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Quantum networking has increasingly become significant for a variety of its applica-
tions such as quantum key distribution (QKD). In quantum networking reliablity of a
connection depends on the quality of Bell pairs (a type of quantum state) used. When
the fidelity is not sufficiently high, we need to conduct purification to increase the fi-
delity. However, determining the quality of a given Bell pair is by no means a trivial
process. Nevertheless, literature established on quantum networking often presupposes
the knowledge of the fidelity of the state in question without reference to actual means
of state analysis. While existing quantum state tomography methods proposed in e.g.
[1] could achieve the purpose, they are not designed to function in synchronization with
nodes involved in the link, being redundant and inefficient when employed for opera-
tional link creation in quantum networking, and thus far from optimal for our purpose.
The thesis will present an optimized configuration of state analysis and purification,
tailored for our very situation, with a view toward the quickest possible link creation.
Simulation of physical equipment, state analysis, and evaluation of the proposal are
implemented in Python.
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Chapter 1

Introduction

1.1 Background I: Importance of Quantum Infor-

mation Technology

Quantum information technology is known for its great potential in realizing things that
are not feasible in classical information technology. Quantum computing, for instance,
features suprising algorithms such as Shor’s algorithm that enables computing factor-
ization of a number to prime numbers in polynomial time [2]. Quantum networking
also has a wide range of applications; one of the most practically beneficial is quan-
tum key distribution, or QKD, which enables more secure key distribution compared
to classical [3]. In fact, the so-called E91 protocol [4] of QKD utilizes entanglement
(see Section 2.3.1). Another interesting application of quantum networking utilizes dis-
tributed quantum states such as Bell states or GHZ states to realize decision-making
among multiple nodes with essentially fewer steps of communication [5]. Furthermore,
algorithms and schemes that make use of distributed quantum computing are proposed
(e.g. [6]). Quantum repeaters are nodes that hold distributed quantum states, that are
capable of applying certain operations to the states, and that are responsible for main-
taing consistency in conjunction with other nodes for the involved nodes to function
as a whole (as explained in Chapter 2.)

1.2 Background II: Challenges in Quantum Infor-

mation Technology

All of these applications have one vital requirement in common: delivery of and op-
eration to entangled quantum states, with as small noises and loss to the states as
possible. It should first be noted that precise operation to quantum states is pro-
hibitively difficult as opposed to operation to classical bits (some of the examples of
an actual experiment are done in e.g. [7, 8], which tell how large the obstacles are). In
addition, another difficulty appears in an attempt to assess how well such delivery and
operation has been done. This is attributed to the property of quantum states that
a quantum state initiates a probabilistic collapse when measured, unlike classical bits,
thereby requiring a myriad of measurements to reconstruct a given state, resorting to
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both analytical and statistical reconstruction processes (called quantum state tomog-
raphy, which will be introduced in Chapter 2). In particular, for quantum networking,
we need to manage delivery and operation of resources (i.e. entangled states) in a
real-time fashion.

This research project is intended to serve as an aid to solve the latter of those two
challenges.

1.3 Problem Definition

It is worthwhile to devise a new method of state estimation that is particularly tailored
for our quantum networking purpose. In order for the proposed method to be “tailored”
it needs to meet the following two requirements: that it keeps consistency with other
nodes’ estimations that run concurrently and that the state estimation finishes rapidly
enough to be used for bootstrapping a network. The former problem has been dealt
with in the workshop paper [9], which proposes a master-slave protocol that supports
two nodes about to initiate a quantum communication, with full state tomography
embedded as a state estimation method.

This thesis addresses the latter problem and aims to propose an optimized state
estimation method that can substitute for full state tomography. The evaluation of
the proposed method will be based on the amount of time that it takes for two nodes
to become ready for proceeding to further applications (e.g. QKD). Because the most
time-consuming step involved is repeated generation, transmission, and measurement
of Bell states, shortening the amount of time requires fewer generations of Bell pairs,
hence in turn demanding a state analysis method of sufficient accuracy with fewer
measurement results.

Of course generation of Bell states, latency of transmission, and measurement effi-
ciency depend upon particular equipment, and assumptions have to be made to evaluate
proposals.

1.4 Research Contribution

Upon completion of this research scholars will be able to adopt the proposed method
for state analysis and to utilize quantitative data provided in the thesis to anticipate
resource consumptions they need to allow for in an attempt to create a link. Fur-
thermore, by combining the proposed protocol to support distributed state estimation,
they will be able to sketch a model that they want to realize in reality, with the level
of concreteness enough to calculate an amount of bootstrap time and latency caused
during the course of bootstrap, provided the error rate in gates and Bell state initial
fidelities (that depend on particular physical apparatus) are available. This set of infor-
mation becomes particularly significant once applications former quantum networking
(e.g. QKD) have been launched for practical use, where fidelity of the Bell pairs used
dictate the applications’ proper function.
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1.5 Thesis structure

Chapter 2 presents a concise introduction to quantum information technology with
particular emphasis put on the knowledge of frequent use in this thesis. It is divided
into five sections: Quantum States and Their Representations, Operations on Quan-
tum States, Distributed Quantum States, Quantum Networking, and Quantum State
Tomography. The Chapter is organized so as to move from local notions regarding
quantum bits to global concepts used in conjunction with quantum states at distant
locations.

Chapter 3 introduces the underpinning protocol that supports distributed state
estimation.

Chapter 4 presents how the simulator used in this project works and how it is
organized. It briefly lists the consisting modules and their respective roles, then picks
major functions from each of the modules, with detailed explanation provided.

Chapter 5 presents the results obtained from the simulator. It first shows how state
reconstruction looks like based on actual tomography and experimental data. Further,
the relations between the number of purifications and the actual resultant fidelity are
presented both in the case some errors are embraced and the case where there is no
error.

Chapter 6 sums up the evaluation in Chapter 5, and yields conclusions that we have
drawn from the research. Outlooks for future work will also be in Chapter 6.

1.6 Notations and Symbols

R The set of real numbers
C The set of complex numbers
Xn The Cartesian product of n of X’s as sets

Mn(R)[Mn(C)] The set of n-by-n matrices whose entries are in R (or in C, respectively).
|ψ⟩] Arbitrary pure quantum state in Drac’s ket notation (|ψ⟩ ∈ C2n for some n)
ρ] Pure or mixed quantum state in density matrix form (ρ ∈M2n(C) for some n)

Table 1.1: Notations and Symbols

Notations and symbols used throughout the thesis are summarized in Table 1.1.
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Chapter 2

Introduction to Quantum
Information Technology

This chapter is a concise presentation of preliminary knowledge necessary to understand
this research.

2.1 Quantum States and Their Representations

2.1.1 Quantum Bits

A quantum bit (henceforth qubit) is represented by a minimum unit of particles —
atoms, electrons, or photons — to serve as the most fundamental computational unit
in quantum information technology just as classical bits, each being 0 or 1 do, in
classical computers. The essential difference of qubits lies in the fact that the particle
involved can be in superposition: it holds two distinct states until measured, when it
collapses into one of the two states probabilistically. We utilize this property of qubits
for further applications.

One representation of a qubit is in the form of state vector, wherein the qubit |ψ⟩
is written as follows:

|ψ⟩ = α |0⟩+ β |1⟩ (2.1.1.1)

where α and β are complex numbers satisfying |α|2 + |β|2 = 1 and |0⟩ and |1⟩ are
defined to be the basis vectors

|0⟩ ≡
(
1
0

)
, |1⟩ ≡

(
0
1

)
(2.1.1.2)

These |0⟩ and |1⟩ correspond to the two distinct states in superposition. The |ψ⟩
collapses into |0⟩ with probability |α|2 and into |1⟩ with probability |β|2.

