimizing the waste of resources. They assume targets with various

speed; biochemical attack detection and emergency preparedness usually

suppose human moving fast, while microclimate control supposes humans

and robots moving slowly.

Battlefield monitoring, habitat monitoring, environmental monitoring

5
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and target tracking assume WSNs with field-size scale. Battlefield, habitat,

and environmental monitoring are used to notify the users of movement of

enemies, behaviors of animals, and environmental conditions, respectively.

They have different targets of interest, however, their behavior is similar.

Target tracking is used to locate humans, animals, robots, and vehicles. It

assumes targets with various speeds, and it is one of the few applications

which suppose targets moving fast.

Accordingly, most of current WSN applications with mobile sink nodes

assume various scales, from home to field sized environment, and variety of

targets, such as, humans, animals, robots, and vehicles. There are variety

of scales of networks, although, only few of these applications suppose fast

targets, such as, vehicles as mobile sink nodes. Consequently, the speed of

targets is limited in the majority of applications. For these reasons, in this

thesis, we assume various scales of WSNs, and the speed of humans/robot-

s/animals as the speed of mobile sink nodes.

2.3 Target Wireless Sensor Networks

In this section, we first describe our target environment, followed by prob-

lems in that domain. We then discuss solutions and requirements for these

problems.

2.3.1 Target Environment

There are multiple parameters to concern when leveraging WSNs. We thor-

oughly discuss 1) network type, 2) sensor nodes’ density, 3) scalability, 4)

sensor data and sink nodes, 5) sensor nodes’ mobility, and 6) sink nodes’

speed as follows:

1. Network Type

There are three kinds of network types in WSNs: periodic, event-

driven, and query-based. In periodic network, sensor nodes periodi-

cally sense data and transmit them toward sink nodes. In event-driven

network, instead of reporting every data, each sensor node transmits

packets only when it detects an event of interest within its range. In

query-based network, sensor nodes transmit packets when they are

requested. We argue that in the near future, current “one WSN for

one application” style would be discarded, instead, the idea of “multi

purpose WSNs” would be achieved. In multi purpose WSNs, multiple

applications concurrently utilize a single WSN. It is considered that

event-driven network is not suitable in multi purpose WSN, because

6
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detection of a type of event cannot fulfill requirements of multiple ap-

plications. Therefore, we argue that multi purpose WSNs should be

periodic or query-based networks. Query-based network is achieved by

applications querying the network of multiple parameters (e.g. type of

data, frequency of sensing, etc.). When numerous applications concur-

rently leverage a single network, it would be costly to manage queries,

hence, we believe that periodic network would be dominant. For these

reasons, this thesis targets periodic WSNs.

2. Sensor Nodes’ Density

The density of a WSN expresses the number of available links for each

sensor node. This is greatly affected by the placement of sensor nodes;

for example, sensor nodes placed along a road might have only one or

two nodes to communicate with, meanwhile, those placed in a building

might have multiple nodes to communicate with. In this thesis, we

target WSNs with at least a couple of links for each sensor node. In

order to achieve high data collection efficiency, MAC protocol, and

data collection protocol should be utilized when the density of nodes

is low, and high, respectively. Accordingly, we aim to achieve high

data collection efficiency by leveraging data collection protocol.

3. Scale

As described in Sec. 2.2.2, this thesis supposes various scales of WSNs:

small as a room to large as a field. Note that scales of networks we

are targeting are equivalent to those of our related work.

4. Sensor Data and Sink Nodes

There are two kinds of WSNs regarding to sink nodes; a type of WSNs

requires sensor data to be delivered to at least one sink node, and

another requires all sensor data to be delivered to every sink node. The

former type of WSNs can only be used if there is a central base station

which collects and processes sensor data. Meanwhile, the latter type of

WSNs can be utilized by any kind of applications, including networks

which have multiple sink nodes operating different applications. The

former type of WSNs has less flexibility, and does not suit in multi

purpose WSNs. Therefore, this thesis targets WSNs which deliver all

sensor data to every sink node.

5. Sensor Nodes’ Mobility

In traditional WSNs, the majority of applications only involve static

sensor nodes. In recent years, due to the price reduction and the spread
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of PDAs and smartphones, a lot of researchers have been proposing ap-

plications and middlewares for mobile sensor/sink/actuator devices. In

this thesis, we assume WSNs with static sensor nodes and static/mo-

bile sink nodes. The reasons we target this environment are threefold.

First, the majority of WSN applications suppose static sensor nodes,

and few applications, such as, participatory sensing, assume mobile

sensor nodes. Second, the spread of mobile devices allows users to

collect sensor data directly from WSNs, hence, we believe mobile sink

nodes will become more and more popular. Finally, wireless sensor

nodes are designed specifically for the purpose of sensing, hence, we

argue that leveraging wireless sensor nodes as sensing device is more

preferable.

6. Speed of Nodes

In this thesis, we only assume mobility in sink nodes and not in sensor

nodes, hence, we only discuss speed of sink nodes. Sinks nodes’ speed

differs depending on the targets they are attached to. We suppose sink

nodes to be attached to humans, animals, and robots, therefore, we

assume the maximum speed of targets as 10m/s. This is reasonable,

since they barely move that fast, and most of related work assume the

same maximum speed for sink nodes.

In conclusion, in this thesis, we assume WSNs with 1) periodic type, 2) fair

density, 3) various scales, 4) every sink node collect all sensor data, 5) static

sensor/mobile sink nodes, and 6) maximum sink nodes’ speed of 10m/s.

2.3.2 Issues in Target Environment

In this section, we discuss issues arise in our target environment. Due to

the recent advances in technologies, a lot of researchers target similar envi-

ronment as ours. Although the existence of mobile sink nodes seems to be a

small difference, movement of sink nodes induces high overhead in collision

avoidance, location determination, and data collection.

• Collision Avoidance

Sensor nodes use wireless communication to exchange information with

others. In order to improve the delivery ratio of packets, it is im-

portant to avoid collision of packets, which is usually done in MAC

protocols. Researchers have been proposing various kinds of MAC pro-

tocols for WSNs [11] [12] [13], which often are CSMA or TDMA-based

protocols (in spite of its high efficiency, FDMA is usually difficult to

8
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achieve in wireless sensor nodes due to the constraint of their radio

chips). They have different strengths, such as anti-interference [11],

channel utilization [12], energy efficiency [13], etc. When sensor nodes

have mobility, they move in and out of other nodes’ communication

range, which often decreases performance of MAC protocols. In the

meantime, numerous MAC protocols have been proposed in the area

of WSNs, and minor modification of their parameters enables them

to adapt to various kinds of environments. Consequently, we argue

that rather than proposing another MAC protocol, the performance

of collision avoidance should be improved by altering the parameters

of existing protocols.

• Location Determination

For some applications and protocols, locations of sensor nodes are an

absolute requirement. In order to provide positions of sensor nodes, re-

searchers have been proposing location protocols. Mobile sensor nodes

freely move among the coverage of a WSN, therefore, the accuracy of

location determination often decreases. In order to maintain high ac-

curacy in determining sensor nodes’ positions, either frequent location

determination or future location prediction is essential. When a loca-

tion protocol for a WSN with mobile nodes is achieved, the magnitude

of improvement is assumed to be large, however, the number of appli-

cations depending on its information is limited.

• Data Collection

Data collection is one of the most fundamental pieces in WSNs. Since

almost every application utilizes data collected in WSNs, the efficiency

of data collection is extremely important. Efficiency of data collection

depends on the accuracy of choosing better path between sensor nodes

and sink nodes. Frequent location updates of mobile nodes cause fre-

quent path change, which increases the route management cost, and

decreases data collection efficiency. Although researchers have been

proposing data collection protocols for WSNs with mobile sink nodes,

their data collection efficiency is still low.

Accordingly, the existence of mobile nodes in WSNs incurs problems

in collision avoidance, location determination, and data collection. In this

thesis, we choose to leverage data collection protocols to support WSNs with

mobile sink nodes, because the magnitude of improvement is supposed to

be large, and a lot of applications can appreciate it.
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When considering data collection protocols for WSNs with mobile sink

nodes, there are two problems: 1) low efficiency in collecting data, and

2) low agility in detecting link qualities. When mobile sink nodes exist

in a WSN, route construction/management cost, as well as data delivery

overhead increases, due to frequent route update and utilization of worse

path. Link quality detection is important, because its information is utilized

when choosing paths between the source and the sink node. Traditionally,

link quality detection only assumed static nodes and it necessitates certain

amount of time to detect the link qualities. In the meantime, link qualities

between a mobile node and others change rapidly, hence, existing approaches

have low accuracy and agility in detecting link qualities. In conclusion, there

remains two problems in data collection protocols for WSNs with mobile

sink nodes; low efficiency in collecting data, and low agility in detecting link

qualities.

2.3.3 Requirements in Target Environment

In this section, we discuss the requirements for data collection protocols

in WSNs with mobile sink nodes. Sec. 2.3.2 addressed two issues in data

collection for WSNs with mobile sink nodes. This section describes the

requirements for solving those problems: 1) improving data collection effi-

ciency, and 2) increasing agility in detecting link qualities.

1. Improving Data Collection Efficiency

Researchers have been measuring energy consumption of available op-

erations in motes [14] [15]. Their experimental results prove that wire-

less communication requires considerably large amount of energy in

comparison to other operations, such as activating CPU, writing/read-

ing to flash memory, reading sensor values, and toggling LEDs. Conse-

quently, in WSNs, it is important to improve data collection efficiently,

since the amount of energy required for wireless communication is sig-

nificant. Although existing data collection protocols aim to increase

the data collection efficiency, a lot of them only assumes the existence

of static nodes or a single mobile sink node. Therefore, there is a need

to improve the data collection efficiency even when multiple mobile

sink nodes exist in a WSN.

2. Increasing Link Quality Detection Agility

Link quality detection is often required by data collection protocols;

data collection protocols choose the most suitable path between the

source and the sink node, referring to the information provided by link
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quality detection protocols. Choosing the best path among available

paths is meaningful, because it directly affects the efficiency of data

collection. Meanwhile, link qualities between a mobile node and other

nodes drastically change in a short period of time, therefore, agility

in detecting link qualities has a significant role in selecting the best

path. For instance, when link quality detection requires a long period

of time, data collection protocols may leverage non optimal path for

not knowing of better paths. In consequence, when considering the

existence of mobile nodes in a WSN, link quality detection is desired

to have high agility.

Accordingly, data collection protocols for WSNs with mobile sink nodes

have two requirements: improving efficiency in data collection, and increas-

ing agility in detecting link qualities.

2.4 Summary

In this Chapter, we discussed the relationships between WSNs and mobile

sink nodes. Traditionally, most WSN applications only assumed static (im-

mobile) sensor/sink nodes, however, due to the advances in technologies, a

lot of recent WSN applications assume the existence of mobile sensor/sink

nodes. This thesis assumes WSNs with 1) periodic type, 2) fair density,

3) various scales, 4) every sink node collect all sensor data, 5) static sen-

sor/mobile sink nodes, and 6) maximum sink nodes’ speed of 10m/s. Our

target environment has two problems: low efficiency in data collection, and

low agility in detecting link qualities. In this thesis, we aim to solve these

problems by improving data collection efficiency and link quality detection

agility.
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Chapter 3

Data Collection in Wireless

Sensor Networks

In this Chapter, we discuss fundamental building blocks of WSNs: data

collection and link quality detection protocols. We then introduce related

work, and discuss their problems.

3.1 Data Collection Efficiency

Efficiency of data collection is extremely important, because it is related

to resource usage at each sensor node, and qualities of applications. Due

to the nature of wireless communication, packet collision is unavoidable.

Therefore, there is a need to either avoid collisions, or complement lost of

packets, which are usually solved in either MAC, data control or application

layer. Fig. 3.1 illustrates the common layering of sensor node’s operating

system. In general, greater number of applications can be appreciated when

improvements are made in lower layer. In this thesis, we aim to achieve high

data collection efficiency utilizing data collection protocols for the reasons

explained in Sec. 2.3.2. The performance of data collection protocols are

depending on the accuracy of link quality detection protocols. We discuss

their relationships in the following section.

3.2 Data Collection Protocols and Link Quality

Detection Protocols

In WSNs, data collection protocol is one of the most fundamental protocols:

it is a piece of middleware which enables applications to collect data effi-
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Figure 3.1: Brief Architecture of Sensor Nodes’ Operating Systems

ciently. Data collection protocols are in charge of managing routes among

sensor and sink nodes. Different data collection protocols have different

policies in managing routes, which are usually based on link quality, dis-

tance, number of hops, and remaining energy. Data collection based on

distance, number of hops, or remaining energy seems to be useful in con-

serving energy, however, we argue that the route decision should be based on

link quality. Wireless sensor nodes usually have severe constraint on energy

source, therefore, energy efficiency is extremely important. Although route

decision based on distance, number of hops, and remaining energy seems

to be meaningful, leveraging a link with bad quality induces high packet

loss rate, which results in a large number of retransmissions. Consequently,

the efficiency of data collection decreases while the energy consumption in-

creases. For these reasons, we utilize link quality-based data collection.

The performance of a data collection protocol based on link quality is

depending on the accuracy of link quality detection. Therefore, data collec-

tion protocols necessitate link quality detection protocols. Data collection

protocols have three roles: 1) managing routes, 2) sending/forwarding pack-

ets, and 3) managing retransmissions. Meanwhile, link quality detection

protocols are in charge of quantifying the qualities of links among sensor

nodes. As described in Sec. 2.3.3, there are two requirements in our target

environment: 1) improving data collection efficiency, and 2) increasing link

quality detection agility. We achieve these requirements in data collection,

and link quality detection protocols, respectively.
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Figure 3.2: Geographic Data Collection Protocols

3.3 Data Collection Protocols

There are two kinds of data collection protocols for WSNs with mobile sink

nodes; location-based, and non-location-based protocols. In this section,

we introduce state of the art data collection protocols, while analyzing and

discussing their problems.

3.3.1 Location-Based Data Collection Protocols

Location-based data collection protocols utilize location of each sensor node

in the WSN. They can be divided into two types: geographic and grid-based.

• Geographic Data Collection Protocols

Fig. 3.2 illustrates how geographic data collection protocols work. In

geographic data collection protocols, each sensor node calculates the

direction and/or the distance toward neighbor nodes, and forwards

packets based on it [16] [17].

Lee et al. proposed Data Stashing, which keeps data at sensor nodes

near the sink nodes [16]. They argue that, relying on a single sensor

node to deliver packets to a mobile sink node is inappropriate in per-

spective of data collection efficiency. In Data Stashing, packets are

aggregated not only to a single forwarding node, but also to its neigh-

bor nodes. Neighbor nodes do not forward packets to the sink node

immediately, instead, they keep those packets until they have connec-
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Figure 3.3: Grid-Based Data Collection Protocols

tivity to the sink node. Data Stashing achieves high packet delivery

ratio and low latency, however, it requires large amount of energy and

storage.

Keally et al. proposed Sidewinder, which utilizes aggressive estimation

of sink nodes’ location [17]. It leverages 60◦ rule introduced in BLR [18]

to suppress the redundant forwarding. They argue that the use of

forwarding table and unicast-based routing has high overhead when

sink nodes have mobility. In sidewinder, sensor nodes which received

a packet compete for the next hop forwarding. Although it achieves

high delivery ratio and low latency, its calculation and retransmission

overhead is significant.

• Grid-Based Data Collection Protocols

Fig. 3.3 shows how grid-based data collection protocols work. In grid-

based data collection protocols, sensor nodes are divided into grid, and

packets are forwarded utilizing adjacent grid points [19] [20].

Luo et al. proposed Two-Tier Data Dissemination (TTDD) [19]. They

argue that traditional grid-based data collection protocols have low

data collection efficiency because of reactive grid construction. In

TTDD, sensor nodes proactively create grid structure to improve the

data collection efficiency. After forming the grid structure, packets are
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forwarded leveraging two-tiers; lower tier is within a grid, and higher

tier is among grids. By utilizing two-tier structure, TTDD achieves

high delivery ratio and low route decision overhead, however, its peri-

odic grid construction induces high energy consumption and latency.

Wang et al. proposed Dual-Tree-based Data Aggregation (DTDA),

which utilizes bidirectional paths between sender and sink nodes [20].

They argue that it is not preferable to rely on a single path among

the source and the sink node. In DTDA, each sensor node establishes

two paths toward sink nodes, utilizing grid structures. By employing

bidirectional paths, it achieves high delivery ratio, however, its energy

consumption is significant.

A lot of location-based data collection protocols accomplish high delivery

ratio, however, researchers favor non-location-based protocols for two rea-

sons as follows. First, location-based protocols require each sensor node’s

location information. In WSNs with mobile sink nodes, localization pro-

tocols need to determine positions of sensor nodes frequently, which incurs

high overhead. Second, the distance between two nodes does not necessarily

indicate the quality of the link. In consequence, location-based protocols

have less chance of selecting the optimal path.

3.3.2 Non-Location-Based Data Collection Protocols

Non-location-based data collection protocols do not utilize location infor-

mation, instead, they use qualities of links among sensor nodes. They can

be classified into two types: cluster and tree-based.

• Cluster-Based Data Collection Protocols

Fig. 3.4 indicates data collection protocols leveraging a cluster struc-

ture. Sensor nodes in cluster-based data collection protocols create

clusters with nearby nodes, and select a cluster head among them.

Each cluster head collects packets from sensor nodes in its own clus-

ter, and communicate with other cluster heads. Researchers have been

proving that cluster-based data collection protocols accomplish high

scalability compared to other types of data collection protocols [21]

[22].

Younis et al. proposed Hybrid Energy-Efficient Distributed clustering

(HEED) [21], which periodically changes cluster heads for load distri-

bution. Due to the nature of cluster-based data collection protocols,

cluster heads have to forward larger number of packets compared to
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Figure 3.4: Cluster Data Collection Protocols

cluster members. DEED employs quick cluster head selection algo-

rithm, which completes in O(1). Although it successfully distributes

overhead among all nodes, its data collection efficiency is low.