More generally, when n qubits are available, n sets of each two distinct states in
superposition form 2n possible combinations, represented by the equation

|ψ′⟩ = α0 |00 . . . 0⟩+ α1 |00 . . . 1⟩+ · · ·+ α2n−1 |11 . . . 1⟩ (2.1.1.3)
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where each αi is a complex number,
∑2n−1

i=0 |αi|2 = 1 and |k1k2 . . . kn⟩ (each ki is either
0 or 1) is the standard unit vector whose m-th component is 1 and other components
are 0 where m =

∑n
i=0 2

iki, the decimal representation of the binary digit k1k2 . . . kn.
This | ⟩ notation is called Dirac’s ket notation [5]. For each |ψ⟩, ⟨ψ| is defined to

be the transpose with complex conjugate taken for each entry: if

|ψ⟩ =

c1...
cn

 , (2.1.1.4)

then ⟨ψ| is defined to be
⟨ψ| =

(
c1 · · · cn

)
. (2.1.1.5)

where ci is the complex conjugate of ci.
We define a few operations for state vectors in Dirac’s notation. Let

|ψ1⟩ =

a1...
an

 (2.1.1.6)

and

|ψ2⟩ =

b1...
bn

 . (2.1.1.7)

Then the outer product of |ψ1⟩ and |ψ2⟩, |ψ1⟩ ⟨ψ2|, is defined to be [5]

|ψ1⟩ ⟨ψ2| ≡

a1b1 a1b2 · · · a1bn
...

. . . · · · ...

anb1 anb2 · · · anbn

 ; (2.1.1.8)

the tensor product of |ψ1⟩ and |ψ2⟩ is

|ψ1⟩ ⊗ |ψ2⟩ ≡



a1b1
a1b2
...

a1bn
a2b1
...

a2bn
...

anbn


; (2.1.1.9)

and the inner product of |ψ1⟩ and |ψ2⟩ is

⟨ψ1|ψ2⟩ ≡
n∑
i=1

aibi. (2.1.1.10)
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As is done in usual linear algebra, it is possible to consider change of basis for state
vectors. In fact, the basis set |00⟩, |01⟩, |10⟩, and |11⟩ is called computational basis,
one of the most frequently used basis set for 1-qubit states. Another basis set of as
frequent use is called Bell basis, which consists of |Φ+⟩, |Φ−⟩, |Ψ+⟩, and |Ψ−⟩; for the
formal definition of these four states, see Section 2.3.1.

2.1.2 Density Matrix

A density matrix is another representation of a quantum state. When a state is part of
a larger system and cannot be described as a superposition of known pure states that
lie inside the system, the state is said to be mixed and expressed as a linear sum of pure
states that we do know lie within the system, with a classical probability multiplied
to each pure state in the sum. Density matrices are used to represent such states. To
make the formal definition, let {pi} be the set of classical probabilities and let the state
be a combination

∑
i pi |ψi⟩. The density matrix representing this state is defined to

be
ρ ≡

∑
i

pi |ψi⟩ ⟨ψi| . (2.1.2.1)

Note that, when there are n qubits, each |ψi⟩ is a 2n-dimensional complex vector and
thus |ψi⟩ ⟨ψi| is a 2n × 2n-complex matrix. In particular, when 1 is the only element
in {pi}, the ρ is just |ψ⟩ ⟨ψ| and represents nothing but a pure state. Because we do
not know the whole system (which is ultimately the universe) that surrounds us and
the state of interest, every quantum state we face in reality needs to be represented as
a density matrix.

2.1.3 Bloch Sphere

2.1 A visually useful representation for 1-qubit states is the Bloch sphere. Let us
represent the state |ψ⟩ = α |0⟩+ β |1⟩ in this sphere. Rewriting |ψ⟩ as

|ψ⟩ = exp(iθ)(|α| |0⟩+ exp(−iθ)β |1⟩) (2.1.3.1)

where α = exp(iθ)|α|, and thanks to the fact that we may ignore global phase in
measurement — a complex number of absolute value 1 multiplied to |ψ⟩ — that does
not affect measurement outcomes, we may assume that

|ψ⟩ = |α| |0⟩+ exp(−iθ)β |1⟩ . (2.1.3.2)

Using the identity |α|2 + |β|2 = 1, the equation above can be written as

|ψ⟩ = cosφ1 + exp(iφ2) sinφ1 (2.1.3.3)

where cosφ1 = |α|, φ2 = arg(β) − θ, arg(β) is the angle at which β lies with respect
to the x-axis in the complex plane. This one-to-one correspondence between 1-qubit
state vectors and points on the surface of the unit sphere allows us to depict a given
1-qubit state on the sphere as in Figure 2.1.
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Figure 2.1: Representation of a qubit on the Bloch sphere: every 1-qubit state can be
drawn as a point on the surface of the sphere, providing visually perceptible represen-
tation.

2.1.4 Fidelity

We introduce one of the quantities of frequent use in further chapters. Fidelity is a
quantity that derives from given two mixed states, ranging from 0 to 1, and represents
“similarity” between the states. More precisely, given density matrices ρ1 and ρ2, the
fidelity between them is defined to be [1]

F (ρ1, ρ2) ≡

{
Tr

(√√
ρ1ρ2

√
ρ1

)}2

. (2.1.4.1)

2.2 Operations on Quantum States

2.2.1 Measurements

As mentioned in Section 2.1.1, qubits collapse into either 0 or 1 probabilistically. This
collapse is invoked by measurement. An operation of measurement to a quantum state
is, in mathematical terms, defined to be a linear transformation called a measurement
operator. We can thus regard each measurement operator as a matrix that transforms
the state vector into another. We need to choose a measurement basis to conduct
measurement. For 1-qubit measurement, we may choose any 1-qubit state vector for a
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measurement basis, and the corresponding measurement operator Mψ is defined to be

Mψ ≡ |ψ⟩ ⟨ψ| (2.2.1.1)

with the choice of basis |ψ⟩. The probability of measuring the outcome |ψ⟩ is then
defined to be

pψ ≡ ⟨ψ|M∗
ψMψ |ψ⟩ . (2.2.1.2)

where Mψ
∗ is defined to be the conjugate transpose of Mψ. The preceding illustration

of ”probabilistic collapse” of |ψ⟩ made in Section 2.1.1 is precisely the measurement
operation with basis |0⟩ and |1⟩. In fact, following the definitions, the corresponding
measurement operators become

M0 = |0⟩ ⟨0| =
(
1 0
0 0

)
(2.2.1.3)

and

M1 = |1⟩ ⟨1| =
(
0 0
0 1

)
. (2.2.1.4)

In this setting, we measure 0 in probability ⟨0|M∗
0M0 |0⟩ and 1 in ⟨0|M∗

0M0 |0⟩. An
easy calculation will show they are equal to |α|2 and |β|2, respectively.

Another important notion is orthogonality. Two state vectors |ψ⟩ and |φ⟩ are said
to be orthogonal if the relation

⟨ψ|φ⟩ = 0 (2.2.1.5)

holds. Consider an arbitrary 1-qubit state |ψ⟩ = α |0⟩+β |1⟩. Since we have the identity
|α|2 + |β|2 = 1, the probability of measuring 0 for |ψ⟩ is the complementary event of
measuring 1. In fact, for any orthonormal basis {|v1⟩ , |v2⟩}, which is, for any basis set
whose elements are of norm 1 and orthogonal, we can write |ψ⟩ = α′ |v1⟩+ β′ |v2⟩ with
some suitable α′ ∈ C and β′ ∈ C, and the relation

|α′|2 + |β′|2 = 1 (2.2.1.6)

still holds, for any basis transformation between orthonomal bases preserves the norm.
More generally, for any n-qubit states, there always exist 2n vectors, v0, . . . , v2n−1

in C2n , such that any two of them are orthogonal and they are all of norm 1. For an
n-qubit state |ψ⟩, the analogus relation

2n−1∑
i=0

|αi|2 = 1 (2.2.1.7)

holds where |ψ⟩ =
∑2n−1

i=0 αi |i⟩, where |i⟩ are the orthonormal basis for C2n . Because
of the orthogonality, theoretically we need only 2n − 1 probabilities to represent the
state |ψ⟩. The notion of orthogonality will be necessary in Chapter 4.
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2.2.2 Quantum Gates

In quantum computing we have an analogus notion for circuits in classical computing,
quantum circuits, where a set of quantum states pass through quantum gates, being
transformed by effects of the gates, until they are finally measured to yield outcomes.

Given that state vectors are complex vectors of norm 1, complex matrices that
preserve norms, namely unitary matrices1, transform state vectors to state vectors.
Therefore it is natural to consider quantum gates that are unitary transformations.

The quantum gate of most frequent use throughout this research is Controlled-
not gate, or CNOT gate. CNOT gate takes two qubits, the first qubit being called
control qubit and the second target qubit. Let the control qubit and the target qubit
be expressed as

|ψ1⟩ = α1 |0⟩+ β1 |1⟩ (2.2.2.1)

and
|ψ2⟩ = α2 |0⟩+ β2 |1⟩ , (2.2.2.2)

respectively. Then the two qubit state is written as

|ψ⟩ = |ψ1⟩ |ψ2⟩
= α1α2 |00⟩+ α1β2 |01⟩+ β1α2 |10⟩+ β1β2 |11⟩ .

The CNOT gate exchanges the two terms of first qubit 1 in |ψ⟩ each other:

α1α2 |00⟩+ α1β2 |01⟩+ β1α2 |10⟩+ β1β2 |11⟩
−−−−→
CNOT

α1α2 |00⟩+ α1β2 |01⟩+ β1α2 |11⟩+ β1β2 |10⟩ .

Recalling that the states above are vectors in C4 (see Section 2.1.1 in this Chapter),
this operation is clearly a linear transformation of C4 and thus written in matrix form
as

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.2.2.3)

We will see in a subsequent section that this CNOT gate plays an essential role in a
procedure called purification.

Hadamard gate is another gate for 1-qubit states that is used in quantum tele-
portaion, and in turn, entanglement swapping, which will be formally introduced in
Section 2.3.2 and 2.3.3, respectively. This gate takes |0⟩ to (|0⟩ + |1⟩)/

√
2, and |1⟩ to

(|0⟩ − |1⟩)/
√
2; in matrix form it is expressed as [5]

Hadamard =
1√
2

(
1 1
1 −1

)
. (2.2.2.4)

Other 1-qubit gates of as frequent use are X gate, Y gate, and Z gate. These are defined
as the following [5]:

1There are several equivalent definitions for unitary matrices, one of which is the one used here, to
require the matrix preserve the norm of any vector being transformed.
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X =

(
0 1
1 0

)
, (2.2.2.5)

Y =

(
0 −i
i 0

)
, (2.2.2.6)

and

Z =

(
1 0
0 −1

)
. (2.2.2.7)

These basic gates have commonly used symbols for circuit diagrams as in Figure 2.2.

X

H

Z

Y

=

✓
0 1
1 0

◆

=

✓
0 �i
i 0

◆

=

✓
1 0
0 �1

◆

=
1p
2

✓
1 1
1 �1

◆

=

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA

Figure 2.2: List of diagram symbols for X, Y, Z, Hadamard, and CNOT gates: these
will be frequently used throughout the thesis.

In addition, measurement operators (with respect to Z, X, and Y axes) are also
represented by similar symbols as illustrated in Figure 2.3, 2.4, and 2.5. These symbols
will repeatedly appear in the rest of the thesis.

Z
=

Figure 2.3: Symbol for the measurement operator in Z axis (the left symbol stands
for the right one unless otherwise noted), corresponding to the measurement by the
operators M0 and M1 (in the notation of 2.2.1).
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X

Figure 2.4: Symbol for the measurement
operator in X axis, corresponding to the
measurement by the operators M|0⟩+|1⟩/

√
2

and M|0⟩−|1⟩/
√
2.

Y

Figure 2.5: Symbol for the measurement
operator in Y axis, corresponding to the
measurement by the operators M|0⟩+i|1⟩/

√
2

and M|0⟩−i|1⟩/
√
2.

2.3 Distributed Quantum States

2.3.1 Entanglement

Entanglement refers to a state of superpositon of more that one particle such that the
outcome of measurement of one qubit is dependent on the outcome of the measurement
of another qubit. For example, let

|ψ⟩ = |00⟩+ |11⟩√
2

. (2.3.1.1)

Observe that measuring 0 (or 1) for the first qubit immediately gives the knowledge of
the outcome of the second qubit, 0 (or 1, respectively), without actually measuring the
second one. This is an example of entanglement of quantum states.

One of the most frequently used type of entangled states in quantum networking is
EPR pairs, or Bell pairs. They are 2-qubit states of one of the forms∣∣Φ+

⟩
=

|00⟩+ |11⟩√
2

, (2.3.1.2)

∣∣Φ−⟩ = |00⟩ − |11⟩√
2

, (2.3.1.3)

∣∣Ψ+
⟩
=

|01⟩+ |10⟩√
2

, (2.3.1.4)

and ∣∣Ψ−⟩ =
|01⟩ − |10⟩√

2
. (2.3.1.5)

All these four are called Bell pairs. Figure 2.6 conceptually illustrates this.
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|�+i = |00i+ |11ip
2

Figure 2.6: A Bell pair, with two photons entangled: measurements of one photon
affects measurements of the other. Local operations on one photon immediately affecte
the other at a distant location!

2.3.2 Quantum Teleportation

Quantum teleportation [10] exemplifies how entanglement can be practically useful.
Briefly speaking, a set of local operations2 to an entangled state as well as to a given
state |ψ⟩, enable “teleportation” of the state |ψ⟩. We explain how a qubit is teleported
using an entangled state. The whole procedure of quantum teleportation is drawn in
circuit form in Figure 2.7.

| i
1

|�+i = |00i+ |11ip
2

2 3 2 3

1

2

3

H

XZ

(No gate)

X

ZBob

Alice

Figure 2.7: Circuit diagram of quantum teleporation: Bob applies his operation de-
pending on the measurement result at Alice.

Assume that Alice wants to teleport a qubit to Bob. Let |ψ⟩ = α |0⟩ + β |1⟩ be
the state that Alice wants to teleport and let the entangled state be the Bell pair3

|φ+⟩ = (|00⟩ + |11⟩)/
√
2 with the first qubit owned by Alice and the second by Bob;

thus Alice has two qubits and Bob has one. The whole state is expressed as

|ψ⟩
∣∣Φ+

⟩
=

1√
2

(
α |0⟩ (|00⟩+ |11⟩) + β |1⟩ (|00⟩+ |11⟩)

)
. (2.3.2.1)

First Alice performs a CNOT gate, setting her qubit |ψ⟩ as the controlling bit and the

2Operation here means application of quantum gates to states and local operations imply that the
operations are made at the location where each of the qubits lies.