Cugola et al. proposed Context and Content-Based Routing

(CCBR) [22], an extension of CBR [23]. One of its key features is

content-based routing, in which, each sink node specifies the data of

interest, and packets are forwarded according to it. In addition, CCBR

adopts context-based routing, which filters packets according to the

context. In spite of its high flexibility, CCBR has high management

overhead.

• Tree-Based Data Collection Protocols

Fig. 3.5 shows how tree-based data collection protocols work. In these

protocols, sensor nodes form a tree structure, and aggregate packets

toward the root of the structure. It has been proven that tree structure

has decent scalability and high data collection efficiency [24] [25].

Gnawali et al. proposed Collection Tree Protocol (CTP) [24], which

adopts adaptive beaconing to minimize both overhead and latency.

CTP is not designed for WSNs with mobile sink nodes, however, it

demonstrates the data collection efficiency of tree structure. Adaptive

beaconing is achieved by employing the idea of Trickle [26], which
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Figure 3.5: Tree Routing Protocols

doubles the waiting time until an event of interest occurs, and sets the

waiting time to minimal once it happens. CTP is evaluated in a real

world environment, and proved to have high delivery ratio, as well as

data collection efficiency.

Förster et al. proposed Feedback ROuting to Multiple Sinks

(FROMS) [25], which leverages multicast and reinforcement learning

to improve data collection efficiency. FROMS utilizes multicast to

minimize the number of packet transmissions when delivering packets

to multiple destinations. In addition, FROMS employs reinforcement

learning to improve data collection efficiency and latency. Through the

evaluation, FROMS is proved to have high data collection efficiency.

However, high overhead is incurred for utilizing multicast and heavy-

weight learning algorithm. Moreover, tree structure is constructed

from each sink node, and it is updated whenever the sink node moves,

which induces large management cost.

Non-location-based data collection protocols are favorable in comparison

to location-based protocols in perspective 1) not requiring location infor-

mation, 2) achieving high data collection efficiency, and 3) involving small

calculation overhead. Cluster and tree-based data collection protocols have

different strengths and weaknesses: cluster-based protocols have high scal-

ability and low data collection efficiency, while tree-based protocols have
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low scalability and high data collection efficiency. Tree-based data collec-

tion protocols satisfy the requirements of our target environment, however,

they have low scalability, and high overhead for constructing/managing tree

structures.

3.4 Link Quality Detection Protocols

Accuracy of link quality detection protocols have significant impacts on data

collection efficiency, because the information is utilized in managing routes.

For instance, De Couto et al. deployed a network in the real world environ-

ment, and proved that poor accuracy of link quality detection can induce

200% or greater degradation of network throughput [27].

3.4.1 Analysis of Link Quality Detection Protocols

Traditional link quality detection protocols mainly have two problems: 1)

utilizing only a few parameters, and 2) depending on hardware/layer specific

information.

• Link Quality Parameters

Link quality parameters can be divided into two types: hardware and

software-based parameters.

- Hardware-based parameters

Three kinds of parameters can be acquired through hardwares: Link

Quality Indicator (LQI), Received Signal Strength Indicator (RSSI),

and Signal to Noise Ratio (SNR). These parameters are acquired from

radio transceivers. LQI represents the quality of an incoming packet,

which is defined by IEEE 802.15.4 standard. RSSI shows the signal

strength of an incoming packet. SNR indicates the ratio of signal

strength to noise of a received packet. Hardware-based parameters

can be acquired quickly and inexpensively, however, they have four

problems as follows. First, some parameters may be unavailable in

certain platforms and/or hardwares. Second, these parameters are

updated only when a packet is successfully received, therefore, they

cannot be leveraged when packets are not received. Third, these met-

rics are derived using only a part of a packet, hence, their accuracies

are low. Finally, utilization of only hardware-based parameters have

been proven to have low accuracy in detecting link qualities [27] [28].

- Software-based parameters

Three kinds of link quality parameters can be acquired in software ap-

proach: Packet Reception Ratio (PRR), Required Number of Packet
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retransmissions (RNP), and Expected Transmission count (ETX).

These metrics are computed according to the number of transmit-

ted/received packets. PRR represents the ratio of the number of suc-

cessfully received packets to that of the transmitted packets. RNP

indicates the number of retransmissions required for one successful de-

livery [29]. ETX represents required number of packet transmissions

for one successful delivery [27]. These parameters leverage link layer

information, therefore, any kind of platforms can utilize them, and

they have high accuracies in detecting link qualities. However, cal-

culation and certain number of packets are required to derive them,

which results in high overhead and low agility.

• Dependency on Other Hardwares/Layers/Protocols

In general, protocols are desired to be independent from other hard-

wares, layers, and protocols. This is because, cross-layer design has

issues in semantics, dependencies, and design/implementation simplic-

ity. First, semantics of the entire system is fairly important, because

stability and dependability of a system is crucial. Second, when a

protocol have high dependency on hardware, layers and/or protocols,

there is a great chance that it works only on specific platform. Fi-

nally, simple design and implementation is essential in understanding

and implementing on different platforms. In spite of its importance, a

lot of existing protocols are tightly coupled with certain layers/proto-

cols [30] [31]. MultihopLQI [30] and MintRoute [31] are some of the

most well known data collection protocols in TinyOS [32], an open

source, component-based operating system specialized for embedded

networked sensor devices. They are depending on specific pieces of

hardwares and/or layers, therefore, they cannot be utilized in the other

platforms. Accordingly, when detecting link qualities among among

sensor nodes, it is important for a protocol to be independent from

other hardwares, layers, and/or protocols.

When detecting the link qualities among sensor nodes, it is important to

choose reliable and accurate parameters, while eliminating the dependency

on certain hardwares/layers/protocols.

3.4.2 Related Work

In recent years, researchers have been proposing link quality detection proto-

cols following the idea described in Sec. 3.4.1 [27] [28] [33] [34]. We describe

their characteristics, and discuss their strengths and weaknesses as follows.
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Fonseca et al. proposed Four Bit Link Estimator (4B) [28], which utilizes

four pieces of information; LQI, ETX, pin and compare bit. They analyzed

the validity of LQI as an indicator of link quality, and concluded that it

is inexpensive, and has low accuracy and reliability. ETX is utilized with

Exponentially Weighted Moving Average (EWMA) to take the history of

data into consideration. It has been proven that data collection protocols

failed due to the inconsistencies in the neighbor tables of data collection and

link quality detection layers [35]. In order to solve this problem, 4B provides

pin and compare bit: pin is used to keep the specified neighbor in the table,

and compare is used to query the network layer of link quality. Although

4B provides high accuracy in detecting link qualities, it only leverages ETX

as a fine grained link quality indicator, hence, it lacks agility.

Baccour et al. proposed Fuzzy-link Quality Estimator (F-LQE) [33],

which utilizes fuzzy logic for both input and output parameters. In order

to improve the accuracy of link quality detection, they use four properties:

packet delivery, asymmetry, stability, and channel quality. Packet deliv-

ery is expressed in the form of PRR applied with WMEWMA [36], which

smoothens the curve and provides the estimation of the PRR. Asymmetry

indicates the difference between link quality of uplink and downlink, because

when considering acknowledgements of packets, not only the quality of up-

link, but also that of downlink is important. The authors argue that high

variability in link quality is not desirable, and provide stability parameter,

which represents the variance of link qualities. Finally, F-LQE uses SNR as

channel quality. F-LQE provides better granularity of link qualities com-

pared to 4B, however, it lacks agility and mobile nodes support, because

stability parameter has low affinity with mobility.

Liu et al. proposed Foresee (4C) [34], which leverages link quality predic-

tion. The authors collected data in the real world environment using Tmote

Sky motes, and use them to clarify appropriate machine learning algorithm

in predicting link qualities. They evaluated Bayes classifier, logistic regres-

sion, and artificial neural networks, and concluded that logistic regression

achieves highest accuracy. 4C leverages PRR and LQI as input parameters,

and outputs the predicted link qualities. According to their evaluation re-

sults, 4C predicts link quality with mean square error of approximately 0.2.

Despite 4C provides high accuracy in predicting link qualities, it has large

overhead for leveraging costly machine learning algorithm, and requires a

large number of data before starting prediction.

In data collection protocols, the accuracy of link quality detection is fairly

important, because their performance highly depends on it. Researchers

have been proposing various kinds of link quality detection protocols. How-
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ever, they would not perform well in WSNs with mobile sink nodes, because

they lack agility in detecting link qualities. In consequence, agile link quality

detection protocol is desired.

3.5 Summary

In this Chapter, we discuss data collection protocols and link quality detec-

tion protocols, which are leveraged to fulfill the requirements of WSNs with

mobile sink nodes. Researchers have been proposing various kinds of data

collection protocols, and data collection protocols based on link quality are

said to be superior to those based on location information. Non-location-

based data collection protocols can be classified into cluster and tree-based

protocols, which have issues in data collection efficiency, and scalability, re-

spectively. Existing link quality detection protocols achieve high accuracy,

however, they significantly lack agility. Therefore, agile link quality detec-

tion protocol is required.
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Chapter 4

Approach and Design

In this Chapter, we first propose our approach of combining cluster and

tree structures to supplement their disadvantages. Second, we propose

Clustered-Tree Data Collection Protocol (CTDCP), a data collection pro-

tocol which provides high data collection efficiency. We then propose Agile

Link Quality Detection Protocol (ALQDP), a link quality detection protocol

which provides high agility and accuracy in detecting link qualities.

4.1 Approach

This thesis proposes Clustered-Tree Data Collection Protocol (CTDCP),

a data collection protocol, and Agile Link Quality Detection Protocol

(ALQDP), a link quality detection protocol. Each of them achieves high

efficiency in collecting data, and high agility in detecting link qualities, re-

spectively.

CTDCP utilizes clustered-tree structure to improve the data collection

efficiency and scalability. It constructs tree structures among the static

nodes, and let mobile sink nodes use the structures to minimize the route

construction cost, as well as data delivery cost. CTDCP includes two mech-

anisms, bypass tree and broadcast-based routing to further improve

its data collection efficiency. Bypass tree enables sensor nodes to bypass

existing tree structures, and broadcast-based routing enables sensor nodes

deliver packets to multiple destinations with a single transmission.

ALQDP utilizes link quality estimation along with link quality de-

tection. It leverages both software and hardware parameters to achieve high

accuracy and agility in detecting link qualities. Link quality estimation is

the key to instantly estimate the link qualities among sensor nodes.
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Figure 4.1: Clustered-Tree Structure

4.2 Design of CTDCP

In this section, we discuss two fundamental components of CTDCP: basic

routing, and mobile sink management. We propose clustered-tree struc-

ture, bypass tree, and broadcast-based routing, which are leveraged

to minimize route construction cost and high data collection efficiency.

4.2.1 Clustered-Tree Structure

Clustered-tree structure is leveraged to achieve high data collection effi-

ciency and scalability simultaneously. Fig. 4.1 briefly shows the clustered-

tree structure. Circles indicate sensor nodes, and thin dashed-circle indicates

clusters. When sink nodes have mobility, they cannot fully appreciate high

scalability that cluster structures provide, because inter-cluster communica-

tion increases as sinks nodes enter different clusters’ coverage. In order to

solve this problem, we extend the coverage of each cluster, and construct tree

structure in it. The overhead for modifying path in a single tree structure is

considerably low compared to switching among different clusters. Therefore,

we argue that by utilizing clustered-tree structure, mobile sink nodes can

appreciate both data collection efficiency and scalability.

Existing tree-based data collection protocols construct tree structure

from each sink node. Fig. 4.2 illustrates how sink nodes create tree struc-

tures in existing protocols. Circles indicate statically placed sensor nodes,

and numbers in them represent their sensor node ID. Whenever a sink
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Figure 4.2: Existing Tree-Based Data Collection Protocols

node moves, it reconstructs the tree structure leveraging the whole network,

hence, when a sink node has mobility, high overhead is induced not only at

sink nodes, but also at static nodes. Accordingly, current tree-based data

collection protocols have high delivery ratio for leveraging tree structures,

however their overhead for constructing and managing the tree structure is

significant.

Unlike existing tree-based data collection protocols, in CTDCP, sink

nodes utilize tree structures formed by static sensor nodes. This approach

suits our target environment, where sensor nodes are static and sink nodes

are mobile. Fig. 4.3 illustrates the two processes of CTDCP. At first, CT-

DCP creates a tree structure with static sensor nodes (Fig. 4.3(a)), then,

mobile sink nodes collect data utilizing that tree structure (Fig. 4.3(b)).

When leveraging clustered-tree structure, we have to consider the num-

ber of nodes involved in each cluster. For instance, small cluster causes high

overhead when switching among different clusters, while large cluster results

in low scalability because upper layered nodes have to forward a large num-

ber of packets. Researchers have been addressing the limitations of using

tree structure for data collection [24] [37] [38]. The authors of CTP applied

a tree-based data collection protocol to multiple testbeds, and confirmed

that it achieves delivery ratio of at least 90% [24]. They evaluated CTP

on various platforms with the number of nodes varying from 20 to 310, and

confirmed that the combination of the large number of nodes and short inter

packet interval results in poor data collection efficiency. Lin et al. discussed
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Figure 4.3: Data Collection Process of CTDCP

the relationships between the combination of the number of sensor nodes and

cluster size, and overhead of data collection and network lifetime [37]. They

used simulation to prove the appropriate size and depth of tree structure,

and confirmed that tree structures with large depth do not perform well.

Koubaa et al. analyzed tree-based data collection protocols in terms of the

number of children nodes and the depth of each node [38]. They examined

the limitation on the number of packet transmission per given time interval

by referring to beacon frames in IEEE 802.15.4. These work discussed the

limitations of utilizing tree structure for data collection. CTP uses testbeds,

however, the authors have not examined the relationships between the inter

packet interval and the number of sink nodes. Therefore, appropriate cluster

size remains unclear.

We argue that cluster size should be decided based on multiple parame-

ters, such as, the number of source/sink nodes, inter packet intervals, noise

level, etc. Meanwhile, these parameters are not deterministic until WSNs

and applications are deployed. Therefore, we provide a tunable parameter,

the maximum number of nodes per cluster.

4.2.2 Mobile Sink Management

The approach described in Sec. 4.2.1 reduces the overhead of constructing

and managing tree structure from each sink node. Meanwhile, it produces

another problem; optimal path between the source and the sink node may

not be leveraged. Table 4.1 shows the sum and the average path length

for each sink node in existing protocols (Fig.4.2) and CTDCP (Fig.4.3(b)).

Path length is defined as the number of hops between the source and the

destination node. As the number of hops increases, the chance of packet
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Table 4.1: Path Length in Existing Data Collection Protocols and CTDCP

Protocols Sink ID
Sum of

Path Length
Average

Path Length

Existing Protocols
Sink A 29 2.636

Sink B 29 2.636

CTDCP
Sink A 38 3.455

Sink B 42 3.818

loss also increases, therefore, the path length is desired to be as short as

possible. As shown in the table, delivery cost of CTDCP is considerably

high in comparison to the existing tree structure. This, in turn, indicates

that high data collection efficiency cannot be appreciated by simply utilizing

existing tree structure. In order to solve this problem, we propose bypass

tree.

Bypass tree enables packets to be delivered without passing through un-

necessary paths. For example, in Fig. 4.3(b), node 7 has a path length of 5

toward the sink node A when simply using existing tree structure. Mean-

while, when node 7 bypasses the existing tree structure and sends packets

toward node 1, the path length reduces from 5 to 3. Consequently, when

bypass tree is fully applied, the path length would decrease. When the avail-

ability of bypassing is examined over the whole network, route construction

cost becomes large. Sensor nodes located closer to the sink node usually

have greater chance of decreasing the path length by bypassing other nodes.

Therefore, we apply bypass tree only from the sink node up to the root node

of the network.

Bypass tree is formed using four procedures, a) sink node selects a

node to forward packets, b) sink node requests the selected node to for-

ward packets, c) child node notifies its parent about forwarding packets,

and d) neighbor nodes check the effectiveness of bypassing and notify others

if required. We define them as “Forwarding Node Selection”, “Forwarding

Request”, “Forwarding Acknowledgement”, and “Bypass Request”, respec-

tively. Fig. 4.4 illustrates these procedures, where each alphabet represents

each procedure.

(a) Forwarding Node Selection

In this procedure, sink nodes select the forwarding node among neighbor

nodes. The Forwarding Node Selection is achieved by leveraging the

information provided by link quality detection protocols. Fig. 4.4(a)
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Figure 4.4: Behavior of Bypass Tree

depicts how sink node A receives packets from neighbor nodes, and

selects node 4 as the forwarding node. After selecting the forwarding

node, the sink node leverages Forwarding Request to notify the selected

node of it.

(b) Forwarding Request

In this procedure, the sink node sends a request to the selected forward-

ing node. Fig. 4.4(b) illustrates how sink node A requests the neighbor

nodes to forward packets. Request message is broadcasted, and the

packet includes the ID of the specified forwarding node (in case of the

figure, the sink node includes the ID of node 4 in the request packet).

Neighbor nodes, node 4 and 5, process the received packets in accor-

dance to their role: node 4 executes Forwarding Acknowledgement, and
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node 5 determines the effectiveness of bypassing. We leverage broadcast

for two reasons; first, neighbor nodes which received the packet should

check the effectiveness of bypassing, and second, when the sink node

decides to change the forwarding node, it may include a request to stop

forwarding packets in a single request.

(c) Forwarding Acknowledgement

Forwarding Acknowledgement is transmitted from the forwarding node

up to the root node through the designated path. Fig. 4.4(c) and

Fig. 4.4(d) illustrates first and second Forwarding Acknowledgments, re-

spectively. Note that Forwarding Acknowledgments are broadcasted like

Forwarding Request, so that neighbor nodes can check the effectiveness

of bypassing. Neighbor nodes process the Forwarding Acknowledgement

in the same manner as the Forwarding Request. At first Forwarding Ac-

knowledgment, node 4 acknowledges its parent (node 1) of forwarding

packets, and node 0 and 6 checks the effectiveness of bypassing. Mean-

while, after the second Forwarding Acknowledgment, node 0 does not

acknowledge its neighbor nodes about forwarding packets, because it is

the root of the network.

(d) Bypass Request

Sensor nodes which received Forwarding Request or Forwarding Ac-

knowledgement check their neighbor table, and determine if they should

bypass their parents or not. Fig. 4.4(c), 4.4(d), and 4.4(e) show how sen-

sor nodes utilize Bypass Request. Effectiveness of bypassing is evaluated

by comparing the quality of two paths: itself → receiver → sender, and

itself → sender. When a node finds out bypassing is beneficial, it trans-

mits a request packet to notify both sender and receiver nodes.

We define the process of selecting and requesting to start forwarding

packets as Attach. On the other hand, the process of notifying to stop

forwarding packets is defined as Detach. When the first forwarding node

failed to receive detach packet transmitted by the sink node, useless routing

information remains in each node up to the root. Therefore, the first for-

warding node should check the reachability of the sink node, and transmits

detach packet if necessary.

Fig. 4.5 illustrates how packets are forwarded after bypass tree is applied

to CTDCP. Table 4.2 shows the sum and the average path length of existing

tree-based protocols (Fig. 4.2) and CTDCP with bypass tree (Fig. 4.5).

In comparison to existing tree-based approach, CTDCP leveraging bypass

tree has slightly higher overhead in data collection, however, it drastically
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Figure 4.5: CTDCP Leveraging Bypass Tree

Table 4.2: Path Length in Existing Data Collection Protocols and CTDCP

with Bypass Tree

Protocols Sink ID
Sum of

Path Length
Average

Path Length

Existing Protocols
Sink A 29 2.636

Sink B 29 2.636

CTDCP with
Bypass Tree

Sink A 29 2.636

Sink B 30 2.727
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Table 4.3: Comparison of the Number of Transmissions in Unicast/Multi-

cast/Broadcast

Type of
Transmission

Total Number
of Transmissions

Average Number
of Transmissions

Unicast 55 5.000

Multicast 45 4.091

Broadcast 45 4.091

reduces the overhead of route construction/management. In existing tree

protocols, each sink node requires the whole network to construct the best

routes. On the other hand, in CTDCP with bypass tree, paths among sensor

nodes are determined only up to the root of the tree structure, therefore,

it reduces the overhead, as well as route construction time. Note that tree

construction cost can become lower in CTDCP when sink nodes choose

upper layered nodes (root or inner nodes in the tree structure) as forwarding

nodes. For example, when a sink node selects node 0 as forwarding node,

Forwarding Acknowledgement and Bypass Request is not required, and it

can fully leverage the high efficiency paths.

CTDCP utilizes broadcast when transmitting data packets. Existing

tree-based data collection protocols use either unicast [24] or multicast [25].

We argue that unicast is not an option when all data have to be delivered to

multiple sink nodes, because it requires a large number of transmissions. Ta-

ble 4.3 indicates the total and the average number of transmissions required

in the WSN depicted in Fig. 4.5 when utilizing unicast, multicast, and broad-

cast. As shown in the table, unicast incurs a large number of transmissions

in comparison to multicast and broadcast. When a large number of pack-

ets are being exchanged, possibility of packet losses increases, which causes

unicast-based protocols to perform additionally worse. In addition, utiliza-

tion of ACK or NAK incurs extra packets to be transmitted, which further

worsens unicast-based protocols. Multicast and broadcast-based protocols

require the same number of packet transmissions, however, multicast incurs

higher overhead in each packet exchange. When leveraging multicast, each

packet has to contain multiple destination addresses and additional length

field, while broadcast can simply set broadcast address to the destination

field. It has been proven that transmitting/receiving packets with larger

payload require more energy [14] [15], hence, broadcast is superior to mul-

ticast in terms of energy efficiency.
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When leveraging unicast or multicast, routing management is usually

established at sender nodes, because the destinations of transmitting pack-

ets are specified by them. On the other hand, when utilizing broadcast,

routing should be managed at the receiver nodes, because sender nodes

specify broadcast address as the destination of transmitting packets. In con-

sequence, CTDCP utilizes receiver-based routing management. Due to the

nature of wireless communication, transmitted packets are received not only

by the destination node, but also by the neighbor nodes. In the majority

of wireless sensor nodes, destination of a packet is verified in the abstrac-

tion or the MAC layer; if the local node is the destination of the packet,

it acknowledges the overlying layer, and if not, it discards the packet. In

the meantime, when a packet is broadcasted, it is always acknowledged to

the overlying layer. Generally, higher overhead is induced when packets are

processed at upper layers. However, the overhead induced for processing

packets in upper layers is considerably small compared to transmitting mul-

tiple packets, or transmitting packets with larger payload. Consequently,

we argue that receiver-based routing have lower overhead in comparison to

sender-based routing.

When leveraging broadcast-based routing, it is difficult to manage ac-

knowledgements of reception of packets. One possible way to enable ac-

knowledgements is to insert destination nodes’ addresses in packets (which

is the basic idea of multicast), however, it induces high overhead in each

transmitting packet. Therefore, we propose an alternative approach to ex-

amine the delivery status of packets: we utilize packets forwarded by the

parent node as acknowledgements. We show its brief behavior by taking

the WSN in Fig. 4.5 as an example. Whenever node 10 transmits a packet,

CTDCP enqueues that packet to its sending queue. When node 3 and 8

(parent of node 10) receive that packet, they forward it toward their parents

utilizing broadcast. Upon the reception of packets forwarded by node 3 and

8, node 10 removes the corresponding packet from its sending queue. If node

3 or 8 did not receive the packet transmitted by node 10, or if node 10 did

not receive packets forwarded by node 3 and 8, the packet remains in the

sending queue, hence, it will be retransmitted.

In general, acknowledgements of reception of packets are achieved with

ACK or NAK. When ACK is used, the receiver node replies an acknowledge-

ment when it successfully receives a packet, meanwhile, when NAK is uti-

lized, the receiver node sends an acknowledgement when it failed to receive

a packet. The proposed approach is similar to ACK, however, it has three

differences. First, our approach does not require additional packet trans-

missions. This is a significant advantage, because minimizing the number

32



CHAPTER 4. APPROACH AND DESIGN

of transmissions is meaningful in conserving energy. Second, our approach

may induce high latency, because CTDCP moves the transmitted packet to

the end of the sending queue after each transmission. Additional latency

is usually in millisecond order, which can be tolerated in the majority of

WSN applications. Third, our approach requires larger amount of storage

at the sending node to keep track of successful delivery of packets. It has

been proven that reading/writing data requires orders of magnitude smaller

energy compared to transmitting a packet [14] [15], therefore, we argue that

this overhead is negligible.

In conclusion, we provide two mechanisms to support multiple mobile

sink nodes: bypass tree and broadcast-based routing. By utilizing by-

pass tree, sink nodes can leverage tree structure with low route construction

and data delivery cost. In order to deliver packets to multiple sink nodes

simultaneously, CTDCP employs broadcast-based routing, which decreases

the total number of packet transmissions.

4.3 Design of ALQDP

This section describes two basic components of ALQDP, link quality de-

tection and link quality estimation. The two components are leveraged to

provide high accuracy and agility in detecting link qualities.

4.3.1 Link Quality Detection

ALQDP follows the idea of state of the art link quality detection proto-

cols [28] [33] [34], and leverages EWMA enabled ETX, RSSI, and LQI

as input parameters, and provides the ability to pin the specific neighbor

node’s information to the neighbor table. We discuss the output parameter

of the ALQDP and present the methodology to manage the link quality

information as follows.

Researchers have been thoroughly analyzing and discussing link quality

indication parameters [29] [27] [30] [28] [33] [34]. In traditional link quality

detection protocols, researchers have been using PRR as the indicator, which

has the value from 0 to 1. Meanwhile, ETX is a metric which represents

the number of transmissions required to successfully deliver one packet. In

consequence, ETX has a range of 1 to infinite. A lot of researchers have been

proving that ETX is an excellent indicator of link qualities [27] [28] [34].

Therefore, in this thesis, we leverage ETX as an output of ALQDP.

Recent link quality detection protocols have proven the effectiveness of

utilizing multiple parameters [28] [33] [34]. According to their argument,
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hybrid approach of utilizing both software and hardware parameters suc-

cessfully improves the accuracy of link quality detection. Therefore, we also

employ hybrid approach. We argue that utilization of multiple hardware

parameters can provide high accuracy in detecting link qualities. LQI is a

parameter specified in IEEE 802.15.4 standard, hence, it may be unavailable

in some platforms. However, most of current wireless sensor nodes use IEEE

802.15.4 compatible radio transceivers, hence, it is reasonable to assume LQI

as an acquirable parameter. We utilize inexpensive hardware parameters,

RSSI and LQI, to filter links with good quality, and leverage ETX to the

precise link quality. ALQDP leverages EWMA for ETX, which smoothen

the ETX value by taking the history of data into consideration.

In the existing link quality detection protocols, the window size for cal-

culating the software parameters and the weight of most recent data in

EWMA (or WMEWMA) is static. We argue that, when the link quality be-

tween two nodes drastically changes in a short period of time, calculation of

ETX value should take place frequently, so that the output reflects the link

dynamics. Meanwhile, when a node has mobility, the link qualities among

neighbor nodes almost constantly change, hence, the weight of the most re-

cent data should be large. Consequently, we argue that the window size for

deriving the software parameters, and the weight of the most recent data

in EWMA should be altered according to link stability and nodes’ mobility,

respectively.

In this thesis, we limit the number of neighbor information stored on

each sensor node. This is meaningful, because the number of neighbor in-

formation is proportional to the storage usage, and sensor nodes have severe

constraint on storage. It has been proven that the inconsistencies between

neighbor tables of the link quality detection and data collection protocols

cause network failure [35]. In order to solve this problem, we leverage the

idea of white bit proposed in 4B: we provide an interface to pin specific

neighbor information in the neighbor table of ALQDP.

4.3.2 Link Quality Estimation

Agile link quality detection is fairly important, especially when collaborating

mobile nodes. This section describes our link quality estimation protocol,

which is utilized to provide high agility in detecting link qualities. There

are three possible approaches to detect link qualities with high agility: A)

leverage hardware parameters, B) force neighbor nodes to transmit packets

rapidly, and C) estimate the link quality leveraging the history of data.

Table 4.4 shows the comparison of the three approaches in perspective of
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Table 4.4: Comparison of Approaches for Agile Link Quality Detection

Approach Agility Accuracy Sender
Overhead

Receiver
Overhead

Use of
Hardware Parameters High Low Low Low

Rapid Transmission by
Neighbor Nodes

Moderate Decent High High

Estimation Leveraging
History of Data High - Low Moderate

agility, accuracy, sender overhead, and receiver overhead.

A. Leveraging Hardware Parameters

Link quality detection based on hardware parameters (RSSI, LQI, SNR,

etc.) is inexpensive and quick: quality of a link can be obtained upon

the reception of a packet. However, accuracies of hardware parameters

are low, therefore, this approach is not desirable. The overhead for lever-

aging hardware parameters is low at sender and receiver nodes, because

they can easily be obtained from the radio transceivers.

B. Forcing Neighbor Nodes to Transmit Packets Rapidly

Some researchers argue that the use of software parameters (PRR, RNP,

ETX, etc.) is preferable in terms of accuracy in detecting link quali-

ties [24] [28]. In spite of their high accuracy, a certain number of data

are required to derive them. Therefore, in this approach, receiver nodes

collect a sufficient number of data by requesting neighbor nodes to trans-

mit packets rapidly. It has been discussed that this approach provides

high accuracy in detecting link qualities in a short period of time, how-

ever, there remain two problems: 1) link quality detection at unusual

environment, and 2) high overhead at sender nodes. First, rapid trans-

missions by neighbor nodes cause wireless environment to be unusual.

Therefore, we argue that link qualities determined in this approach are

not trustworthy. Second, this approach induces high energy consump-

tion at sender and receiver nodes, because transmission and reception of

packets require large amount of energy. This is not desirable, because

sensor nodes have severe constraint on energy source.

C. Estimating the Link Quality Leveraging the History of Data

The fundamental idea of this approach is to determine the relationships
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Table 4.5: Data Collection Environment

Parameter Values

Hardware Iris mote

Operating System TinyOS 2.x

Number of Nodes 33

Distance 1.5m apart

Inter Packet Interval 2 second

Duration 9 hours

Place 5F of ι-o corridor at Shonan
Fujisawa Campus, Keio University

between hardware and software parameters. By discovering their rela-

tionships, sensor nodes can utilize inexpensive hardware parameters to

estimate fine grained link qualities. Consequently, this approach is as

quick as acquiring hardware parameters. Since this approach does not

induce any overhead at sender nodes, it is preferable than forcing neigh-

bor nodes to rapidly transmit packets. However, receiver nodes require

certain amount of calculation to determine the relationships between

hardware and software parameters. We argue that incurring high over-

head at receiver nodes is acceptable for mobile sink nodes, because it is

usually effortless to charge or replace their batteries.

Accordingly, we argue that estimating the link quality leveraging the his-

tory of data best accommodates our requirements. However, the accuracy

of the approach remains unclear, therefore, there is a need to clarify it. In

order to clarify the accuracy of the approach, we conduct an experiment.

The experiment has four steps: A. collect data in the real world environ-

ment, B. analyze the relationships between each parameter, C. choose a

suitable algorithm, and D. define tunable parameters.

A. Collecting Data

One of the most important factors to concern is the adaptability to the

real world environment. Therefore, data collection should be done in an

environment where actual WSNs would be deployed.

Table 4.5 shows our data collection environment. We used Iris mote [39]

as the hardware, which is an embedded sensor device widely used in the

field of WSNs, and implement a data collection application leveraging

TinyOS2.x [32], an open source, component-based operating system de-
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Figure 4.6: Data Collection Environment

signed for small embedded devices. We deployed 33 nodes on a line with

inter distance of 1.5m, in other words, the furthest node is placed 49.5m

away from the sink node. Inter packet interval is set to 2 seconds, and

we let the application operate for 9 hours. We placed the sensor nodes in

the fifth floor of ι-o corridor in Shonan Fujisawa Campus, Keio University.

Fig. 4.6 shows our data collection environment. The red solid circle indicates

the sink node, and the red dashed oval shows sensor nodes placed in a line.

We leverage polling-based approach to collect packets: the sink node

transmits a packet to a specific node, and the receiver node replies a packet

to the sink node. The sink node modifies the destination ID after each

transmission, hence, the sink node collects data from sensor nodes starting

from node ID 1 to 33, repeatedly. The sink node includes a sequence number

in its transmitting packets. The receiver node retrieves RSSI and LQI from

the hardware, and calculates ETX. Then, it replies the packet with link

quality parameters and generated sequence number. When the sink node

receives a packet, it reports the content of the packet along with calculated

ETX, and RSSI and LQI obtained from the hardware. Through the data

collection, we collected over 740,000 data.

37



CHAPTER 4. APPROACH AND DESIGN

B. Analyzing the Relationships Between Each Parameter

Fig. 4.7 illustrates the relationships between PRR, RSSI, LQI, and ETX,

where x-axis represents the node ID, left y-axis shows the PRR, and right

y-axis indicates either RSSI, LQI, and ETX. The data shown in the figure

are averaged over all collected data in the experiment. Fig. 4.7(a)-4.7(c)

and Fig. 4.7(d)-4.7(f) represents the data received at sender nodes, and the

sink node, respectively. Since RSSI indicates the signal strength of received

packets, it is understandable that sensor nodes with greater ID (in other

words, nodes which are placed further from the sink node), has lower RSSI

value. The accuracy of RSSI in detecting PRR is decent: RSSI decreases

as PRR decreases, however, when clients receive packets (Fig. 4.7(a)), the

RSSI have small relation to PRR. The LQI value is not proportional to PRR,

therefore, simply using LQI as a link quality predicator would not work well.

Nevertheless, when the LQI significantly decreases (node 26 in Fig. 4.7(b)

and Fig. 4.7(e)), we observed degradation in PRR. This, in turn, shows that

LQI can be leveraged to filter links with bad qualities. It is considered that

significant decrease in LQI value at node 26 is caused by self interference:

radio packet is reflected by the walls, and/or ceilings, and collides with each

other, causing packets to be damaged. In the meantime, ETX leverages

link layer information, therefore, it has high accuracy in detecting the link

qualities.

Fig. 4.8 depicts the relationships between ETX, RSSI, and LQI. We

process the whole data with the window size of 100 packets, and calculate

the average of each parameter. As the figures indicate, the RSSI and LQI

decreases linearly as the ETX increases. This results seem to be conflicting

with the relationships illustrated in Fig. 4.7, however, the data used in

Fig. 4.8 are processed data, which are averaged over a certain number of

data. Consequently, this result indicates that the use of processed RSSI and

LQI values can be leveraged to estimate the software parameters.

C. Choosing a Suitable Algorithm

There are various machine learning algorithms which estimate a value from

given data sets. We are assuming small embedded devices as sink nodes,

therefore, it is essential to consider the computational cost. Typically, the

performance of a machine learning algorithm is proportional to the compu-

tational cost. Therefore, it is important to determine the algorithm which

has high accuracy along with small amount of calculation.

We implemented linear regression and softmax regression using nesC.

However, due to the constraint of programmable flash size, softmax regres-
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sion could not fit on Iris mote, which is one of the latest sensor devices. Liu

et al. employed logistic regression to estimate the link qualities, and proved

that it has a reasonable accuracy [34]. In spite of their high accuracy, the

overhead for deriving the equation is significant: calculation cost of natu-

ral logarithm is extremely high especially in small embedded devices with

low performance processors. Moreover, we argue that the use of logistic

regression is overkill; according to our experimental result (Fig. 4.8(a) and

Fig. 4.8(b)), linear model is sufficient to express the relationships between

hardware and software parameters. In order to improve the performance of

linear regression, we adopt two novel ideas: 1) minimizing the calculation

overhead, and 2) omitting data setes with the best metric.

1. Minimizing the Calculation Overhead

We leverage two approaches to minimize the calculation overhead: I)

combining RSSI and LQI, and II) employing EWMA to compress mul-

tiple information.