3The choice of a Bell pair among the four types is immaterial. It only affects which type of gate
Bob applies at the end of this procedure to complete the teleportation process.
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Alice’s outcome Bob’s state
00 α |0⟩+ β |1⟩
01 α |1⟩+ β |0⟩
10 α |0⟩ − β |1⟩
11 α |1⟩ − β |0⟩

Table 2.1: Correspondence between Alice’s measurement outcomes and Bob’s state at
the time Alice obtained each outcome

first qubit of |Ψ+⟩ as the target bit, the result of which will be

|ψ⟩
∣∣Φ+

⟩
−−−−−−−→
CNOT Alice

1√
2

(
α |0⟩ (|00⟩+ |11⟩) + β |1⟩ (|10⟩+ |01⟩)

)
. (2.3.2.2)

Next Alice applies a Hadamard gate to |ψ⟩, obtaining

|ψ⟩
∣∣Φ+

⟩
−−−−−−−−−→

CNOT Alice
Hadamard Alice

1

2

(
α(|0⟩+|1⟩)(|00⟩+|11⟩)+β(|0⟩−|1⟩)(|10⟩+|01⟩)

)
. (2.3.2.3)

Rewriting Equation (2.3.2.3) gives

|ψfinal⟩ =
1

2

(
|00⟩ (α |0⟩+ β |1⟩) + |01⟩ (α |1⟩+ β |0⟩)+

|10⟩ (α |0⟩ − β |1⟩) + |11⟩ (α |1⟩ − β |0⟩)
)
.

Observe that there are four possible outcomes in the measurement of Alice and that
each of the outcomes exactly corresponds to measurement outcomes of Bob, which also
consists of four patterns. The precise correspondence is shown in Table 2.1. Now the
interesting part comes: Bob can recover the state |ψ⟩, which Alice previously held, by
applying an appropriate gate depending on the measurement outcome of Alice.

In fact, Bob does not need any operation if Alice’s result is 00; if it is 01, then Bob
has α |1⟩+ β |0⟩ and applying X gate (

0 1
1 0

)
(2.3.2.4)

to the state (
β
α

)
(2.3.2.5)

will recover the original state |ψ⟩; if it is 10, then applying Z gate(
1 0
0 −1

)
(2.3.2.6)

will do; and if 11, then applying X gate first and then Z gate, which is equivalent to
the matrix (

0 1
−1 0

)
(2.3.2.7)
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will yield the original state [11].
Recalling that any unitary transformation is mathematically legitimate to be a

quantum gate (see Section 2.2.2), all these operation involved at Bob are application of
quantum gates. Thus the unknown state |ψ⟩ is “teleported” by a set of local operations
to the shared Bell pair and to the state |ψ⟩.

2.3.3 Entanglement Swapping

Entanglement swapping [12] is an application of quantum teleportation of great sig-
nificance in quantum networking. We have seen how to transfer an unknown state
to a distant location in the previous section. We now apply this method to “connect
and lengthen” two entangled states. The whole process of entanglement swapping is
depicted in the circuit diagram (Figure 2.8).

1

2

3

H

XZ

(No gate)

X

Z

Node	2

Node	1

|�+i = |00i+ |11ip
2

1 2 1 2

|�+i = |00i+ |11ip
2

3 4 3 4

Node	3 4

| 1i

| 2i

Figure 2.8: Circuit diagram of entanglement swapping

Let us assume that we have three nodes, Node 1 through 3, and Node 1 and 2 have
one particle each of the Bell pair |ψ1⟩ and Node 2 and 3 have one particle each of the
other Bell pair |ψ2⟩, as illustrated in Figure 2.9.

Node	2 Node	3Node	1

| 1i =
|00i+ |11ip

2

| 2i =
|00i+ |11ip

2

Figure 2.9: Entanglement swapping: initial state. Node 1 and 2 share one entangled
photon pairs, and Node 2 and 3 also share another entangled photon pair, with two
photons in total at Node 2.
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Now Node 2 transfers the state of one particle to Node 3 by using the Bell pair
owned by and entangled between Node 2 and 3 (Figure 2.10):

Node	2 Node	3Node	1

| 1i =
|00i+ |11ip

2

| 2i =
|00i+ |11ip

2

Teleporting, using the 
second Bell pair | 2i

Figure 2.10: Entanglement swapping: teleporting the state of one particle of Node 2
to Node 3 using the same procedure as quantum teleportation.

This operation changes |ψ2⟩ to some other state, and the two physical qubits in
Node 2 are now disentangled from the pair of interest. The result is as depicted in
Figure 2.11:

Node	2 Node	3Node	1

| 1i =
|00i+ |11ip

2

Figure 2.11: Entanglement swapping: the particle at Node 1 is now entangled to the
particle at Node 3, resulting in a longer entanglement.

This is not only one of the most quintessential applications of the principle of
quantum teleportation, but also a keystone that enables quantum repeater networks,
as will be seen later.

2.4 Quantum Networking

2.4.1 Purification

Purification is a method to increase the fidelity of a given Bell pair by consuming
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Probability Alice Bob
F 2 |Φ+⟩ |Φ+⟩
F (1− F ) |Φ+⟩ |Ψ+⟩
F (1− F ) |Ψ+⟩ |Φ+⟩
(1− F )2 |Ψ+⟩ |Ψ+⟩

Table 2.2: Possible combinations of the states Alice and Bob have when only bit flip
errors occur: when the first and last cases occur the round of purification is considered
successful, while the second and third cases lead to failure of the round.

another Bell pair. Recall that Bell pairs in reality always have errors. Let us consider
the simplest case where there is only one type of error, the bit flip error in the Bell
pair. At the beginning we have two identical Bell pairs. The density matrix of the Bell
pair ρ with bit flip errors described as

ρ = F
∣∣Φ+

⟩ ⟨
Φ+

∣∣+ (1− F )
∣∣Ψ+

⟩ ⟨
Ψ+

∣∣ . (2.4.1.1)

where 0 < F < 1.4 Assume that two parties, Alice and Bob, each have the identical
Bell pair ρ above with Alice having the first qubit of each of the Bell pairs and Bob
the second qubit of each of the Bell pairs. Let ρ1 denote Alice’s and ρ2 Bob’s. They
are 4 possible combinations of the states they have, as in Table 2.2.

First Alice applies CNOT gate with the control qubit set to her first qubit and the
target qubit to her second qubit; then Bob applies CNOT with the control qubit set
to his first qubit and the target qubit to his second, similarly. Alice and Bob each
measure their second qubit. If their results are idential (which is, both measured 0’s
and 1’s), then purification succeeded and their first Bell pair will have a higher fidelity.
The first Bell pair will be used either for further purification or an application; the
second pair will always be discarded because of the collapse the measurement caused.
If they measured different values, then the purification is said to have failed, both Bell
pairs will be discarded, and another purification will be attempted. The steps listeed
in this paragraph is counted as one round of purification.

In practice, many rounds of purification are conducted until the fidelity increases
to above a certain “threshold” (Figure 2.13). The value of this threshold depends on
subsequent applications.

The version of the purification implemented in the simulator can deal with phase
flip errors as well, and the circuit is depicted in Figure 2.12. This circuit uses two Bell
pairs to detect bit flips on two other Bell pairs (left half), resulting in two higher-fidelity
Bell pairs with potential phase flip errors remaining. The phase flip errors are then
suppressed (right half), leaving a single, high-fidelity Bell pair.

4In general, there can be multiple types of error and the density matrix |Ψ+⟩ ⟨Ψ+| multiplied
by 1 − F in the equation above can be more complex, and subsequent explanations will be more
complicated as well.
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H

H

H

H

| 1i = F |�+i+
(1� F ) | +i

| 2i = F |�+i+
(1� F ) | +i

| 3i = F |�+i+
(1� F ) | +i

| 4i = F |�+i+
(1� F ) | +i

Figure 2.12: Extended purification circuit: now capable of suppressing both bit flip
and phase flip errors.

Figure 2.13: Multiple rounds of purification, increasing the fidelity still further after
each round.

2.4.2 Quantum Networks

A quantum repeater network refers to a network of distributed quantum computing
nodes [13]. Entangled states (such as Bell states) play a wide variety of roles in e.g.
executing quantum gates remotely and quantum key distribution (QKD) [13]. This
thesis lies in the context of building a large-scale quantum network, where delivering
entangled states is thus essential. Unlike classical networks, however, transmission of
entangled states suffers loss and noises while being delivered, regardless of length of
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nodes, and assessing the degree of degeneration of the states requires complex pro-
cedures [13], of which quantum state tomography stands as a possible choice. Since
every quantum network is essentially a set of node-to-node links, considering the case
of sending entangled states is therefore the most fundamental step for our goal of re-
alizing quantum networks. We will take a closer look at such single links in quantum
networking in the following section.

2.4.3 Quantum Link

Quantum link refers to a state where two parties (let us call them Alice and Bob here)
have one entangled photon pair with one qubit at Alice and the other at Bob, as in
Figure 2.14. The entanglement is essential for subsequent applications.

Node	1 Node	2

Entangled	
Photon	Pair	
Sender

Photon 1 Photon 2

Entanglement of Photon 1 & 2

Figure 2.14: A scheme of two nodes sharing an entangled photon pair: the photon 1
and 2 constitute the entanglement, both having been emitted by the Entangle Photon
Pair Sender in the middle.

We assume a concrete scenario throughout the research (Figure 2.15), while the
details in actual node-to-node links could be in different forms. We consider the scenario
with the timeframe spanning from when we began to create a link up to the moment
we confirmed that the link is actually ready for use in further applications.
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EPPS	Node

EPPS emits entangled 
photon pairs

Node	1 Node	2

Classical bits: 0 or 1 Classical bits: 0 or 1

Node	1	
Controller

Node	2	
Controller

Collect the 
measurement 

info

Collect the 
measurement 

info

Classical	Connection

Measure Measure

Application
(e.g.	QKD)

Inquiries from 
Application Layer

1. Fidelity of the raw Bell pair 
directly from EPPS

2. Fidelity of the post-
purification Bell pair

Classical	
Connection

Figure 2.15: A quantum link with Node Controllers: the Controllers are in chrage of
making operational decisions such as choosing measurement bases and fidelity assess-
ment of states, involving state estimation methods.

We have one entangled photon pair sender (EPPS henceforth), that emits entangled
photon pairs; two Nodes, Node 1 and 2, that receive entangled photon pairs from the
EPPS, which take part in actual communication using Bell pairs; and corresponding
controller Nodes, Node Controller 1 and 2, that direct and manage the link creation
between the two Nodes. The Node Controllers are classical computers that communi-
cate via classical channel and function as controllers by e.g. monitoring and managing
Bell pair emission, conducting state reconstruction, making decisions as to whether the
Nodes are ready to use the Bell pairs being made, and if not, whether they need to
purify it, and how many times we need to purify to make the pairs ready for use, etc.
We will take a closer look at each of the tasks mentioned here. Of course each Bell
pair consists of two photons, one of which is owned by Node 1 and the other by Node
2. Moreover, the EPPS in this scenario is assumed to emit the same type of Bell pairs
throughout the process, one of the four states presented at the end of Section 2.3.1.

2.5 Quantum State Tomography

Quantum state tomography refers to a procedure by which we can reconstruct a given
mixed state, typically in the form of density matrix, with a certain accuracy. Because
of its probabilistic behavior in measurement, we cannot directly gain the information of
the state itself, but rather need to make a “guess” from a set of measurement outcomes
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we obtain by measuring the state with different bases, as in Figure 2.16. For photons,
|H⟩, |V ⟩, |D⟩, |A⟩, |R⟩ and |L⟩ are the horizontal, vertical, diagonal, antidiagonal,
left and right bases, corresponding to |0⟩, |1⟩, (|0⟩ + |1⟩)/

∣∣√2
⟩
, (|0⟩ − |1⟩)/

∣∣√2
⟩
,

(|0⟩ + i |1⟩)/
∣∣√2

⟩
and (|0⟩ − i |1⟩)/

∣∣√2
⟩
, respectively, in terms of the Bloch sphere

(Figure 2.17). Measuring the state with different bases is analogous to seeing an object
at several different angles to grasp the whole image when the object is hard to see as
a whole (imagine looking at a huge mountain). Measurement with one basis will give
only a partial knowledge of the state. The accuracy of state reconstruction depends on
the number of measurement conducted, and generally becomes higher as we increase
the number of measurements.

|Hi

|V i

|Ai

|Di
|Li

|Ri

|?i

Figure 2.16: Fidelity and the process of state reconstruction in tomography: looking
at the state from different angles enables reconstruction of the state
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|Hi

|V i

|Ai

|Di

|Li

|Ri

Figure 2.17: Measurement bases and their respective points on the Bloch sphere: mea-
surements with respect to these bases “project” a given state to their respective points
on the sphere probabilistically.

⇢ideal ⇢reality
F |�+i h�+|+ (1� F ) |noisei hnoise||�+i h�+|

⇢
reconstructed

Engineer’s goal to make the 
actual fidelity F as close to 1 as 

possible

Our goal to make the 
reconstructed fidelity

as close to 1 as possible

Figure 2.18: State tomography for 1-qubit: the actual fidelity is between the ideal state
and the actual state (the latter of which cannot be seen) and the reconstruction fidelity
is between the state reconstructed by the maximum likelihood (see Section 2.5.1) and a
set of states generated by the error estimation routine (see Section 2.5.2), representing
accuracy of the reconstruction.
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We adopt the tomography procedure presented by Kwiat et. al. in [1] as the corner-
stone for comparison and the basis for our proposal. The tomography implementation
used in the simulator (which will be formally presented in a subsquent chapter) has
been created based on the implementation developed by the authors of [1].

Two fidelities are used in this state tomography: the actual fidelity, ρreality, and
the reconstruction fidelity, ρreconstruction (Figure 2.18). The former one is between the
ideal state and the reconstructed state that have derived from the maximum likelihood
without error estimation. The latter one is the mean fidelity between the reconstructed
state and the numerically generated states that are as likely to have come from the
same set of measured data. While the actual fidelity converges to the fidelity of the
actual state (of which we cannot gain direct information) as we increase the number of
measurement, the reconstruction fidelity converges to 1 as we reduce the error range
in state reconstruction by increasing the number of measurements.

The tomography procedure presented in [1] is two-fold: one is maximum likelihood,
an analytical search for the density matrix that is most likely to have come from the
given set of data obtained in the experiment; the other is error estimation to assess how
accurately the state was reconstructed by the maximum likelihood, involving Monte
Carlo technique to gain error distributions for each error source in measurement.