I) Combining RSSI and LQI:

Linear regression determines least squares with a linear equation, and

estimates a parameter from given variables.

y = ax+ b (4.1)

Equation 4.1 expresses the simplest equation of linear regression, where

x and y stands for variables, and a and b expresses constants. The

first step is to determine the constants (a and b) of the equation:

their values are defined by minimizing the sum of square root of the

difference between given sets of variables (x and y) and the values
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calculated using the equation. Then, by substituting either variable,

another variable can be determined.

a =

n
n∑

k=1
xkyk −

n∑
k=1

xk
n∑

k=1
yk

n
n∑

k=1
x2k −

(
n∑

k=1
xk

)2 (4.2)

b =

n∑
k=1

x2k
n∑

k=1
yk −

n∑
k=1

xkyk
n∑

k=1
xk

n
n∑

k=1
x2k −

(
n∑

k=1
xk

)2 (4.3)

The Equations 4.2 and 4.3 represent the equations to solve two con-

stants, a and b, where n expresses the number of data sets. These

equations only involve simple iteration, however, when there are more

than two variables, the calculation becomes extremely complicated:

conversion calculation is required, which involves huge amount of cal-

culation. In order to minimize the calculation overhead, we combine

RSSI and LQI. By doing so, the equation becomes binomial, which

involves much simpler calculation. Our challenge is to determine the

method of combining these parameters.

II) Employing EWMA To Compress Multiple Information:

When utilizing linear regression, we use the combined parameter of

RSSI and LQI as x, and ETX as y. In the Equations 4.2 and 4.3,

the value of n represents the total number of training data sets. The

number of data sets is proportional to the performance of the algo-

rithm. In the meantime, when the number of training data sets is

large, calculation overhead becomes large. We leverage ETX as an

output parameter of ALQDP, therefore, the possible output values

are limited. For instance, when the ETX calculation window is set to

10 packets, the minimum and the maximum possible ETX values are 1

and 11, respectively. Therefore, we employ EWMA to compress data

sets which have the same ETX value. By doing so, the value of n in

the Equations 4.2 and 4.3 is limited to the range of ETX values rather

than the number of data sets, which is significantly small.

2. Omitting Data Sets with the Best Metric

We argue that, accuracy of link quality detection can be improved by

omitting the data sets with best metric. For example, when consider-

ing the relationships between ETX and RSSI (Fig. 4.8(a)), RSSI values
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Table 4.6: Tunable Parameters of Link Quality Estimation

Parameter Values

Window Size (W )
10, 15, 20, 25, 30, 35, 40, 45, 50,
60, 70, 80, 90, 100, 200, 500

Weight of RSSI (WR) 0 - 19 (step = 1)

Weight of LQI (WL) 0 - 19 (step = 1)

Weight of Most Recent Data (λ) 0.05 - 0.95 (step = 0.05)

have large variance when ETX equals to 1. This implies that when

RSSI is higher than a certain value, quality of the link is most likely

the best. This, in turn, shows that a data set with the best ETX value

worsens the accuracy of the estimation. Therefore, we omit these data

sets from the training data.

Defining Tunable Parameters

There are several parameters which need to be defined when utilizing the

algorithm we described above. We first discuss the parameters to define, and

then, explain the procedure and the result of parameter definition process.

Parameters To Determine:

First, we need to define the frequency of equation determination. This

is proportional to the overhead: frequent equation update induces large

calculation overhead. We define this frequency as window size (W ).

In order to minimize the calculation overhead, ALQDP combines RSSI

and LQI. Since the combining process takes place whenever a node receives

a packet, it is desired to be lightweight. Therefore, we choose to simply

apply weight on RSSI and LQI. We define the weight of RSSI and LQI as

WR and WL, respectively.

EWMAt = λYt + (1− λ)EWMAt−1 (4.4)

Equation 4.4 shows the general equation of EWMA calculation, where λ

represents the weight of the most recent data, which has significant impact

on the accuracy of the equation. We define the weight of most recent data

in EWMA as λ.

Parameter Definition Procedure:
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Table 4.7: Defined Parameters of Link Quality Estimation

Parameter Values

Window Size (W ) 35

Weight of RSSI (WR) 2

Weight of LQI (WL) 1

Weight of Most Recent Data (λ) 0.10

Mean Square Error 0.209

In order to define the parameters of the protocol, we utilized the data

collected in the experiment. The procedure consists of two steps: deter-

mining the equation using W training data sets, and calculating the mean

square error between the actual and estimated ETX value of the following

W data. We repeat these procedures with the whole data sets. Table 4.6 in-

dicates the parameters used to determine the parameters of the link quality

estimation protocol.

We repeated the determination process for every combination, and con-

firmed that the combination of parameters indicated in Table 4.6 achieved

the highest accuracy. We affirmed that proposed estimation protocol

achieves the mean square error of 0.209, which is equivalent to 4C [34].

Although the estimation accuracy is equivalent, we argue that ALQDP is

superior to 4C due to two reasons. First, the calculation overhead of ALQDP

is considerably small compared to 4C. 4C leverages logistic regression, on

the other hand, ALQDP utilizes linear regression with some improvement

features, which further minimize the calculation overhead. Second, ALQDP

requires smaller number of training data. 4C requires at least 2,000 data

sets as training data. In contrast, ALQDP can start estimation process after

collecting 35 data sets, which is substantially small. For these reasons, we

argue that ALQDP is superior to 4C in terms of overall performance.

Fig. 4.9 shows the Estimation errors in perspective of each window, where

x-axis indicates windows, and y-axis represents square error. The green

horizontal line represents the average of all data. We observed larger errors

in the first 200 data sets, which implies that ALQDP performs poor when it

has the small number of training data sets. However,ALQDP still requires

much smaller number of training data sets to estimate link qualities with

high accuracy compared to 4C.

Fig. 4.10 indicates the estimation errors when parameters are modified

from the defined values, where x-axis indicates each parameter, and y-axis
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Figure 4.9: Estimation Errors with Defined Parameters

represents the mean square error. In each figure, x indicates the average

value, and upper and lower bounds represent the standard deviation. As

shown in Fig. 4.10(a), we could not observe much differences in errors when

the window size is modified. This indicates that the frequency of parameter

determination can be low. However, when the window size is large, sensor

nodes have to collect a large number of data before starting estimation.

Therefore, we choose to use the window size which achieved highest accuracy.

Fig. 4.10(b) and Fig. 4.10(c) illustrate the estimation errors when the weight

of RSSI and LQI is modified, respectively. The errors remained small for

the most values. The weight of RSSI and LQI have small influence on

the amount of calculation, therefore, we simply used the values with the

smallest errors. As shown in Fig. 4.10(d), we confirmed wide variety of

errors by modifying the weight of the most recent data in EWMA. Smaller

errors were observed when λ is small, which signifies that the use of the

history of data is meaningful.

4.4 Summary

In this Chapter, we propose our approach of combining cluster and tree

structure to achieve high data collection efficiency and scalability, simulta-

neously. In order to achieve high efficiency in collecting data, and high agility

in detecting link qualities, we propose CTDCP, a data collection protocol,
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Figure 4.10: Parameters and Estimation Errors

and ALQDP, a link quality detection protocol, respectively. We propose by-

pass tree, which reduces the route construction cost, as well as data delivery

cost. CTDCP also utilizes broadcast-based routing to minimize the over-

head of packet transmissions. ALQDP leverages the combination of software

and hardware parameters to improve the accuracy of link quality detection

while minimizing the calculation overhead. ALQDP improves the agility in

detecting link qualities by utilizing link quality estimation. We conduct a

real world experiment, and used the collected data to define the parameters

of link quality estimation. As a result, we determined the equation which

has the mean square error of approximately 0.209, and considerably low

calculation overhead.
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Chapter 5

Implementation

In this Chapter, we describe the implementation of CTDCP and ALQDP.

First, we discuss the platform we used to implement proposed protocols on.

Second, we explain the system overview. Finally, we describe the implemen-

tation of CTDCP followed by ALQDP.

5.1 Implementation Platform

Researchers have been proposing wide variety of data collection proto-

cols [16] [17] [19] [20] [21] [22] [22] [25], and implementing them on various

kinds of platforms, such as, Mica2, and Micaz motes. We choose to im-

plement proposed protocols on Iris mote [39], a successor of Micaz mote,

which is widely used in the area of WSNs. Table 5.1 shows the specifica-

tion of Micaz and Iris mote. There are not much differences between Micaz

and Iris mote, except for RAM size and the amount of energy required in

sleep mode. Since these differences do not affect the performance of data

collection protocols nor link quality detection protocols, it is reasonable to

implement proposed protocols on Iris mote.

Motes can be programmed through TinyOS [32], Xmesh, Contiki, etc.

TinyOS is an open source, component-based operating system designed for

small wireless devices. We choose to implement CTDCP and ALQDP on

TinyOS2.x, because the majority of related work use it. Accordingly, we

implement CTDCP and ALQDP using network embedded systems C (nesC),

an event-driven programming language used in TinyOS.
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Table 5.1: Comparison Between Micaz and Iris Mote

Micaz Iris

CPU Atmel Atmega128L Atmel Atmega1281

CPU Type 8bit 8bit

Clock Speed 7.37MHz 7.37MHz

Flash Memory 128kB 128kB

Serial Flash 512kB 512kB

RAM 4kB 8kB

Radio Chip TI CC2420 Atmel RF230

Frequency Band 2,400-2,483.5MHz 2,400-2,480MHz

TX Data Rate 250kbps 250kbps

CTDCP

ALQDP
LQ

Table
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Figure 5.1: System Architecture of CTDCP and ALQDP
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5.2 System Overview

Fig. 5.1 illustrates the overall system architecture of proposed protocols.

The upper most layer in the figure is the application layer, and we assume

the existence of MAC or abstraction layer beneath the link quality detection

layer. We describe the behaviors of CTDCP and ALQDP as follows:

Whenever the overlying layer transmits packets, CTDCP inserts the

routing information, which includes, ID of the sender node, hop count, and

path link quality. The ID of the sender node is leveraged to identify the

source node of a packet. The hop count is utilized to find out the route

inconsistency: when a node receives a packet which has the same content

with different hop count, there is a great chance that there is a route incon-

sistency. In the meantime, path link quality is leveraged by neighbor nodes

to check if their current paths are most preferable. When the node receives

a packet, CTDCP processes it based on its type; if it is a routing packet,

CTDCP updates the routing table according to its information, and if it is a

data packet, CTDCP checks the routing table and decides to either discard,

forward, or notify the application of the reception of the packet.

ALQDP inserts link quality information whenever the overlying com-

ponent is transmitting a packet. This information is leveraged to measure

link qualities among neighbor nodes. Whenever a node receives a packet,

ALQDP retrieves RSSI and LQI from the radio chip, and calculates the

ETX utilizing the sender node’s link quality information. We define two

types of links in accordance with the number of received packets, Aged Link

and Young Link. Aged Link indicates that the node received enough num-

ber of packets to calculate ETX, on the other hand, Young Link suggests

that the link quality should be estimated using the link quality estimation

protocol. Whenever the node receives a packet through Aged Link, ALQDP

updates the parameter of the equation utilizing the RSSI, LQI and ETX,

and updates corresponding link quality entry. Whenever the node receives

a packet through Young Link, ALQDP estimates the ETX by passing the

RSSI and LQI to the link estimation protocol, and updates the link quality

table according to it. In this manner, ALQDP provides a link quality table

of both Aged Link and Young Link.

5.3 Implementation of CTDCP

This section describes our implementation of CTDCP. CTDCP has two basic

components: Routing Manager and Packet Processor. The Routing Man-

ager component manages routes within a sensor node and among neighbor
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Figure 5.2: Wiring of the Entire System

nodes. The Packet Processor component processes received packets.

Fig. 5.2 depicts the wiring of the entire system. The thick squares in-

dicate the main components we implemented: CtdcpRoutingManagerP, Ct-

dcpPacketProcessorP, LQ Detector, and LQ Estimator. Thin squares in-

dicate the generic components used by our system, and names beside the

arrows represent the interfaces used to connect components. Circles depicted

in upper part of the figure indicates the interfaces that application need to

wire. They are used for sending/receiving packets and acquiring CTDCP’s

information.

5.3.1 Routing Manager Component

Fig. 5.3 illustrates the main component of Routing Manager (CtdcpRout-

ingManagerP). CtdcpRoutingManagerP leverages radio transmission/recep-

tion interfaces provided by LQ DetectorP, the main component of ALQDP.

Consequently, information is added and retrieved in link quality detection

layer whenever CtdcpRoutingManagerP sends or receives a packet. Routing

Manager has three roles: cluster formation, basic routing management, and

sink nodes management.
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� �
typedef struct {

am addr t ne ighbor addr ;

am addr t parent ;

u i n t 16 t e tx t o ;

u i n t 16 t etx from ;

u in t 16 t s u b t r e e s i z e ;

bool conge s t i on ;

} ROUTINGENTRY;� �
Figure 5.4: Routing Entry Structure

Basic Routing Management

Fig. 5.4 illustrates the structure of routing entry leveraged in CTDCP.

ROUTING ENTRY is utilized for routing among statically placed sensor

nodes, and its members are described as follows:

neighbor addr: Link layer address of the neighbor node.

parent: Parent of the neighbor node. The parent is in charge of forwarding

packets transmitted by the neighbor node.

etx to: ETX value from the local node toward the neighbor node.

etx from: ETX value from the neighbor node toward the local node.

subtree size: The number of nodes in its subtree. This indicates the

number of packets to forward.
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� �
typedef nx s t ru c t {

nx am addr t parent ;

nx u in t16 t etx ;

nx u in t16 t s u b t r e e s i z e ;

nx u in t8 t f l a g ;

} CTDCPROUTING PACKET;� �
Figure 5.5: Routing Packet Structure

congestion: Indicates if the neighbor node is congested. Congestion is set

to TRUE when the neighbor node is forwarding the excessive number

of packets.

Overlying application layer is in charge of defining the numbers of entries.

Normally, the size of them is proportional to the performance of the Routing

Manager, because it can choose the next hop from the larger number of

neighbor nodes. In the meantime, they are also proportional to the storage

usage. Since storage size is severely constrained in wireless sensor nodes,

table size should be small in perspective of storage usage.

The Routing Manager leverages Routing Packet to exchanging routing

information among neighbor nodes. Fig. 5.5 shows the structure of the

Routing Packet, and “nx ” prefix signifies that it is a network type. Each

member of the packet is described as follows:

parent: Link layer address of parent of the node which transmitted the

packet. If the packet is transmitted using unicast, the parent replies

an acknowledgement, otherwise, neighbor nodes simply update their

routing entry according to the information.

etx: The etx field expresses the ETX value from the transmitting node

toward the root node.

subtree size: This indicates the number of nodes in its subtree.

flag: There are three flags, FREQUENT ROUTE UPDATE,

NODE CONGESTED, and ROOT DETACH. FRE-

QUENT ROUTE UPDATE is leveraged to request neighbor nodes

to aggressively transmit routing information, NODE CONGESTED

is utilized to notify neighbor nodes to ask for path change, and

ROOT DETACH is used to notify a node to act as a cluster head.

We leverage two types of timers to manage routing table; RouteUp-

dateTimer and BeaconingTimer. The frequency of RouteUpdateTimer is
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defined by the overlying applications. Whenever the RouteUpdateTimer is

fired, the Routing Manager compares the link quality between its current

destination and neighbor nodes in the routing table. If the Routing Man-

ager finds a link with better quality, it notifies the new parent node of the

destination change using unicast. We choose to leverage unicast, because

the receiver node can simply acknowledge the sender node of the reception

of packet, while neighbor nodes can receive the same packet using snooping

(In TinyOS, overheard packet is notified through Snoop interface). Bea-

coningTimer is equivalent to RouteUpdateTimer, but has two differences:

first, BeaconingTimer send notification packets even when the route is not

updated, and second, the timer interval is infrequent. Notification process

is always invoked when BeaconingTimer fires, so that the routing informa-

tion is shared among neighbor nodes. BeaconingTimer employs the idea

of Trickle [26]: the timer interval is exponentially increased, and when the

event of interest occurs, the timer is set to the minimal interval. Trickle

is originally designed for code propagation, however, the idea of adaptive

interval is proved to work well in routing protocols [24]. The interval of

BeaconingTimer is set to the minimal when the node 1) has no destination,

and 2) receives a packet with FREQUENT ROUTE UPDATE flag. A node

may have no destination when it has just booted, or the parent node got

lost. In these cases, the Routing Manager aggressively searches for a new

route by setting the timer interval to minimal. When the node has just

booted, the Routing Manager requests neighbor nodes to frequently trans-

mit routing information, by setting FREQUENT ROUTE UPDATE flag in

the transmitting beacon packet. When neighbor nodes receive a packet with

FREQUENT ROUTE UPDATE flag, Routing Manager resets the interval

of BeaconingTimer to minimal. Newly booted node utilizes these routing

information to find a path.

Whenever the node transmits a Routing Packet, the Routing Manager

inserts local node’s routing information. The Routing Manager sets the

link layer address of its parent node as parent. Note that when a node has

no route, it sets broadcast address as parent. In this way, receiver nodes

can understand that the transmitting node does not have valid route. The

Routing Manager inserts the ETX value from the local node toward the root

node as etx. When the local node is a root node, the Routing Manager fill the

etx field with 0 instead of 1, otherwise, it is impossible to identify root nodes,

because a node which is one hop away from a root node with perfect link

quality also has ETX of 1. Two types of flags are utilized in Routing Packet:

FREQUENT ROUTE UPDATE flag is set when requesting neighbor nodes

to transmit routing information rapidly, and NODE CONGESTED is set
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� �
1 i f ( packet−>parent != INVALID)

2 i f ( packet−>parent == LOCALADDR | | packet−>etx == 0)

3 r ou t i n g t ab l e . i n s e r t ( packet−>o r i g i n ) ;

4 r ou t i n g t ab l e . pin ( packet−>o r i g i n ) ;

5 end i f

6 r ou t i n g t ab l e . update ( packet−>o r i g i n , packet−>i n f o ) ;

7 end i f

8 i f ( packet−>f l a g == FREQUENTROUTEUPDATE)

9 BeaconingTimer . s e t I n t e r v a l ( minimal ) ;

10 end i f� �
Figure 5.6: Pseudo Code for Processing Routing Packet

when the local node is forwarding the excessive number of packets.

Whenever a node receives a Routing Packet, Routing Manager updates

its routing table according to its information. Fig. 5.6 shows the pseudo code

for processing a Routing Packet. The Routing Manager only updates the

routing information if the parent section of the packet is not invalid, because

neighbor node with no valid path should not be leveraged. When parent

field of the packet is equivalent to the local node’s address, or etx section

of packet equals to 0, Routing Manager forcefully inserts the information

to the routing table, and pin it. This is because, this information indicate

that the local node has to forward packets transmitted by the sender node,

and the transmitting node is a root node, respectively. When an entry

is pinned, the Routing Manager cannot remove or overwrite it until it is

unpinned. Updating process (line 6) updates the sender node’s information

in the routing table. The Routing Manager updates the etx to and etx from

in the routing table leveraging underlying link quality detection layer, and

sets the congestion to TRUE if it is indicated. When the entry of the

sender node exists in the routing table, Routing Manager simply updates

the information, and when there is no entry, Routing Manager tries to insert

the entry. If there is a room in the routing table, Routing Manager simply

creates an entry, and if not, Routing Manager overwrites an entry with the

worst link quality. When the packet has FREQUENT ROUTE UPDATE

flag, Routing Manager sets the interval of BeaconingTimer to minimal, so

that the routing information is notified to the neighbor nodes aggressively.
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Cluster Formation

In order to form clusters among the WSN, the Routing Manager provides

a tunable parameter, CTDCP MAX CLUSTER SIZE, to overlying appli-

cations. This parameter defines the maximum number of nodes involved

in each cluster. We suppose overlying application to select and define root

nodes of the WSNs. There are two reasons we employ this idea: first, the

application may want to collect data at statically placed root node while

delivering data to multiple mobile sink nodes, and second, we believe that

costly root node selection should not be done in routing protocols, instead,

position of root nodes better be selected when deploying the WSN. We

provide an interface, RootControl for overlying layer to set/unset the root

status of a node.

When the RouteUpdateTimer fires in the root node, Routing Man-

ager searches its routing table for entries which have itself as parent,

and calculates the sum of their subtree size. This value indicates the

number of nodes involved in its cluster. Whenever it exceeds CT-

DCP MAX CLUSTER SIZE, the root node splits its cluster into two. The

root node searches its routing table for a node which has the subtree size

closest to half of the current cluster size, and transmits a Routing Packet

with ROOT DETACH flag to that node. When a node receives a Routing

Packet with ROOT DETACH flag, it declares itself as a root node, and

starts acting as a cluster head. Although there are many ways to split a

cluster, we believe that splitting a cluster into halves is the most simple and

effective way. When a cluster is divided to approximately the same size,

their performance are supposed to be equal. Meanwhile, Routing Manager

simply detaches a whole subtree from a cluster, therefore, there is no need

to reconstruct routes in each cluster.

In the meantime, Routing Manager considers to combine clusters if

the sum of sensor nodes involved in two clusters is smaller than CT-

DCP MAX CLUSTER SIZE. Whenever the RouteUpdateTimer fires in the

root node, Routing Manager calculates the sum of subtree size of neighbor

root node in the routing table and itself. We argue that it is better for a

node with smaller cluster size to be merged to a node with larger cluster size,

because, it is usually better to have the smaller number of nodes involved in

each subtree. For these reasons, the following procedure is only leveraged by

the root node with smaller cluster size. The root node stops acting as a root

node, instead, it operates as an inner node of a tree structure. It transmits a

Routing Packet to the other root to notify that the node became a subtree of

that node. This procedure allows Routing Manager to combine two clusters
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� �
typedef struct {

am addr t s ink ;

am addr t source ;

u i n t 16 t e tx t o ;

u i n t 16 t etx from ;

u i n t 8 t bypa s s s i z e ;

am addr t ∗bypass nodes ;

u i n t 8 t bypa s s ed s i z e ;

am addr t ∗bypassed nodes ;

bool conge s t i on ;

} SINK ROUTING ENTRY;

typedef struct {
am addr t s ink ;

am addr t bypass from ;

am addr t bypass to ;

u i n t 16 t e tx f r om to ;

u i n t 8 t f l a g ;

} SINK BYPASS LIST ;� �
Figure 5.7: Sink Routing Entry Structure

without reconstructing tree structures, because, from the perspective of the

root node, this process simply attaches a subtree.

Sink Nodes Management

Fig. 5.7 illustrates the structure of sink routing entry and bypass list lever-

aged in CTDCP. The SINK ROUTING ENTRY is used for routing toward

sink nodes, and SINK BYPASS LIST keeps track of bypassing and bypassed

nodes. Their parameters are described as follows:

– SINK ROUTING ENTRY:
sink: The link layer address of the sink node in the WSN. This indicates

that the packets should be delivered to the specified sink node.

source: The link layer address of the source node. When the local node

receives packets from the source node, it forwards them toward the

sink node.

etx to: ETX value from the local node toward the sink node.

etx from: ETX value from the sink node toward the local node.

bypass size: The number of bypass node in the entry.

*bypass nodes: The list of bypass nodes. When the local node receives

packets from a node in the list, it forwards them toward the its own

parent node.
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� �
typedef nx s t ru c t {

nx am addr t s ink ;

nx am addr t parent ;

nx am addr t detach ;

nx u in t16 t etx ;

nx u in t8 t f l a g ;

} CTDCP SINK ROUTING PACKET T;� �
Figure 5.8: Sink Routing Packet Structure

bypassed size: The number of bypassed node in the entry.

*bypassed nodes: The list of bypassed node. The nodes in the list is

bypassed, hence, the local node does not forward their packets even if

they are transmitted by the source node.

congestion: Indicates if the neighbor node is congested. Congestion is set

to TRUE if the node is forwarding the excessive number of packets.

– SINK BYPASS LIST:

sink: The link layer address of the associated sink node.

bypass from: The link layer address of the node which is being bypassed.

bypass to: The link layer address of the destination node.

etx from to: The ETX value from the bypassed node to the bypassing

node.

flag: This indicates if the entry is being used or not.

The number of entries in SINK ROUTING ENTRY, bypassing size, and

bypassed size is defined by the overlying application. SINK BYPASS LIST

keeps track of link qualities among related neighbor nodes, and continually

check the validity of bypassing.

The Routing Manager leverages Sink Routing Packet to manage sink

node’s routes. Fig. 5.8 shows the structure of the Sink Routing Packet, and

each member of the packet is described as follows:

sink: Link layer address of the sink node. This information is leveraged

to distinguish multiple sink nodes.

parent: The parent and detach information is leveraged to manage routing

for sink nodes. Their roles change in accordance to the procedure of

bypass tree construction.

detach: Explained above.
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etx: The field shows the ETX value from the local node toward the sink

node.

flag: The flag section indicates the role of the packet.

Sink Routing Packets can be classified into three types: a) attach, b)

detach, and c) bypass. We describe each of the them as follows.

a) attach

Attach message is leveraged in one of the two events: 1) when a sink

node requests a node to forward packets, or 2) when the forwarding node

notifies its parent of it. For the simplicity of explanation, we define the

transmitting node as “requesting node” and receiver node as “requested

node”. When a requesting node notifies the requested node of forwarding

packets, it defines each field (sink, parent, detach, etx, flag) of a packet

with, address of the attaching sink node, address of the requested node,

broadcast address, ETX value from the requested node to the request-

ing node, and CTDCP SINK FLAG ATTACH, respectively. Note that

sink, detach and flag field of packets are fixed throughout an attaching

event. When attach packet is successfully transmitted, the requesting

node moves that packet to the end of the sending queue, and inserts

the information to the SINK ROUTING ENTRY. CTDCP sets the sink,

source, etx to, etx from information in accordance to the transmitting in-

formation, and initialize bypass size and bypassed size with 0. Upon re-

ception of a Sink Routing Packet with CTDCP SINK FLAG ATTACH

flag, the requested node notifies its own parent of forwarding packets.

The requesting node leverages the packet transmitted by the requested

node as an acknowledgement, and removes the packet from its sending

queue. Consequently, when requesting node did not receive that packet,

it retransmits the packet.

b) detach

The detaching process is similar to the attaching process. When

detaching from a forwarding node, the requesting node sets the

address of requested node to the detach field, and set CT-

DCP SINK FLAG DETACH to the flag field. Note that parent and

etx field of the packet is unused in detaching process. Upon reception

of a detach packet, CTDCP removes an entry which has the same sink

node as the received packet, and transmits a detach packet to its parent

node. When a sink node decides to change the forwarding node, it can re-

quest attaching and detaching with one packet, by specifying both parent

and detach field, and setting CTDCP SINK FLAG ATTACH and CT-
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DCP SINK FLAG DETACH flag. This allows CTDCP to reduce the la-

tency when switching between nodes, while minimizing the packet trans-

mission overhead by achieving two queries with one packet.

c) bypass

The bypassing process takes place along with attaching process. When-

ever a node (which is not the parent of the requesting node) re-

ceives an attach packet, it determines the effectiveness of bypass-

ing. For the simplicity of explanation, we define this node as “by-

pass node”. If the node decides to bypass the requested node,

it sets the parent, detach, and flag field of a packet with, link

layer address of the requesting node, that of the requested node,

and combination of CTDCP SINK FLAG BYPASS PARENT and CT-

DCP SINK FLAG BYPASS DETACH. Similarly to the process of an

attach packet, the bypass node moves the transmitted packet to the end

of the sending queue after each transmission. When the requesting node

receives the bypass packet, it inserts the bypass node’s address to the

bypass nodes, thereafter, it forwards packets transmitted by the bypass

node. Meanwhile, when the requested node receives the bypass packet,

it adds the link layer address of the bypass node to bypassed nodes,

and stops forwarding packets transmitted by the bypass node. They

reply an acknowledgement by adding either CTDCP SINK FLAG ACK

if the insertion is succeeded, and CTDCP SINK FLAG BYPASS FAIL

if the insertion failed. When the bypass node receives an acknowl-

edge with CTDCP SINK FLAG BYPASS FAIL, it removes the bypass

packet from the queue, and notifies another node to remove itself from

its bypass table. On the other hand, when the bypass node receives

an acknowledgement with CTDCP SINK FLAG ACK from either re-

questing or requested node, it removes the corresponding flag and set

broadcast address to the parent or detach field. This procedure al-

lows the bypass node to receive acknowledgement only once from each

node, hence minimizes communication overhead. After receiving success-

ful acknowledgements from both nodes, bypass node inserts an entry to

its SINK BYPASS LIST. The bypass node sets sink, bypass from, by-

pass to, etx from to field with, link layer address of the sink node, that

of requested node, that of requesting node, and ETX value from the re-

quested node to the requesting node, respectively. Whenever the link

quality information among the bypass node, requesting node, and re-

quested node is updated, the bypass node redetermines the validity of

bypassing. If bypassing is no longer effective, bypass node transmits
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Figure 5.9: Wiring of Packet Processor

a bypass packet with CTDCP SINK FLAG RM BYPASS, and removes

the bypass entry from the requesting and requested node.

Transmitting a packet with larger payload is proven to require greater

amount of energy [40], hence, our approach of having both parent and detach

field in a packet requires more energy. However, both of them are leveraged

except when a sink node enters or leaves the WSN, which seldom occurs.

Therefore, we argue that the advantage of combining multiple queries into

one packet surpasses the disadvantage of having possibly unnecessary field.

Routing Manager aggressively transmits Sink Routing Packet, by check-

ing its send queue for unsend packets after every successful transmission of

a packet. This enables to establish path from each sensor node toward the

sink node quickly.

5.3.2 Packet Processing Component

Fig. 5.9 indicates the components of Packet Processor (CtdcpPacketProces-

sorP). CtdcpPacketProcessorP leverages routing information and root status

provided by CtdcpRoutingManagerP, and supplies link layer information to

LQ DetectorP. It leverages generic radio transmission/reception interfaces,

which implies that link quality information is not inserted or retrieved when

it exchange packets. Meanwhile, it provides packet exchange interfaces,

which are leveraged by the overlying applications. This component is in

charge of sending and forwarding data packets. Its basic role is to transmit

packets queried by the local application, and to forward packets transmitted
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� �
typedef nx s t ru c t {

nx u in t8 t c o l l e c t i o n i d ;

nx am addr t source addr ;

nx u in t8 t seq ;

nx u in t8 t hop count ;

nx u in t16 t etx ;

nx u in t8 t f l a g ;

} CTDCP DATA HEADER T;� �
Figure 5.10: Header of Data Packet in CTDCP

by child nodes.

Fig. 5.10 illustrates the structure of header leveraged in CTDCP data

packets. Each parameter is described as follows:

collection id: Indicates the collection ID of the packet. Collection ID is a

generic parameter utilized in routing protocols of TinyOS.

source addr: Link layer address of the source node. TinyOS only provides

the link layer address of a transmitting node, therefore, when pack-

ets are forwarded by multiple nodes, applications cannot determine

the actual source node. Hence, CTDCP remembers the source node

utilizing its data header.

seq: The sequence number of the packet. This information is leveraged to

detect duplicate packets in the sending queue.

hop count: This indicates the hop count of the packet. This information

is utilized to find route inconsistency.

etx: The ETX value from the source node toward the root node. Neighbor

nodes use this information to find better paths.

flag: This field is equivalent to flag field in CTDCP ROUTING PACKET

(Fig. 5.5). The transmitting node may use FRE-

QUENT ROUTE UPDATE and NODE CONGESTED flag. This

information is leveraged to request rapid link quality detection, and

to notify neighbor nodes of congestion, respectively.

Packet Processor leverages a sending queue (SendQueue) and a sent

cache (SentCache) to manage sending and forwarding packets. A packet

is enqueued to the SendQueue when the application requests to transmit

the packet, or when the local node needs to forward the received packet.

Packet Processor determines the necessity of forwarding packets by verify-

ing it with Routing Manager. Routing Manager informs Packet Processor
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to forward packets when 1) the local node is a parent of the transmitting

node in the ROUTING ENTRY, 2) the transmitting node is source node

in the SINK ROUTING ENTRY, and 3) the transmitting node is in the

bypass nodes of SINK ROUTING ENTRY.

After successful transmission of packets, Packet Processor moves the

packet to the end of the SendQueue, and start the retransmit timer. This

timer is utilized to wait certain amount of time for the acknowledgement

of the transmitted packet. When the timer is invoked, Packet Processor

dequeues the first packet in the SendQueue and transmits it. Packet Pro-

cessor repeats this procedure until the SendQueue becomes empty. Upon

reception of packets, Packet Processor checks if a duplicate packet is in the

SendQueue by comparing the collection id, source addr, and seq field. When

the received packet exists in the SentCache, it signifies that the child node

did not receive the packet forwarded by the local node, therefore, Packet

Processor unicasts the same packet to the child node as acknowledgement.

Another job of the Packet Processor is notifying the link quality detection

layer of link layer information. Since each layer of operating systems should

be independent from each other, link quality detection should not be directly

accessing the information of data packets. Therefore, Packet Processor only

provides the information of successful and unsuccessful delivery of packets,

utilizing acknowledgements and retransmissions.

5.4 Implementation of ALQDP

This section describes our implementation of ALQDP. Fig. 5.11 illustrates

the structure of ALQDP. LQ Detector provides link quality information

to LQ Estimator, and also uses the estimated link quality provided by it.

LQ Detector uses packet exchange interfaces, and provides the same inter-

faces to the upper layers. It simply leverages outgoing and incoming packets

to insert and retrieve link quality information.

ALQDP has two components: Link Quality Detector and Link Quality

Estimator. The Link Quality Detector detects the link qualities based on

both hardware and software information. In the meantime, Link Quality

Estimator estimates the high accuracy software parameter from inexpensive

hardware parameters.

5.4.1 Link Quality Detector Component

When Link Quality Detector determines the quality of links among nodes,

it modifies the ETX calculation window size and EWMA’s weight of most
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Figure 5.11: Wiring of ALQDP

recent data to meet the status of sensor nodes. We employ the idea of

Trickle in ETX calculation window size to adapt to high dynamic links,

while suppressing the calculation overhead. We define the minimum and

the maximum window size as 3 and 10, respectively, based on the findings

in 4B [28], and our experiment described in Sec. 4.3.1. Meanwhile, we define

the weight of the most recent data in EWMA according to the mobility of

the node: if either of the connected node has mobility, the weight is defined

as 0.9 and if not, the weight is defined as 0.5. The weight of the most recent

data is meaningful, however, we have not figured the confidential value for

it, because at this point, we do not have much data with mobile nodes.

Therefore, our future work is to discover the most suitable weight which

works in variety of environment.

Fig. 5.12 illustrates the link quality entry. The parameters of

LINK QUALITY ENTRY are described as follows:

addr: This indicates the link layer address of the corresponding node.

flag: The flag section indicates multiple state. This signifies the validity,

pin, mobility, and updating information of the entry.

inquality: The inquality shows the ETX value from the target node toward

the local node.

etx: This indicates the ETX value from the local node toward the target

node.

last seq: This indicates the sequence number of the previously received
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� �
typedef struct {

am addr t addr ;

u i n t 8 t f l a g ;

u i n t 8 t i n qua l i t y ;

u i n t 8 t etx ;

u i n t 8 t l a s t s e q ;

u i n t 8 t r e cv packe t s ;

u i n t 8 t f a i l p a c k e t s ;

u i n t 8 t window size ;

u i n t 16 t r s s i ;

u i n t 16 t l q i ;

} LINK QUALITY ENTRY;� �
Figure 5.12: Link Quality Entry Structure

packet.

recv packets: The number of successfully received packets.

fail packets: The number of packets which was not received.

window size: This field remembers the window size of the entry.

rssi: RSSI value of previously received packet.

lqi: LQI value of previously received packet.

The link quality table is in charge of storing the number of successful and

unsuccessful reception of packets. These values are leveraged to compute

the ETX values. The window size is leveraged to provide different ETX

calculation window size for each target node. The rssi and lqi fields are

not directly leveraged by Link Quality Detector; they are used as input

parameters of Link Quality Estimator.