2.5.1 Maximum Likelihood Technique

We explain the maximum likelihood technique in more detail here. Let us first make a
few assumptions and definitions. Assume we have n qubits. Let nν,r be the measure-
ment result for the ν-th measurement setting on the r-th detector combination, as in
[1]. A complex matrix A is said to be Hermitian if it satisfies the relation

AA∗ = A∗A (2.5.1.1)

where A∗ is the conjugate transpose of A as defined in 2.2.1. A complex matrix A is
said to be nonnegative definite if, for any complex vector |ψ⟩, the relation

⟨ψ|A |ψ⟩ ≥ 0 (2.5.1.2)

holds.
As density matrices are required to be non-negative definite Hermitian matrices of

trace one, we first introduce a parametrized matrix T (t) with the parameter t ∈ R4n ,
defined by

T (t) ≡


t1 0 · · · 0

t2n+1 + it2n+2 t2 · · · 0

· · · ...
. . . 0

t4n−1 + it4n t4n−3 + it4n−2 · · · t2n

 (2.5.1.3)

and

t ≡

 t1
...
t4n

 . (2.5.1.4)
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as in [1]. Note that any matrices of the form TT ∗ are non-negative definite. The
relation (TT ∗)∗ = (T ∗)∗T ∗ = TT ∗ implies TT ∗ is Hermitian as well. By dividing by
the trace of itself, TT ∗ becomes non-nonnegative, Hermitian, and of trace one, thereby
formulating a parametrized density matrix

ρ(t) =
T (t)T ∗(t)

Tr{T (t)T ∗(t)}
. (2.5.1.5)

Now let n̂ν,r be the result that would be expected from a given density matrix ρ(t)5;
thus the family {n̂ν,r} with ν and r running through appropriate sets determined
by measurement configurations can be regarded as a mapping from ρ(t), and thus a
function of t. Assuming the counting statistics follow Gaussian distribution (as in [1]),
the probability that ρ(t) yields the counts {nν,r} is given by

P ({nν,r}) = C
∏
ν,r

exp

{
−(n̂ν,r − nν,r)

2

2n̂ν,r

}
(2.5.1.6)

where C is a constant to normalize the right hand side. Applying logarithm to the
right hand side and then negating, we get∑

ν,r

(n̂ν,r − nν,r)
2

2n̂ν,r
. (2.5.1.7)

Notice that maximizing the right hand side of (2.5.1.6) with respect to t is equivalent to
minimizing the left hand side of . Our maximum likelihood approach is thus reduced
to finding the solution t = tmin for which the left hand side of Equation attains a
minimum [1].

2.5.2 Error Estimation

The error estimation method used in the paper [1] is based on the assumption that
count statistics obey Poisson distribution (page 47 and 48). The error estimation will
be used in this research as it is, the details of which will be explained in the following
paragraphs.

5n̂ν,r is expressed as a function of t, together with several physical constants that depend on the
particular measurement apparatus. For the complete definition, see Page 40 of [1].
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Chapter 3

Ideas and Designs

3.1 Key Ideas

Recall that state tomography is designed to reconstruct a completely unknown state
without prior knowledge of the state. While it is true that this full tomography can be
used to reconstruct Bell states used in quantum networking, we may be able to “cut
short” by using the fact that we use Bell states in quantum networking, which comprise
only four types. In other words, we can reduce the possibility of the given state, which
could be completely unknown in general, to one of those Bell pairs. In addition, we
do not need the information of the whole state, but we need to know the fidelity of
the state with the ideal state we want to achieve. This also suggests a possibility of
reducing the number of measurement bases, thereby shortening the bootstrap time.
That is, we could greatly accelerate the process by limiting the scope of state analysis
to our particular situation in quantum link creation.

The goal of this project is to propose such an optimized fidelity estimation method
concretely. Before moving on to the goal, let us first consider how two nodes about to
share an entangled state should behave in detail.

3.2 Design of the Protocol for Creating a Link

In this section we discuss how the whole procedure is arranged in link creation. Let
us assume that we are at the beginning of the link creation. First the EPPS starts to
emit Bell pairs to each Node. After the Bell pairs arrive, each Node controller chooses
a measurement basis for its Node, and tells the Node to measure its qubit with the
specified basis. Repeating the procedure from the Bell pair emission to the measure-
ment sufficiently many times will give us a resonably large collection of measurement
outcomes. The next step is to reconstruct the state by using the collected data. This
is done by the tomography routine implemented in both Node 1 and 2 Controllers, and
these Node Controllers conduct tomography independently.

One might suspect that we do not need to run the tomography at more than one
location if it is fed with the same input data, since the tomography routine will then give
the same reconstruction. However, this is not true because the tomography involves
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probabilistic estimation in part, and thus it is not guaranteed that they always give
identical output, even though they will yield almost identical results.

To probe into the problem, let us suppose that we have two nodes that share a Bell
pair and they are going to conduct tomography to check the state is of sufficient fidelity.
There are two models regarding the way the tomography is conducted: distributed
model (Figure 3.1) and master-slave model (Figure 3.2 and 3.3). In the distributed
model, two separate tomography instances are conducted at each node concurrently.
In the master-slave mode, on the other hand, tomography is conducted at only one
node; the node at which tomography is conducted then sends the information of the
reconstructed state to the other node. While the distributed model has an obvious
advantage of being simple, it also has a risk of disagreement between the two nodes.
That is, it could happen that one node’s tomography leads to a result that indicates
the shared Bell state is of sufficiently high fidelity, and thus decides to use the state,
while the other node yields a slightly different result in tomography that implies the
fidelity of the shared state is marginally under the required threshold. In such an case
the nodes disagree on whether they are ready to proceed, resulting in an operational
inconsistency. If we use the master-slave model, we need to consider a way to maintain
consistency in decision-making, which is crucial for quantum networking to function
properly. This is one of the essential properties required for quantum networking,
which is not present in the stand-alone state tomography experimented in a laboratry.
Thus it is significant to propose a protocol that supports the tomography in quantum
networking, one of novelty in this research.
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Figure 3.1: Flowchart at Node 1 in the distributed model: both Node 1 and 2 conduct
tomography concurrently, exchanging each other’s reconstructed density matrices.
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seing measurement bases and state recon-
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Figure 3.3: Flowchart at Node 2 in the
master-slave model: Node 2 receives the to-
mography result and follows the decision of
Node 1 regarding whether to proceed for
applications.

With the results from tomography we calculate the reconstruction fidelity, by which
we can determine whether we have reconstructed the state accurately enough. If the
accuracy is sufficient, then we can calculate the fidelity between the reconstructed
state and the ideal state, ρreality in the notation in Section 2.5. If ρreality is high enough
for use in further applications, then we are ready to use the link and the procedure
terminates. If not, we need to purify it to achieve a higher fidelity. Recall that we need
to conduct a state analysis every time when we try to know the state; thus we start again
from the phase of measuring the state many times, but this time with one purification
conducted before every measurement. We increase the number of purifications until we
are confident that the fidelity is sufficiently high with that number of measurements.
This whole procedure is illustrated in the flowchart (Figure 3.4).
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Figure 3.4: Flowchart of the bootstrap procedure of a quantum link: the number of
purifications increases until leading to the state being of a sufficient fidelity.
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Chapter 4

Implementation

4.1 Structure of the Simulator

The simulator comprises three modules: God channel module, tomography module,
and simulator module (4.1). The God channel module serves as the imitation of real
physical equipment, examples of its job including creating states, measurements, and
applying CNOT gates (i.e. purifications). Many of these operations are essentially
probabilistic in the senses that measurements invoke probabilistic collapse of quantum
states and that errors in both measurements and CNOT gates embrace fluctuations,
which also follow certain probability distributions in classical sense. The God channel
thus simulates both quantum and classical operations that in reality derive from the
property of quanta and from physical apparatus, respectively.