Fig. 5.13 shows the structure of link quality packet. We describe each

member of it as follows.

– LQD HEADER:

flag: This indicates the number of footer entries in the packet, and the

mobility status.

seq: This indicates the sequence number, which is leveraged by neighbor

nodes to calculate the ETX value.

– LQD FOOTER ENTRY:

link addr: The link layer address of the associated node.

inquality: The inquality information, which is utilized to determine ETX

value from the specified node toward the transmitting node.

– LQD FOOTER:
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� �
typedef nx s t ru c t {

nx u in t8 t f l a g ;

nx u in t8 t seq ;

} LQDHEADER;

typedef nx s t ru c t {
nx am addr t l i nk add r ;

nx u in t8 t i n qua l i t y ;

} LQD FOOTER ENTRY;

typedef nx s t ru c t {
LQD FOOTER ENTRY ∗ e n t r y l i s t ;

} LQDFOOTER;� �
Figure 5.13: Link Quality Packet Structure

*entry list: List of link quality entries.

Link Quality Detector does not transmit packets on its own, instead, it

adds header and footer to the transmitting packet. It leverages footer with

variable length, which lengthens packets only when required. It has two

roles: first, it computes the inquality and notifies the target node of it, and

second, it updates link quality table according to the received packets.

Whenever packets are transmitted through Link Quality Detector,

it inserts sequence number, and increments it after every transmission.

The neighbor nodes which received the packet updates recv packets and

fail packets by subtracting the last seq from the received packet’s sequence

number, and updates last seq. Data packets do not leverage Link Quality

Detector, however, Packet Processor notifies it of successful and unsuccess-

ful transmission of packets, which is also used to update recv packets and

fail packets. In consequence, link quality detection leverages not only con-

trol packets, but also data packets to improve the accuracy of detecting

link qualities. When the sum of recv packets and fail packets exceed win-

dow size, Link Quality Detector calculates the inquality, and set UPDATE

flag to the entry. The UPDATE flag requests Link Quality Detector to trans-

mit ETX information to the target node. Link Quality Detector increments

the number of footer entries in the flag, and adds corresponding footer entry

to footer of the packet. Upon reception of packets, Link Quality Detector

obtains the number of footer entries in the packet from the flag field. When

Link Quality Detector finds an entry which has the local node’s address as

link addr, it updates the etx field in the link quality table. Accordingly,
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Link Quality Detector provides bidirectional ETX values of neighbor nodes.

Whenever the node receives a packet with link quality information, Link

Quality Detector informs Routing Manager of it, which is used to verify the

effectiveness of bypassing.

We express the link quality in the form of ETX multiplied by 10, and

rounding off the decimal. In this way, the output of ALQDP can be leveraged

without involving costly decimal numbers.

5.4.2 Link Quality Estimator Component

This component provides estimated link qualities based on RSSI and LQI

values. When the Link Quality Detector updates the ETX values, Link

Quality Estimator inserts RSSI, LQI, and ETX into its estimation equa-

tion. After inserting W combination of information, Link Quality Estimator

recomputes the equation, so that the other components can use the most

updated data. We simply implemented the link quality estimation described

in Sec. 4.3.2 as a standalone component with nesC.

5.5 Summary

In this Chapter, we describe our implementation of CTDCP and ALQDP.

First, we clarified the platform used to implement our system on; we leverage

Iris motes as hardware, and TinyOS2.x as a platform. We then describe

overall structure of proposed two protocols, CTDCP and ALQDP. Finally,

Implementation of CTDCP and ALQDP are described in detail.
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Evaluation

In this Chapter, we present the evaluation of proposed protocols. We con-

duct evaluations both in the real world environment and in simulation. For

each of them, we provide the evaluation methodology, including evaluation

environment, metrics and comparison targets, and then present its results

and discussions.

6.1 Real World Evaluation

We conduct two types of real world evaluation to clarify the performance

of 1) the basic data collection, and 2) the data collection with mobile sink

nodes. Unless otherwise noted, values expressed in this Section are rounded

to four significant figures.

6.1.1 Evaluation of the Basic Data Collection

Through this experiment, we examine the fundamental data collection per-

formance achieved by the combination of CTDCP and ALQDP. Even though

this thesis targets WSNs with mobile sink nodes, it is essential for data col-

lection protocols to have high data collection efficiency in a WSN consisting

only of static nodes. The reason is twofold. First, CTDCP leverages tree

structures constructed with static nodes for data collection, hence, its data

collection efficiency highly depends on the performance of the tree structure.

Second, mobile sink nodes may be immobile for a long period of time, or

CTDCP may be used only with statically placed sensor nodes. In these

cases, data collection efficiency with static nodes is essential.
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Evaluation Methodology

CTDCP leverages tree structures to deliver packets toward mobile sink

nodes, therefore, we compare it against existing tree-based data collection

protocols. We choose CTP [24] as the comparison target for two reasons:

first, it is proven to achieve high data collection efficiency, and second, it is

implemented as a TinyOS library in the main branch. For the link quality

detection protocol of CTP, we use its default protocol, 4B [28].

We evaluate CTDCP and CTP in perspective of A) packet delivery ratio,

B) the number of retransmissions, C) path length, D) energy consumption,

and E) storage usage. Unless otherwise noted, we evaluate each item by

deriving the average of all data.

A. Packet Delivery Ratio

Packet delivery ratio indicates the end-to-end packet delivery ratio be-

tween the sink node and each sensor node. The packet delivery ratio is

calculated by dividing the number of received packets by that of trans-

mitted packets. The delivery ratio is desired to be as high as possible.

B. The Number of Retransmissions

CTDCP and CTP utilize retransmissions to complement packet losses.

We modified them to include a retransmission field in each packet, and

increment its value after every successful transmission. Despite packet

retransmission is essential in increasing the delivery ratio, it incurs high

overhead not only at the sender nodes, but also at its neighbor nodes.

In consequence, it is preferable to have high delivery ratio and the small

number of retransmissions at the same time.

C. Path Length

Path length represents the number of hops between the source and the

sink node. It is determined by incrementing the value of the hop count

field whenever a node receives a packet. It is usually better to have

shorter path length, because it is meaningful in 1) reducing the possibil-

ity of packet collisions, and 2) minimizing energy consumption at every

forwarding node. In some cases, higher delivery ratio is achieved by

leveraging a path with larger path length, however, it incurs additional

overhead for forwarding packets. Therefore, it is desired to have high

delivery ratio and shorter path length simultaneously.

D. Energy Consumption

One of the most notable characteristics of sensor nodes is having severe

constraint on energy source, hence, it is important to minimize energy
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Table 6.1: Real World Evaluation Environment for the Basic Data Collection

Parameter Values

Sensor Nodes 21 Iris motes

Place
o208 at Shonan Fujisawa
Campus, Keio University

Duration Over 55 hours

Inter Packet Interval 5 seconds

MAC B-MAC

Maximum Retransmissions 30

Routing Table Size 10

Routing Queue Size 13

Routing Cache Size 4

Link Quality Table Size 10

consumption. Energy consumption is calculated by subtracting the volt-

age of batteries at the end of the experiment from that at the beginning

of it. Any kind of operation in sensor nodes consumes energy, therefore,

energy consumption represents the overhead of the protocols. Energy

consumption is affected by the characteristics of both sensor nodes and

batteries, therefore, we use them as pairs throughout the evaluation.

E. Storage Usage

In general, wireless sensor nodes are equipped with small storage. In

order to evaluate storage usage, we leveraged the data size of ROM and

RAM required by the application used in the evaluation. The perfor-

mance of data collection and link quality detection protocols are usually

proportional to their table size. Therefore, it is preferable for protocols

to require small storage, because the remaining storage may be utilized

to increase the table size.

Table 6.1 shows the parameters used in the evaluation. One iris mote is

leveraged as a sink node, which is connected to a personal computer through

MIB520, a USB gateway. We deployed 21 Iris motes in the room o208 at

Shonan Fujisawa Campus, Keio University. The inter packet interval is set

to 5 seconds to verify the data collection performance, rather than their

collision avoidance abilities. We used the default values of CTP and 4B for

MAC protocol, maximum retransmissions, table size, queue size, and cache

size. We let the evaluation run for at least 55 hours.
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Table 6.2: Evaluation Results of the Basic Data Collection in the Real World

Environment

Parameter Protocol Result

Average Packet
Delivery Ratio

CTDCP + ALQDP 1.000

CTP + 4B 0.9999

Average Number of
Retransmissions

CTDCP + ALQDP 0.03177 Retxs/packet

CTP + 4B 0.03689 Retxs/packet

Average Path Length
CTDCP + ALQDP 1.210

CTP + 4B 1.905

Average Energy
Consumption

CTDCP + ALQDP 1.147µV/s

CTP + 4B 1.805µV/s

Storage Usage
CTDCP + ALQDP

ROM: 38,502 bytes
RAM: 6,789 bytes

CTP + 4B
ROM: 34,832 bytes
RAM: 4,585 bytes

Evaluation Results and Discussions

Table 6.2 shows the evaluation results of the basic data collection in the real

world environment.

• Packet Delivery Ratio

The delivery ratio is equivalent in CTDCP and CTP. There are two

reasons they both achieved high delivery ratio. First, packets are

barely damaged or lost in Iris mote, because it is equipped with high

performance radio transceiver. Second, tree structure has high deliv-

ery ratio in data collection. It has been proven that tree structures

perform well in data collection [24] [25], hence, it is understandable

that they both achieved high delivery ratio.

• The Number of Retransmissions

We confirmed that CTDCP has the slightly smaller number of retrans-

missions compared to CTP. The maximum number of retransmissions

in CTDCP and CTP is 3 and 4, respectively. Since we defined the

maximum number of retransmissions as 30 in each protocol, it is dif-

ficult to believe that some packets are lost in CTP due to excessive

retransmissions. Consequently, we argue that packet losses in CTP

are caused by the overflow of sending/forwarding queue, which im-

plies that congestion control is poor in CTP.
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Figure 6.1: Energy Consumption in the Basic Data Collection Evaluation

• Path Length

We observed large differences in the average path length in CTDCP

and CTP. This signifies the superiority of proposed protocols in terms

of minimizing the overhead. We argue that there are two reasons

that proposed protocols achieve shorter path length. First, the larger

number of packets is exchanged in CTP, because it leverages ACK

to acknowledge the reception of packets, meanwhile, CTDCP elimi-

nates it by utilizing data packets as acknowledgements. As a result,

sensor nodes in CTP have greater chance of overflowing their sending/-

forwarding queue, which causes their children nodes to change their

parent to a node with possibly worse link quality. Second, we believe

that the use of Iris mote favors ALQDP over 4B, because the LQI

value of RF230 (radio transceiver used in Iris mote) barely changes,

and 4B only leverages LQI as a filter when inserting information of a

node into its neighbor table. ALQDP is less affected by it, because it

utilizes the combination of RSSI and LQI as a filter.

• Energy Consumption

The evaluation results prove that the proposed protocols require sub-

stantially small amount of energy in comparison to the existing proto-

cols. Fig. 6.1 illustrates voltage measured at each sensor node, where

x-axis represents time in 1,000 seconds scale, and y-axis expresses volt-

age in millivolt. Each line in the figure represents energy consumption

of each sensor node. As expressed in the figure, voltage of batter-

ies have large jitter when measured at sensor nodes, hence, we use

the average of all sensor nodes to minimize the errors. We observed
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large jitter in voltage especially at the beginning of the experiment,

therefore, we omit them in the energy consumption calculation.

The combination of CTDCP and ALQDP reduced energy consump-

tion by approximately 35% in comparison to that of CTP and 4B. This

is a significant improvement, because energy source is usually severely

limited in sensor nodes. We believe there are two reasons that pro-

posed protocols consume lower energy compared to the existing proto-

cols. First, CTDCP has shorter path length and the smaller number

of retransmissions, which signifies that it involves smaller number of

packet exchanges. Transmission and reception of packets require large

amount of energy compared to other operations, therefore, we argue

that CTDCP reduces energy consumption by minimizing the number

of packet exchanges. Second, we argue that ACK packets leveraged in

CTP induces additional overhead. CTP utilizes unicast-based routing,

and requires receiver nodes to reply acknowledgements upon the recep-

tion of packets. On the other hand, CTDCP utilizes broadcast-based

routing, and leverages forwarded data packets as acknowledgements.

Consequently, we argue that CTP consumes more energy for leverag-

ing additional acknowledgement packet.

• Storage Usage

The storage usage indicated in the table is the data size of the appli-

cation used in the evaluation. Consequently, protocols themselves re-

quire much smaller storage, because the application utilizes large queue

for transferring received packets to the personal computer. The com-

bination of CTDCP and ALQDP requires additional approximately

2,200 bytes of RAM compared to that of CTP and 4B. We used the

same parameters for the neighbor tables, queues, and caches in pro-

posed and existing protocols, therefore, the results purely indicates

their differences in storage usage. We believe there are two reasons

that proposed protocols necessitate larger amount of storage. First,

CTDCP is designed to support multiple mobile sink nodes, which re-

quires additional neighbor table and bypass table. Second, CTDCP

and ALQDP require large amount of storage for leveraging bypass

tree, broadcast-based routing, and link quality estimation. Although

differences in their data size is not negligible, we argue that the effi-

ciency of data collection is more important. In addition, we believe

that sensor nodes will be equipped with larger memory and storage in

the near future, therefore, it is considered that large storage usage in

proposed protocols is acceptable.
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Table 6.3: Real World Evaluation Environment for Data Collection with

Mobile Sink Nodes

Parameter Values

Sensor Nodes 33 Iris motes

Number of Mobile Sink Nodes 1 - 3 nodes

Place
2F of Iota and Omicron at Shonan
Fujisawa Campus, Keio University

Duration 12 - 32 hours

Through the evaluation, we confirmed that in comparison to existing

protocols, the proposed protocols 1) accomplish the lower possibility of re-

transmissions, 2) achieve shorter path length, 3) require less energy, and 4)

demand extra storage. Despite their large storage usage, we believe that

strengths of proposed protocols surpass the disadvantage, because the mag-

nitude of improvement is significant.

6.1.2 Evaluation of Data Collection with Mobile Sink Nodes

This section describes the real world evaluation conducted to clarify the

performance of data collection with mobile sink nodes.

Evaluation Methodology

Through this experiment, we investigate the data collection performance of

proposed protocols when multiple mobile sink nodes exist in the WSN. In

this experiment, we choose to compare proposed protocols against CTP [24]

and 4B [28]. Since CTP is designed for statically placed sensor/sink nodes,

we compare its data collection efficiency at the static sink node against that

of CTDCP at the static sink node as well as multiple mobile sink nodes.

We evaluate CTDCP and CTP in terms of A) packet delivery ratio, B)

the number of retransmissions, C) path length, and D) energy consumption.

We evaluate these parameters for the reasons explained in Sec. 6.1.1.

Table 6.3 shows the parameters modified from the evaluation explained

in Sec. 6.1.1 We placed 33 Iris motes in the second floor of Iota and Omicron

buildings and inside of the room ι208 and o208 at Shonan Fujisawa Campus,

Keio University. Fig. 6.2 illustrates the map and placement of sensor nodes,

where the square and circles indicate a sink node and sensor nodes, respec-

tively. The numbers in the circles represent the ID of each sensor node. We

kept the doors of ι208 and o208 opened when mobile sink nodes existed, and
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Figure 6.2: Deployment of Sensor Nodes

in the remaining time, we left them as is. In this experiment, we asked 18

participants to hold an Iris mote and a personal computer as a sink node,

and act freely in the coverage the network. Participants include 5 females

and 13 males, who are aged from 18 to 24. We asked each participant to

collect data for at least 10 minutes.

Evaluation Results and Discussions

We conduct the experiment in three consecutive days: we evaluated pro-

posed protocols on the first and second days, and evaluated existing proto-

cols on the last day. Each experiment is conducted for approximately 12.5,

19.5, and 32.5 hours. We had 13 and 5 participants on the first and second

day, respectively. Mobile sink nodes collected data over four hours in total.

Table 6.4 shows the evaluation results of data collection with mobile sink

nodes in the real world environment. The evaluation results expressed in the

table are calculated from the data acquired at statically placed sink node.

Note that the results of CTDCP and ALQDP are the average of two days.

• Packet Delivery Ratio

We confirmed that CTDCP outperforms CTP in perspective of de-

livery ratio. Multiple environmental factors could be affecting the

delivery ratio, however, we argue that proposed protocols are supe-

rior to existing protocols for the following reasons. First, the doors

of the room ι208 and o208 may become obstacles and cause packet

losses. Nevertheless, the delivery ratio of every sensor node remained

constant throughout the evaluation, hence, we argue that the state of

the doors did not affect the delivery ratio. Second, existence of hu-
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Table 6.4: Evaluation Results of Data Collection with Mobile Sink Nodes in

the Real World Environment

Parameter Protocol Result

Average Packet
Delivery Ratio

CTDCP + ALQDP 0.9755

CTP + 4B 0.9513

Average Number of
Retransmissions

CTDCP + ALQDP 0.2259 Retxs/packet

CTP + 4B 0.6585 Retxs/packet

Average Path Length
CTDCP + ALQDP 1.721

CTP + 4B 2.666

Average Energy
Consumption

CTDCP + ALQDP 2.602µV/s

CTP + 4B 4.021µV/s

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  5  10  15  20  25  30

P
a
c
k
e
t
 
D
e
l
i
v
e
r
y
 
R
a
t
i
o

Node ID

average

(a) Packet Delivery Ratio at Mobile Sink

Nodes

 0.95

 0.96

 0.97

 0.98

 0.99

 1

P
a
c
k
e
t
 
D
e
l
i
v
e
r
y
 
R
a
t
i
o

 

1 1 1 2 2 2 2 3 3 3 3 3 3 1 2 2 2 2

CTDCP
First Day Second Day

CTP

(b) Packet Delivery Ratio at Different Sink

Nodes

Figure 6.3: Packet Delivery Ratio at Mobile Sink Nodes

mans might have become obstacles. However, the first two days were

weekdays and the last day was a weekend, therefore, this factor would

favor existing protocols over proposed protocols. In the meantime,

we observed significant differences in the number of retransmissions

and the path length in proposed and existing protocols. These factors

have significant influences on the delivery ratio, therefore, we argue

that differences in the delivery ratio are caused by the differences of

their data collection performance.