The tomography module is the collection of routines for conducting tomography.
Almost all of this module has been taken from the tomography program which the
authors of the paper [1] created without any essential change. The tomography module
takes the measured count data and returns the reconstructed density matrix. For the
details of this process, see the descriptions in Section 2.5. Using the reconstructed
density matrix and the density matrix of the ideal state, this modules then computes
the fidelity of these two states. We regard the fidelity as indication of the quality of
the state.

Finally, the simulator module serves much as an experimenter, using the two mod-
ule introduced above to actually yield valuable data for the goal of this research by
attempting various different settings. The settings that vary include the number of
measurements conducted, types of errors observed in the Bell state, the number of
purifications conducted, the degree of errors in measurements, and the degree of errors
in CNOT gates. The simulator module passes these sets of parameters to the two
modules above to run over different settings.
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Figure 4.1: Software Architecture of the whole program: the modules are seperated by
their respective roles.

4.2 God Channel Module

4.2.1 Implementation of Quantum States Representations

Every quantum state recognized in the simulator is first represented as a list that serves
as an ensemble of several pure states. For example, this list can contain the elements
[0.64, |Φ+⟩, |Φ+⟩], [0.16, |Φ+⟩, |Ψ+⟩], [0.16, |Ψ+⟩, |Φ+⟩] and [0.04, |Ψ+⟩, |Ψ+⟩] where
|Φ+⟩ and |Φ+⟩ are arrays [1,0,0,0] and [0,0,1,0], respectively. These array representa-
tions of the state vectors are excatly derived from their mathematical representations
in Bell basis1, written coefficient by coefficient.

These ensembles are then converted into the corresponding density matrices in order
for gates and measurments to be applied.

4.2.2 Implementation of CNOT Gate with Errors

We have seen in Section 2.2.2 that CNOT gate is represented in theory as

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (4.2.2.1)

However, there is always imperfection in any real equipment. O’Brien et. al. de-
mostrated all-optical CNOT gate in experiment, providing actual data of the probabil-
ities that we masure 00, 01, 10, and 11 after each of these states passing through the

1The Bell basis is a set of basis vectors |Φ+⟩, |Φ−⟩, |Ψ+⟩, and |Ψ−⟩.
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demonstrated CNOT (Page 2 in [14]). Based upon this data the author introduced the
CNOT gate with errors, whose matrix representation has become

CNOTerror =


0.95 0.031 0.005 0.011
0.023 0.94 0.011 0.0005
0.024 0.0019 0.23 0.72
0.0006 0.022 0.75 0.26

 . (4.2.2.2)

While this matrix faithfully reflects the experimental data on the paper, it has an
obvious disadvantage that it can only be applied to 2-qubits states; this is not desirable
given that we want to apply this CNOT to arbitrary n-qubit states. For example, we
might have 4-qubit states and want to set the first qubit to the control qubit and
the third to the target. In such a case, the CNOT matrix must be represented as a
matrix that transforms 3-qubit states (containing the operation for the first to the third
qubits out of the four), leaving the second qubit as it is, and then must be tensored
with the identity matrix I2 of degree 2 (i.e. 2-by-2 matrix). Therefore we also take into
account cases when the control qubit and target qubit are not “adjacent”, other qubits
being between the control and the target qubit. The author implemented a function
that generates a CNOT matrix with similar level of errors that can be applied for any
n-qubit states, with the first qubit set to the control qubit and the n-th the target2.

Let us first consider the case when the target qubit comes after the control qubit.
Let m denote the index of the target qubit and suppose the first qubit is set to the
control qubit. This fucntion takes as arguments the index of the target qubit m and
the total number of qubits (again, m) involved in this CNOT operation, and yields the
matrix CNOT1,m ∈M2m(R)

CNOT1,m =



0.95 1−0.95
n0

· · · 1−0.95
n0

1−0.95
n0

1−0.95
n0

1−0.95
n0

0.95 · · · 1−0.95
n0

1−0.95
n0

1−0.95
n0

...
...

...
...

...
...

1−(0.20+0.75)
n0−1

· · · 0.20 0.75 1−(0.20+0.75)
n0−1

1−(0.20+0.75)
n0−1

1−(0.20+0.75)
n0−1

· · · 0.75 0.20 1−(0.20+0.75)
n0−1

1−(0.20+0.75)
n0−1

1−(0.20+0.75)
n0−1

· · · 1−(0.20+0.75)
n0−1

1−(0.20+0.75)
n0−1

0.20 0.75
1−(0.20+0.75)

n0−1
· · · 1−(0.20+0.75)

n0−1
1−(0.20+0.75)

n0−1
0.75 0.20


(4.2.2.3)

2Note that, when we have still other qubits that are not involved in CNOT after the target qubit,
then we only need to take the tensor product of the CNOT matrix given and the indentity matrix of
the same degree as the number of the rest of the qubits placed after the target qubit. If we assume
there are n qubits in total and the first qubit is set to the contorl qubit and the n-th qubit is to the
target, with of course 1 < n < m, then the desired CNOT matrix is CNOT1,m ⊗ In−m, where In−m

Denotes the identity matrix of degree n−m.
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where n0 = 2m − 1. The (i, j) entry of the matrix above, aij, can be expressed as

aij =



0.95 if i = j and 1 ≤ i ≤ 2m−1

1−0.95
n0

if i ̸= j and 1 ≤ i ≤ 2m−1

0.75 if i ≡ 0 (mod 2) and i = j − 1 and 2m−1 < i ≤ 2m

0.75 if i ≡ 1 (mod 2) and i− 1 = j and 2m−1 < i ≤ 2m

1−(0.20+0.75)
n0−1

if i ̸= j and 2m−1 < i ≤ 2m

. (4.2.2.4)

Now let us consider the case when the target qubit is placed before the control
qubit. Let m denote the index of the control qubit and suppose the first qubit is set
to the target qubit (notice that the relation is reversed here). This fucntion takes as
arguments the index of the control qubit m and the total number of qubits (again, m)
involved in this CNOT operation, and yields the matrix CNOTm,1 ∈ M2m(R) defined
in the following manner. First let ãij denote the (i, j) entry of the matrix CNOTm,1.
Next, consider the permutation σ that acts on the set of indices 0, 1, · · · , 2m−1, defined
as

σ(i) ≡

{
(−d1)d2 . . . dm if dm is 1

d1d2 . . . dm otherwise
(4.2.2.5)

where d1d2 . . . dm denotes the binary representation of the index i and −d1 is the
negation of d1. Now ãij is defined using σ as 3

aiσ(j) =


0.95 if i = j and i ≡ 0 (mod 2)
1−0.95
n0

if i ̸= j and i ≡ 0 (mod 2)

0.75 if i = j and i ≡ 1 (mod 2)
1−0.75
n0

if i ̸= j and i ≡ 1 (mod 2)

(4.2.2.6)

where n0 = 2m − 1 as in the previous case.

4.3 Tomography Module

Tomography module takes count distributions that have come from God Channel mod-
ule and conducts tomography. This module returns the fidelity between the recon-
structed state and the actual state, and the fidelity between the reconstructed state
and the ideal state.

4.4 Simulator Module

Simulator module first loads the configuration file from its current directory to load
the settings regarding the set of simulations such as the minimum and maximum of the
total number of measurements, the minumum and maximum number of purifications

3Note that the set {(i, σ(j)) | 1 ≤ i, j ≤ n} is equal to the set {(i, j) | 1 ≤ i, j ≤ n} when σ is a
permutation of elements in the set {1, 2, . . . , n}. When j runs 1 through n, so does σ(j).
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conducted, etc. The module then stores the table of measurement results, pass it to the
Tomography module, received the reconstructed density matrix and the information of
fidelities, and finally it saves the data into an external file for reference.
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Chapter 5

Evaluation

5.1 Criteria for Evaluation

Fidelities that ensure proper operation of applications using Bell pairs vary in general.
Since this project is not intended to limit the scope of the conclusion to this or that
particular application after the fidelity estimation, we need to establish a set of criteria
that define “sufficiently high” fidelities. We define the fidelity of a given Bell state to
be sufficiently high if it is either above 0.99 or above 0.999. Either of these two different
criteria will be used each time we take a look at data.