Fig. 6.3 illustrates the packet delivery ratio derived at mobile sink

nodes. In each figure, x indicates the average delivery ratio, and up-

per and lower bounds represent its standard deviation. Fig. 6.3(a)
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shows the packet delivery ratio in perspective of each sensor node,

where x-axis indicates the sensor nodes’ ID, and y-axis represents the

delivery ratio. The green horizontal line indicates the average of all

nodes. We did not observe any significant difference in the delivery

ratio among sensor nodes, therefore, it is considered that CTDCP

successfully delivered packets from all sensor nodes toward multiple

mobile sink nodes. Fig. 6.3(b) illustrates the delivery ratio at static

and mobile sink nodes, where the red and green bars indicates their

delivery ratio, respectively. Note that the numbers of the x-axis in-

dicate the number of mobile sink nodes simultaneously existed in the

network, and the blue horizontal line represents the average delivery

ratio at mobile sink nodes. As shown in the figure, we confirmed that

mobile sink nodes have higher packet delivery ratio in comparison to

static sink nodes. For example, average delivery ratios at mobile sink

nodes are 0.9819, and 0.9878 on the first and second day, respectively.

There are three reasons that mobile sink nodes outperform the static

sink node in perspective of delivery ratio; two from environmental fac-

tors, and one from performance superiority. First, we kept the doors

of the room ι208 and o208 opened when mobile sink nodes were col-

lecting packets. Therefore, mobile sink nodes might performed well for

collecting packets from sensor nodes placed inside of the rooms with-

out having doors as obstacles. Second, the static sink node was placed

inside of room o208, meanwhile, mobile sink nodes move freely in the

area of the network. Therefore, mobile sink nodes might had bet-

ter link qualities between other sensor nodes. Finally, higher delivery

ratio may be achieved by leveraging CTDCP and ALQDP. In CT-

DCP, bypass tree enables sensor nodes to forward packets through the

most efficient paths, which is greatly appreciated by mobile sink nodes.

Meanwhile, by leveraging ALQDP, mobile sink nodes can instantly es-

timate the link qualities between neighbor nodes, which enables them

to collect packets through links with high quality aggressively.

• The Number of Retransmissions

We confirmed large differences in the number of retransmissions be-

tween proposed and existing protocols. Since the number of retrans-

missions signifies the overhead of data collection, we conclude that

the proposed protocols have lower data collection overhead compared

to existing protocols. Note that not all packets are delivered to the

sink node, hence, the actual number of retransmissions is larger than

those indicated in the table. Fig. 6.4 depicts the CDF of the number
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of retransmissions, where x-axis indicates the number of retransmis-

sions, and y-axis represents the CDF. Approximately 85% and 70%

of packets are delivered to the sink node without involving any re-

transmissions in CTDCP and CTP, respectively. This signifies the

superiority of CTDCP in perspective of the retransmission overhead.

CTP may have larger number of retransmissions due to link failures.

However, throughout the experiment, we did not observe any signifi-

cant degradation in the delivery ratio, hence, we believe that no link

failure occurred. We argue that CTP requires a large number of re-

transmissions due to its poor congestion control. When a node has a

lot of children nodes, it has to forward a large number of packets, which

increases the possibility of packet collisions and incurs a large number

of retransmissions. Therefore, we believe that the larger number of

packet retransmissions in CTP is caused by its poor load distribution.

• Path Length

The evaluation results prove that proposed protocols outperform ex-

isting protocols in perspective of path length. Fig. 6.5 illustrates the

routing topology in the middle of the experiment, where numbers in

the circles indicate the path length. We argue that proposed proto-

cols achieved shorter path length for minimizing the number of packet
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Figure 6.5: Routing in the Real World Evaluation

transmissions. The overhead for replying acknowledgements is large

in existing unicast-based protocols. On the contrary, CTDCP lever-

ages forwarded data packets as acknowledgements, which reduces the

number of transmissions at each forwarding node. Consequently, in

CTDCP, forwarding nodes have less chance of becoming congested,

therefore, sensor nodes can utilize nodes with better link qualities as

their parents.

• Energy Consumption

We confirmed significant difference in energy consumption in proposed

and existing protocols. Energy consumption indicates the overhead,

therefore, we conclude that the proposed protocols are superior to ex-

isting protocols in terms of data collection overhead. Fig. 6.6 illustrates

energy consumption of each sensor node during the experiment, where

x-axis represents time in 1,000 seconds scale, and y-axis indicates volt-

age in millivolt. Each line in the figure represents energy consumption

of each sensor node. We argue that sensor nodes in CTP consume large

amount of energy for exchanging greater number of packets. Through

the evaluation, we confirmed that sensor nodes in CTP have longer

path length and larger number of retransmissions in comparison to

CTDCP. Moreover, CTP leverages ACK, which increases the number

of exchanged packets. Since packet exchange requires large amount of

energy compared to other operations, it is understandable that CTP

consumes greater amount of energy compared to CTDCP.

We measured energy consumption at mobile sink nodes, however, we

could not derive accurate values due to instability in measured voltage.

Voltage measured at sensor nodes shape sawtooth (See Fig. 6.6), hence,

it is difficult to determine their energy consumption accurately. In fact,

we calculated energy consumption at mobile sink nodes, and observed

increase in voltage for some participants. This implies that, when the
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Figure 6.6: Energy Consumption in Data Collection with Mobile Sink Nodes

experiment is conducted for short period of time, energy consumption

is not a valid metric for clarifying the overhead.

The evaluation results prove that in comparison to existing protocols, the

proposed protocols 1) increased the delivery ratio by approximately 2.5%, 2)

reduced the number of retransmissions by roughly 66%, 3) minimized path

length by about 35%, and 4) reduced energy consumption by approximately

35%. These results signify that the combination of CTDCP and ALQDP

achieves high data collection efficiency. In addition, we confirmed that mo-

bile sink nodes collected packets with higher delivery ratio compared to the

static sink node, which indicates the superiority of CTDCP in managing

mobile sink nodes.
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6.2 Simulation Evaluation

This section describes the simulation evaluation. We conduct two types of

experiments in order to clarify the performance of CTDCP against existing

protocols, and the effectiveness of clustered-tree structure. For each experi-

ment, we explain the evaluation methodology, results, and discussions.

There are a lot of simulators for simulating WSNs, such as TOSSIM [41],

OMNET++, ns2, ns3, QualNet, SENSE, etc. There are two factors we

should consider when choosing a simulator. First, in order to compare pro-

posed protocols against others fairly, it is important to use widely used

simulator. In the field of WSNs, a lot of researchers have been leveraging

TOSSIM, OMNET++, and ns2 as a simulation tool. Second, it is essential

to have compatibility with the actual implementation, because behaviors of

protocols may change depending on the platform, programming language,

etc. In terms of compatibility, only TOSSIM and OMNET++ supports

nesC as programming language and have compatibility with TinyOS. How-

ever, OMNET++ cannot simulate TinyOS2.x, which is the latest version of

TinyOS. For these reasons, we leverage TOSSIM throughout the simulation

evaluation.

6.2.1 Evaluation Against Existing Protocols

This section describes the simulation evaluation conducted to examine the

performance of the proposed protocols against existing protocols.

Evaluation Methodology

We choose Sidewinder [17] as the comparison target for two reasons as fol-

lows. First, although Sidewinder is a location-based data collection protocol,

it outperforms existing protocols in perspective of the delivery ratio, time

delay, and energy efficiency. Second, it utilizes TOSSIM in its evaluation,

and it is compared against state of the art, high performance data collec-

tion protocols. FROMS [25] is another candidate, because it is similar to

CTDCP in terms of utilizing multicast and implementing with nesC. How-

ever, we choose not to use it as a comparison target, because its authors

use OMNET++ in the evaluation, and their presentation of evaluation is

not clear. In Sidewinder, each sensor node leverages the idea of Sequential

Monte Carlo theory to continuously estimate sink node’s location, and for-

wards packets according to it. Authors of Sidewinder argue that relying on

a single sensor node to forward packets lacks reliability, and employ the 60◦

rule proposed by Heissenbüttel et al [18]. In Sidewinder, every sensor node
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which received a packet determines the 60◦ zone of the transmitted node,

and compete for next hop forwarding.

We evaluate proposed protocols against Sidewinder in perspective of A)

packet delivery ratio, B) number of transmissions per each source, and C)

time delay. Unless otherwise noted, we evaluate each item by deriving the

average of all data.

A. Packet Delivery Ratio

This indicates end-to-end packet delivery ratio between the source and

the sink node. The packet delivery ratio is derived by dividing the num-

ber of received packets by that of transmitted packets. The packet de-

livery ratio is one of the most fundamental factors for data collection,

therefore, this value is desired to be as high as possible.

B. Number of Transmissions per Each Source

One of the most major methodologies to evaluate the overhead is to

measure the energy consumption, however, it is not preferable when

utilizing simulators. For instance, Antonopoulos et al. measured energy

consumption of various operations in wireless sensor node, and concluded

that the characteristics of energy consumption on actual testbed differs

from that in the data sheet and/or in simulators [15]. Consequently,

we argue that energy consumption measured in TOSSIM is not a good

metric for evaluating the overhead.

In this experiment, we choose to use the number of transmissions per

each source as a metric of the overhead. This is the summation of the

path length, the number of retransmissions, and the routing overhead.

Since data collection protocols are designed to improve the efficiency

of data collection, it is reasonable to evaluate protocols based on the

number of transmissions per each source.

C. Time Delay

Time delay indicates the time required for a packet to be delivered to the

sink node since it leaves the source node. It is derived by subtracting the

reception time of a packet from the transmission time of it. Time delay is

essential especially in real time applications, because they require latest

data as quickly as possible.

Table 6.5 shows the parameters used in the experiment. We mimic the

simulation parameters used in Sidewinder. 500 nodes are randomly placed in

the area of 215m x 215m. We used the radio model of Micaz mote [42], and

define the radio range as 25m. We used Random Waypoint without pause
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Table 6.5: Simulation Parameters Used in the Evaluation Against Existing

Protocols

Parameter Values

Area Size 215m x 215m

Radio Range 25m

Mobility Model Random Waypoint without pause time

MAC B-MAC

Duration 1 hour

Inter Packet Interval 1 second

Number of Sensor Nodes 500 nodes

Number of Source Nodes 3 nodes

Number of Sink Nodes 1-3 nodes

Sink Node’s Speed {0,2,4,6,8,10}m/s

time [43] as the mobility model, and modified the speed of sink nodes from 0

to 10m/s with step of 2m/s. The number of sink nodes is modified between

one and three, and the number of source node is fixed to three. Sink and

source nodes are randomly selected among the whole network before each

simulation. We used B-MAC [44] as the MAC protocol, which is the default

CSMA-based protocol used in TinyOS. The duration of simulation is set to

one hour, and the inter packet interval is fixed to one second. We repeat the

simulation 30 times, and evaluate each item by deriving the average of all

simulations. Note that for each simulation cycle, we used newly generated

sensor nodes’ placement and mobility model. We did not set any limit to the

maximum number of clusters in CTDCP, therefore, a single tree structure

is constructed among the whole network. Before we start collecting packets

with mobile sink nodes, we let the simulation run for an hour in CTDCP,

so that it can construct structures with static nodes. We could not obtain

the source code of Sidewinder, therefore, we use its evaluation results in our

evaluation.

Evaluation Results and Discussions

We present the evaluation results of simulation evaluation against

Sidewinder as follows:

• Packet Delivery Ratio

Fig. 6.7 illustrates the evaluation results of the packet delivery ratio,
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Figure 6.7: Packet Delivery Ratio in Simulation Evaluation Against Existing

Protocols

where x-axis indicates the speed of sink nodes, and y-axis represents

the end-to-end delivery ratio. Throughout the experiment, we observe

higher delivery ratio in CTDCP compared to Sidewinder. Moreover,

the evaluation results prove that the differences of the delivery ratios

increase as the speed of mobile sink nodes increases. In the meantime,

the evaluation results indicate that the delivery ratio decreases as the

speed of mobile sink nodes increases. In CTDCP, when sink nodes

have higher speed, the frequency of changing the forwarding node in-

creases, which induces higher chance of packet collisions. Meanwhile,

in Sidewinder, as the speed of mobile sink nodes increases, the num-

ber of hops increases, which incurs higher chance of packet collisions.

Accordingly, the relationships between the speed of mobile sink nodes

and packet delivery ratio is clear.

We did not observe any degradation in the delivery ratio in accordance

to the number of sink nodes. This result seems controversial, since ag-

gregating packets to multiple sinks nodes most likely cause additional

packet collisions. However, in this experiment, the number of source

nodes is limited to 3 out of 500 nodes, therefore, we believe that the

chance of packet collision is small.

There are two reasons CTDCP outperforms Sidewinder in terms of

delivery ratio. First, it is considered that the use of link quality-based
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routing is superior to distance-based routing. Since the distance or the

number of hops between two nodes does not necessarily indicate the

link quality between them, link quality-based routing performs bet-

ter for leveraging paths with higher quality. Second, it is considered

that the tree-based data collection leveraged in CTDCP enables it to

collect packets more efficiently compared to geographical data collec-

tion employed in Sidewinder. This is understandable, because data

collection protocols based on tree structures are proved to have high

delivery ratio [24] [25].

CTDCP achieved higher delivery ratio compared to Sidewinder, how-

ever, the magnitude of improvement seems to be small when consid-

ering the difference in their overhead. CTDCP successfully reduced

the number of transmissions per each source by approximately 43%

in comparison to Sidewinder. The number of transmissions per each

source represents the summation of the path length, the number of

retransmissions, and routing overhead, therefore, high delivery ratio

achieved by Sidewinder seems controversial. However, a large portion

of the overhead in Sidewinder is caused by its approach of leveraging

multiple nodes competing for the next hop forwarding. Its approach

has been proven to have high delivery ratio [45] [18], therefore, it is un-

derstandable that Sidewinder achieves high delivery ratio along with

high overhead.

• Number of Transmissions per Each Source

Fig. 6.8 illustrates the evaluation results of the number of transmis-

sions per each source, where x-axis indicates the speed of mobile sink

nodes, and y-axis represents the number of transmissions per each

source. Note that the results may change depending on the beacon-

ing frequency in Sidewinder. Since we did not evaluate Sidewinder

with multiple mobile sink nodes, we simply multiplied the evaluation

results of one sink node by the number of sink nodes. This is reason-

able, because Sidewinder does not suppose multiple mobile sink nodes,

and it requires independent paths between source nodes and each sink

node. On the other hand, CTDCP enables sensor nodes to deliver

a packet to multiple destination with a single transmission by lever-

aging broadcast-based routing. Therefore, the superiority of CTDCP

increases as the number of sink nodes increases.

CTDCP decreases the number of transmissions per each source by 30

- 50% (approximately 43% in average) in comparison to Sidewinder.

The number of transmissions per each source indicates the overhead of
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Evaluation Against Existing Protocols

data collection. Accordingly, we conclude that CTDCP outperforms

Sidewinder in terms of data collection overhead. Since transmission

and reception of packets consume considerable amount of energy, the

evaluation result implies that CTDCP is superior to Sidewinder in

terms of energy consumption as well.

There are three reasons that CTDCP achieved lower data collection

overhead compared to Sidewinder. First, CTDCP utilizes more effi-

cient paths by leveraging link quality-based routing. Since Sidewinder

utilizes geographic-based routing, it has slightly shorter path length.

However, the distance or the number of hops between two nodes does

not necessarily indicate the link quality between them. Therefore,

Sidewinder has higher overhead for leveraging paths with worse link

qualities. Second, CTDCP eliminates the need of replying acknowl-

edgements by leveraging data packets as acknowledgements. This is

meaningful, because the overhead of independent acknowledgements is

large. Finally, Sidewinder induces high overhead for utilizing multiple

nodes competing for the next hop forwarding. Sidewinder leverages

this approach, because it is proved to have high delivery ratio in the

field of geographic routing [45] [18], however, its overhead is significant.

• Time Delay
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Fig. 6.9 depicts the evaluation results of the time delay, where x-axis

represents the speed of mobile sink nodes, and y-axis indicates the time

delay in second precision. In Sidewinder, the time delay drastically

increases when sink nodes has mobility, however, it remains constant

irrespective of the speed of mobile sink nodes. On the contrary, in

CTDCP, the time delay linearly increases as the speed of mobile sink

nodes increases. As shown in the figure, in comparison to Sidewinder,

CTDCP has lower time delay when the speed of a mobile sink node is

slower than approximately 7m/s.

Throughout the evaluation, we did not observe any relationships be-

tween the time delay and the number of mobile sink nodes. The time

delay is affected by three factors as follows. First, the path length

directly affects the time delay, because, in general, as the number of

hops increases, the time delay also increases. However, path length

remained constant when the number and/or the speed of mobile sink

nodes are modified, therefore, we believe that the path length has

small effect on the time delay. Second, retransmissions may induce ad-

ditional time delay. Although, the time delay of Sidewinder remained

constant when its delivery ratio decresed. Therefore, we argue that re-

transmissions has small influence on the time delay. Finally, mobility

of sink nodes may incur extra time delay. In CTDCP, the frequency of

changing forwarding nodes is proportional to the speed of mobile sink
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nodes. Therefore, it is understandable that the time delay increases

as the speed of mobile sink nodes increases. In contrast, Sidewinder

maintains constant time delay by aggressively estimating sink nodes

locations. This, in turn, implies that CTDCP can also suppress the

time delay by employing sink node’s location estimation.

We confirmed different characteristics in the time delay in accordance

with the speed of mobile sink nodes in CTDCP and Sidewinder: in

CTDCP, the time delay linearly increases as the speed of mobile sink

nodes increases, while in Sidewinder, it remains constant. This thesis

assumes humans, animals, and robots as mobile sink nodes, which

barely move fast. Therefore, we conclude that CTDCP performs better

in most cases.