Another set of criteria are still needed to assess to which extent the goal of the
project has been fulfilled. We consider the amount of time for two nodes to take in
order to be convinced that the fidelity of the Bell state they hold is either over 0.99 or
0.999 with standard error in the estimation under 0.01 or 0.001, respectively.

The configurations for evaluation fall into two categories: the case when no error is
present and when CNOT gate errors are present.

5.2 Evaluation for Full State Tomography

Below is the plotted data of the actual fidelities and the reconstruction fidelities with
the varying number of total measurements conducted for tomography (Figure 5.1). The
data used here is derived from an actual set of experimental data that was provided in
the paper [1], while the tomography was (of course) done in software.

The horizontal axis represents the number of measurements. In the vertical axis
the actual state fidelities are drawn in red, with the corresponding labeled axis with
numbers on the right side of the graph; the reconstruction fidelities are in black with
the corresponding axis on the left. Now the statement made at Section 2.5 is verified
from the graph quantitatively.

The reconstruction fidelity being constantly above 0.999 requires over 60,000 mea-
surements, with being above 0.99 still demanding over 3,000 measurements. If we
assume Bell pair creation rate is 10 per second, the reconstruction fidelity above 0.999
needs more than an hour and a half. This is obviously an unacceptable amount of
time for tomography to take for preparation of an entangled state. In the rest of this
Section we first consider the case where purification is embedded into the process and
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how to circumvent difficulties arising when errors in CNOT gates are present; then we
investigate posibilities of reducing the number of measurements (hence the amount of
time) needed to prepare an entangled state.
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Figure 5.1: Relationship between Actual Fidelity and Reconstruction Fidelity based
on actual experimental data provided by Kwiat et. al., with no purification conduted.

5.2.1 Behavior of Actual Fidelities with Purifications

Since our goal is to provide the most efficient scheme of state reconstruction for
purification-embedded link creation, it is natural to consider cases where purification is
conducted a number of times before tomography. First let us consider the case where
the target state suffers only bit flip errors. In particular, let us suppose here that the
state in question, denoted by ρ, is

ρ = 0.8
∣∣Φ+

⟩ ⟨
Φ+

∣∣+ 0.2
∣∣Ψ+

⟩ ⟨
Ψ+

∣∣ (5.2.1.1)

in density matrix form1. Fixing the state to this ρ, simulations were conducted with
the number of purifications varying from 1 to 5, and after each of the purifications,
fidelity estimation using full state tomography followed.

The first two graphs (Figure 5.2 and 5.3) below indicate the relations between the
actual fidelity and the number of purifications conducted varying from 1 to 5, with
Figure 5.2 showing the case without gate errors and Figure 5.3 showing the case with

1Recall that the term 0.2 |Ψ+⟩ ⟨Ψ+| in Equation (5.2.1.1) is called bit flip error.
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CNOT gate errors present. The x-axis represents the number of purifications conducted
and the y-axis the actual fidelity.

As is seen, the blue line in Figure 5.2 increases (almost) smoothly to 1 as the
number of purifications increases, whereas the other one in Figure 5.3 stagnates around
somewhere of fidelity 0.8 and begins to show slight fluctuation. The former graph shows
evidence that the method of purification works as expected in literature under the
assumption that the gates involved have no error. On the other hand, the stagnation
and fluctuation in the latter graph can be explained using the following fact: imperfect
CNOT gates mix phase flip errors even when the initial Bell pair has only bit flip
errors. Following the criteria in Section 5.1, purification with imperfect CNOT gates
can never lift fidelities of the state up to the point of “sufficiently high”.
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Figure 5.2: Relations between the actual fidelity and the number of purifications with
no gate errors: the fidelity smoothly approaches to 1.
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CNOT gate errors present: the fidelity stagnates between 0.8 and 0.9.

5.2.2 Behavior of Reconstruction Fidelities with Purifications

The graphs below (Figure 5.4 and 5.5) are the relations between the reconstruction
fidelity and the number of purifications conducted, each drawn from the same set of
simulated data as above. The x-axis represents the number of purifications conducted
and the y-axis the reconstruction fidelity. The first one is obtained from the case
without CNOT gate errors and the second one from the case with CNOT errors.

In general, reconstruction fidelities are expected to approach 1 as the number of
measurements (which is not varying in these graphs) increases. It is a question of worth
asking whether reconstruction fidelities depend on the actual fidelities themselves of
the target state or not. The graphs might show some hints: in the first graph the
orange line (reconstruction fidelity) increases as the number of purifications increases.
This might suggest that higher actual fidelities lead to higher reconstruction fidelities.
This suggestion is not inconsistent if taking into account the second graph, since the
fluctuations of the actual fidelities when CNOT gate errors are present seem to make
reasonable the fluctuations in the reconstruction fidelities.
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Chapter 6

Conclusion

6.1 State Reconstruction

For the state reconstruction performance, if full state tomography is employed, then
Figure 5.1 in Chapter 5 implies that the number of measurements necessary exceeds
50,000 in order to reach the reconstruction fidelity of 0.999, with the number still above
several thousand to reach 0.99. This requires the respective numbers of Bell pairs that
are successfully created and measured. In Hucul et. al.’s research [15], for example,
4.5 Bell pairs per second have successfully been measured. Another experiment by a
group of researchers in China [16] succeeded in measuring 1.1 Bell pairs per second
at a distance of approximately 1200 kilometers1. With this magnitude of Bell pair
generation rates, it takes more than ten thousand seconds, or well above two hours, to
repeat 50,000 of Bell pair creation and measurements; to conduct several thousand such
procedures still requires a dozen of minutes. This is clearly an unacceptable amount
of time for a single bootstrap.

In addition, this implies that changes to the environment faster than this amount
of time cannot be compensated for by tomography, and hence must be handled at a
lower level. That is, deterioration of states caused by environmental changes within the
interval of time smaller than the tomography is done cannot be detected by tomography.

6.2 Purification

When CNOT gates have no error, purification leads to smooth improvement in actual
fidelities. The smoothness has also been seen for the reconstruction fidelities. Contrary
to the no-error case, however, purification seems to lift the actual fidelity asymptot-
ically to somewhere considerably lower than 1. It thus could be concluded (at least
from all the data obtained so far in Chapter 5) that phase flip errors cause persistent
deterioration in fidelities that remain to a certain degree after a set of purifications. If
the fidelity merely converges to around 0.8, then it is very hard for the resultant Bell
pair to be used in applications. To circumvent this problem, some countermeasure, e.g.

1There are still other researches that managed entanglement creation between some distance (e.g.
[17] or [18]).
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an enhanced purification method, should be devised.
Furthermore, given that raising fidelities is such a hard job as to call for sophis-

ticated methods, and that whatever fidelity improvement method is used, it is state
estimation in some form that evaluates those methods’ performance, efficient state
estimation is really a keystone for realizing quantum networking in reality.

6.3 Future Work

The promised goal of the project, an optimized fidelity estimation method, is being
developed. As other possible future work, use of purification in order to improve recon-
struction fidelity could be proposed. In addition, further consideration of purification
algorithms that accelerate bootstrap in quantum networking will be worthwhile.
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