The evaluation results prove that in comparison to Sidewinder, the com-

bination of CTDCP and ALQDP achieves 1) higher delivery ratio, and 2)

lower overhead. This, in turn, shows that proposed protocols outperform

existing protocols in perspective of data collection efficiency. We also con-

firmed that, as the speed of mobile sink nodes increases, time delay linearly

increases and remains constant in CTDCP and Sidewinder, respectively.

Our thesis targets humans, animals, and robots as mobile sink nodes, hence,

we conclude that CTDCP has lower time delay in the majority of cases.

6.2.2 Evaluation of Clustered-Tree Structure

This section describes the simulation evaluation conducted to examine the

effectiveness of clustered-tree structure.

Evaluation Methodology

Through this experiment, we examine the performance of data collection

protocols based on cluster, tree, and clustered-tree structure. All of them

are based on CTDCP; we simply modified the depth and size of each cluster.

Cluster structure is formed by limiting the depth of each tree to 1. By doing

so, a WSN is split into multiple clusters, and each cluster is formed as a

single hop network. When creating tree structures, we unset the limit of the

number of nodes involved in each cluster. In this way, CTDCP creates a

single tree structure with the whole WSN. Finally, we limit the number of

nodes in each cluster by defining CTDCP MAX CLUSTER SIZE. By doing

so, CTDCP form a clustered-tree structure among the WSN.

We evaluate these structures in perspective of A) path length, B) packet

delivery ratio, and C) number of transmissions per each source. Unless
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Table 6.6: Simulation Parameters Used in the Evaluation of Clustered-Tree

Structure

Parameter Values

Area Size 2,000m x 2,000m

Radio Range 300m

Mobility Model Random Waypoint without pause time

MAC B-MAC

Duration 5 hours

Inter Packet Interval 300 seconds

Number of Sensor Nodes 500 nodes

Number of Source Nodes 500 nodes

Number of Sink Nodes 1-3 nodes

Sink Node’s Speed {0,2,4,6,8,10}m/s

otherwise noted, we evaluate each item by deriving the average of all data.

A. Path Length

The path length indicates the number of hops. We acquire the path

length by modifying CTDCP to include a path length field in each packet,

and increment its value whenever a node receives a packet. We evaluate

the path length, because it indicates the overhead of each structure.

B. Packet Delivery Ratio

Packet delivery ratio indicates the end-to-end delivery ratio between

source nodes and the sink node. It is calculated by dividing the number

of received packets by that of transmitted packets.

C. Number of Transmissions per Each Source

We leverage the number of transmissions per each source for the same

reasons explained in Sec. 6.2.1. In this experiment, all comparison tar-

gets are based on CTDCP, hence, the computation overhead should be

equivalent. Consequently, the difference in the number of transmissions

per each source accurately indicates the overhead difference of each struc-

ture.

Table 6.6 shows the parameters leveraged in this experiment. 500 nodes

are randomly placed in the area of 2,000m x 2,000m. We used the radio

model of Iris mote [39], and defined the radio range as 300m. For the

mobility model, we used Random Waypoint without pause time [43], and
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altered the speed of sink nodes from 0 to 10m/s with step of 2m/s. The

number of sink nodes is changed between one and three, and we utilized all

sensor nodes as source nodes. We used B-MAC [44], the default CSMA-

based protocol, as the MAC protocol. The duration of simulation is set to

5 hours, and the inter packet interval is fixed to 300 seconds. We repeat

the simulation 10 times, and evaluate each item by deriving the average

of all simulations. We generate new sensor nodes’ placement and mobility

model for each simulation, and every comparison target leverages the same

generated set in a single simulation cycle. Before we start collecting data,

we let the simulation run for an hour, so that CTDCP can construct each

structure.

In this experiment, we divide the network into 5 clusters in clustered-tree

structure, in other words, 5 cluster structures are formed, and there are 100

nodes in each of them. At this point, we are not confident about the suitable

cluster size for clustered-tree structure. However, Gnawali et al. deployed

CTP on multiple testbeds [24], and according to their results, 100 nodes per

each cluster is considered to be appropriate.

Evaluation Results and Discussions

This section presents the evaluation results and discussions of simulation

evaluation of different structures.

• Path Length

Fig. 6.10 illustrates the average path length of each structure, where x-

axis indicates the speed of mobile sink nodes, and y-axis represents the

path length. We observed equivalent path length in tree and clustered-

tree structure. On the other hand, the path length of cluster structure

is considerably long compared to the others. In cluster structure, each

cluster head has to be able to communicate with at least another

cluster head. In addition, the path length between a cluster head and

its member is limited to one, hence, the path length among cluster

heads is considerably large. Accordingly, it is understandable that the

path length is long in cluster structure.

• Packet Delivery Ratio

Fig. 6.11 illustrates the evaluation results of the packet delivery ratio,

where x-axis represents the speed of mobile sink nodes, and y-axis

indicates the delivery ratio. Throughout the evaluation, we confirmed

that the delivery ratio decreases as the number of sink nodes increases,

and the speed of mobile sink nodes increases. In this experiment, every
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sensor node reports data periodically toward sink nodes, hence, the

possibility of packet collisions increases proportionally as the number

of sink nodes increases. Consequently, the delivery ratio decreases as

the number of sink nodes increases. When the speed of mobile sink

nodes increases, frequency of changing forwarding node also increases.

Path modification requires large number of routing packet exchange,

therefore, when the speed of mobile sink nodes is high, the delivery

ratio decreases due to higher chance of packet collisions.

Through the evaluation, we confirmed that tree structure has low de-

livery ratio compared to the others. In tree structure, larger number

of packets are being discarded due to the overflow of sending queue

at sensor nodes near the root node of the network. In cluster and

clustered-tree structures, overhead of forwarding packets is thoroughly

distributed among multiple sensor nodes. On the contrary, in tree

structure, a small number of nodes has to forward an excessive num-

ber of packets for utilizing a single tree structure. The delivery ratio

when sink nodes have no mobility best illustrates this; the delivery

ratio in tree structure is low compared to the others, and it decreases

as the number of sink nodes increases. In clustered-tree structure, the

network is divided into multiple clusters, hence, sensor nodes near the

root node of each cluster have small number of packets to forward,

which reduces the possibility of queue overflow.

When sink nodes have no mobility, the delivery ratio of cluster and

clustered-tree structure is equivalent, however, when sink nodes have

mobility, cluster structure performs worse. In cluster structure, each

cluster is small, hence, mobile sink nodes have greater chance of se-

lecting a new forwarding node from different clusters. When changing

forwarding nodes, packets aggregated to the old forwarding node may

have to be delivered to the new forwarding node, which induces large

number of packet collisions. Consequently, it is considered that lower

delivery ratio in cluster structure is caused by the overhead of changing

forwarding nodes.

• Number of Transmissions per Each Source

Fig. 6.12 indicates the evaluation results of the number of transmis-

sions per each source, where x-axis represents the speed of mobile sink

nodes, and y-axis shows the number of transmissions per each source,

respectively. Through the evaluation, we confirmed that the number

of transmissions per each source is proportional to the speed of mobile

sink nodes. The number of transmissions is affected by two factors.
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First, the control overhead becomes large when the speed of mobile

sink node is high. When a mobile sink node decides to change the

forwarding node, it transmits a control packet toward the head of the

cluster. The frequency of changing forwarding node is proportional to

the speed of mobile sink nodes, hence, the number of transmissions in-

creases proportionally to the speed of mobile sink nodes. Second, when

the delivery ratio is low, the number of retransmissions increases. Ac-

cordingly, we argue that the number of transmissions increases as the

delivery ratio decreases.

Cluster structure has considerably large number of packet transmis-

sions compared to others. The number of transmissions per each source

is the summation of the path length, the number of retransmissions,

and the routing overhead. Consequently, we argue that cluster struc-

ture has large number of transmissions per each source due to its longer

path length, and the overhead for managing mobile sink nodes.

The evaluation results prove that 1) cluster structure has decent deliv-

ery ratio and high overhead, 2) tree structure has low delivery ratio and

low overhead, and 3) clustered-tree structure has high delivery ratio and

low overhead. Consequently, we conclude that clustered-tree structure is

superior to others in perspective of data collection efficiency.
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In this experiment, we divide the network into five clusters in clustered-

tree structure. Although the decision is made based on the findings of exist-

ing work, there remains a room for improvement. When dividing a network

into clusters, we should consider multiple factors, such as, the number of

source/sink nodes, inter packet intervals, noise level, etc. Our future work

is to determine their relationships, and propose a method to maximize the

data collection performance by dynamically forming clusters.

6.3 Summary

In this Chapter, we explain four experiments we conducted; two in the

real world environment and two in simulation. Real world evaluation is con-

ducted to evaluate the basic data collection performance, and data collection

performance with mobile sink nodes. According to their results, in compar-

ison to the combination of CTP and 4B, that of CTDCP and ALQDP 1)

reduces energy consumption by about 35%, 2) decreases the path length and

the number of retransmissions, and improves the delivery ratio by approxi-

mately 2.5%, and 3) requires roughly 2,200 bytes of RAM. In addition, we

confirmed that mobile sink nodes collected packets with higher delivery ratio

compared to static sink nodes. Simulation evaluation is conducted to clarify

the performance of proposed protocols against existing protocols, and the

effectiveness of clustered-tree structure. Through the simulation evaluation

against existing protocols, we confirmed that proposed protocols 1) reduce

the number of transmissions per each source by about 43%, and 2) improve

the delivery ratio by approximately 3.6%. Finally, we proved that clustered-

tree structure is superior to cluster and tree structures in terms of data

collection efficiency. Although the combination of CTDCP and ALQDP re-

quires large storage, its superiority in data collection efficiency is significant,

hence, we conclude that it outperforms existing protocols.
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Conclusion and Future Work

In this Chapter, we summarize this thesis, and discuss future direction of

our research.

7.1 Conclusion

In this thesis, we proposed CTDCP, a data collection protocol, and ALQDP,

a link quality detection protocol. CTDCP constructs a clustered-tree struc-

ture with static sensor nodes, and leverages it to collect data at multiple

mobile sink nodes. ALQDP utilizes linear regression to quickly and accu-

rately estimate the link qualities among sensor nodes. These approaches

and designs enable them to efficiently collect sensor data while providing

agility and accuracy in detecting link qualities.

We implemented CTDCP and ALQDP on TinyOS, and evaluated them

in the real world environment and in simulation. The real world evaluation

proves that, in comparison to CTP and 4B, CTDCP and ALQDP 1) reduce

energy consumption by approximately 35%, 2) decrease the path length

and the number of retransmissions, and improve packet delivery ratio by

about 2.5%, and 3) require roughly 2,200 bytes of RAM. Through simulation

evaluation, we confirmed that in comparison to Sidewinder, the combination

of CTDCP and ALQDP 1) reduces the number of transmissions per each

source by approximately 43%, and 2) improves packet delivery ratio by

about 3.6%. Accordingly, we conclude that proposed protocols outperform

existing protocols in perspective of data collection efficiency.

Due to the recent advances in technologies, the spread of mobile de-

vices, such as, wireless sensor nodes, PDAs, smartphones, allows users to

collect data directly from WSNs. This thesis proposes two novel proto-

cols, CTDCP and ALQDP, which are designed to improve the efficiency of
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data collection, and agility of link quality detection, respectively. Through

the simulation evaluation, we confirmed that proposed method of combin-

ing cluster and tree structure successfully complements their disadvantages.

There still remains a need to clarify the relationships between the cluster

size and other factors, however, this finding is novel, and it provides insights

for future data collection protocols in large scale WSNs. Moreover, through

the process of defining parameters of the link quality estimation protocol,

we proved that the use of lightweight machine learning algorithm along with

some improvement features provides a sufficient accuracy in estimating the

link qualities. This, in turn, demonstrates that the use of heavyweight al-

gorithms leveraged in existing work is an overkill. Accordingly, the idea

of providing improvement features and modifying existing lightweight algo-

rithms greatly impacts not only link quality estimation protocols, but also

wide variety of other protocols, such as, data collection, dissemination, error

correction, time synchronization, and location determination. In conclusion,

our two findings in this thesis substantially contribute to the filed of WSNs

research, and we believe that they have large influence on future design and

implementation of various kinds of protocols.

7.2 Future Work

In this section, we describe our future work: dynamic cluster formation, and

redefinition of parameters in link quality estimation.

At this point, CTDCP requires overlying applications to define the maxi-

mum cluster size, which is leveraged to form clusters among aWSN. Through

the simulation evaluation, we confirmed that when a large number of nodes

involves in a WSN, clustered-tree structure is superior to cluster and tree

structure in terms of data collection efficiency. However, in order to maxi-

mize the performance of data collection, it is preferable for CTDCP to au-

tonomously modify clusters for performance maximization. Therefore, our

future work is to clarify the relationships between data collection efficiency

and multiple factors, such as, the number of source/sink nodes, inter packet

intervals, and propose a method to autonomously form appropriate clusters.

In this thesis, we defined parameters of the link quality estimation based

on data collected in the real world environment. However, we only used a

type of sensor node during the data collection. Since the characteristics of

platforms have large effect on link quality, current link quality estimation

may not perform well on different platforms. Accordingly, our future work is

to collect data with various testbeds, and redefine parameters of link quality

estimation to improve its estimation accuracy and flexibility.
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and L. Becker. F-LQE: A Fuzzy Link Quality Estimator for Wireless

Sensor Networks. In Proc. of the Springer EWSN Conf., volume 5970,

pages 240–255, 2010.

[34] T. Liu and A. Cerpa. Foresee (4C): Wireless Link Prediction Using

Link Features. In Proc. of the ACM IPSN Conf., pages 294–305, 2011.

[35] K. Langendoen, A. Baggio, and O. Visser. Murphy Loves Potatoes: Ex-

periences From a Pilot Sensor Network Deployment in Precision Agri-

culture. In Proc. of the IEEE IPDPS Conf., pages 174–174, 2006.

[36] A. Woo and D. Culler. Evaluation of Efficient Link Reliability Estima-

tors for Low-Power Wireless Networks. Technical Report UCB/CSD-

03-1270, University of California, Berkeley, 2003.

[37] C. Lin, P. Chou, and C. Chou. HCDD: Hierarchical Cluster-Based Data

Dissemination in Wireless Sensor Networks with Mobile Sink. In In.

Proc. of the ACM IWCMC Conf., pages 1189–1194, 2006.

[38] A. Koubaa, M. Alves, and E. Tovar. Modeling and Worst-Case Dimen-

sioning of Cluster-Tree Wireless Sensor Networks. In Proc. of the IEEE

RTSS Conf., pages 412–421, 2006.

[39] MEMSIC. Iris mote. http://www.memsic.com/support/

documentation/wireless-sensor-networks/category/

7-datasheets.html?download=135%3Airis, Dec 2011.

[40] Y. Panthanchai and P. Keeratiwintakorn. An Energy Model for Trans-

mission in Telos-BasedWireless Sensor Networks. In Proc. of the JCSSE

Conf., 2007.

[41] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and

Scalable Simulation of Entire TinyOS Applications. In Proc. of the

ACM Sensys Conf., pages 126–137, 2003.

[42] MEMSIC. Micaz mote. http://www.memsic.com/support/

documentation/wireless-sensor-networks/category/

7-datasheets.html?download=148%3Amicaz, Dec 2011.

[43] J. Yoon, M. Liu, and B. Noble. Sound Mobility Models. In Proc. of the

ACM MobiCom Conf., pages 205–216, 2003.

4

http://www.tinyos.net/
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=135%3Airis
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=135%3Airis
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=135%3Airis
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=148%3Amicaz
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=148%3Amicaz
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=148%3Amicaz


BIBLIOGRAPHY

[44] J. Polastre, J. Hill, and D. Culler. Versatile Low Power Media Access

for Wireless Sensor Networks. In Proc. of the ACM Sensys Conf., pages

95–107, 2004.

[45] S. Biswas and R. Morris. ExOR: Opportunistic Multi-Hop Routing

for Wireless Networks. In Proc. of the ACM SIGCOMM Conf., pages

133–144, 2005.

5


	1 Introduction
	1.1 Background
	1.2 Motivation and Objective
	1.3 Organization

	2 Wireless Sensor Networks and Mobile Sink Nodes
	2.1 Wireless Sensor Networks
	2.2 Mobile Sink Nodes
	2.2.1 Spread of Mobile Sink Nodes
	2.2.2 Application Utilizing Mobile Sink Nodes

	2.3 Target Wireless Sensor Networks
	2.3.1 Target Environment
	2.3.2 Issues in Target Environment
	2.3.3 Requirements in Target Environment

	2.4 Summary

	3 Data Collection in Wireless Sensor Networks
	3.1 Data Collection Efficiency
	3.2 Data Collection Protocols and Link Quality Detection Protocols
	3.3 Data Collection Protocols
	3.3.1 Location-Based Data Collection Protocols
	3.3.2 Non-Location-Based Data Collection Protocols

	3.4 Link Quality Detection Protocols
	3.4.1 Analysis of Link Quality Detection Protocols
	3.4.2 Related Work

	3.5 Summary

	4 Approach and Design
	4.1 Approach
	4.2 Design of CTDCP
	4.2.1 Clustered-Tree Structure
	4.2.2 Mobile Sink Management

	4.3 Design of ALQDP
	4.3.1 Link Quality Detection
	4.3.2 Link Quality Estimation

	4.4 Summary

	5 Implementation
	5.1 Implementation Platform
	5.2 System Overview
	5.3 Implementation of CTDCP
	5.3.1 Routing Manager Component
	5.3.2 Packet Processing Component

	5.4 Implementation of ALQDP
	5.4.1 Link Quality Detector Component
	5.4.2 Link Quality Estimator Component

	5.5 Summary

	6 Evaluation
	6.1 Real World Evaluation
	6.1.1 Evaluation of the Basic Data Collection
	6.1.2 Evaluation of Data Collection with Mobile Sink Nodes

	6.2 Simulation Evaluation
	6.2.1 Evaluation Against Existing Protocols
	6.2.2 Evaluation of Clustered-Tree Structure

	6.3 Summary

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work


